view usr/src/uts/common/io/e1000g/e1000_80003es2lan.c @ 10680:45bda3640f27

6797885 need to add support for network device (8086,10ea) in a new Intel system 6803799 need to add network device support (8086,10ef) for a new Intel system 6808388 e1000g inteface experience packet lost when switch between joining and leaving a multicast stream
author Miles Xu, Sun Microsystems <Min.Xu@Sun.COM>
date Tue, 29 Sep 2009 12:12:23 +0800
parents 9e4fad707edc
children e0feef27b61a
line wrap: on
line source

/*
 * This file is provided under a CDDLv1 license.  When using or
 * redistributing this file, you may do so under this license.
 * In redistributing this file this license must be included
 * and no other modification of this header file is permitted.
 *
 * CDDL LICENSE SUMMARY
 *
 * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
 *
 * The contents of this file are subject to the terms of Version
 * 1.0 of the Common Development and Distribution License (the "License").
 *
 * You should have received a copy of the License with this software.
 * You can obtain a copy of the License at
 *	http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 */

/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms of the CDDLv1.
 */

/*
 * IntelVersion: 1.86 v3-1-3_2009-8-20
 */
/*
 * 80003ES2LAN Gigabit Ethernet Controller (Copper)
 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
 */

#include "e1000_api.h"

static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw);
static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw);
static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw);
static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
static void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
    u32 offset, u16 *data);
static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
    u32 offset, u16 data);
static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
    u16 words, u16 *data);
static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
    u16 *duplex);
static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw);
static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
    u16 *data);
static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
    u16 data);
static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw);
static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);

/*
 * A table for the GG82563 cable length where the range is defined with a
 * lower bound at "index" and the upper bound at "index + 5".
 */
static const u16 e1000_gg82563_cable_length_table[] =
	{0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF};

#define	GG82563_CABLE_LENGTH_TABLE_SIZE \
	(sizeof (e1000_gg82563_cable_length_table) / \
	sizeof (e1000_gg82563_cable_length_table[0]))

/*
 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
 * @hw: pointer to the HW structure
 */
static s32
e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_init_phy_params_80003es2lan");

	if (hw->phy.media_type != e1000_media_type_copper) {
		phy->type = e1000_phy_none;
		goto out;
	} else {
		phy->ops.power_up = e1000_power_up_phy_copper;
		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
	}

	phy->addr = 1;
	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us = 100;
	phy->type = e1000_phy_gg82563;

	phy->ops.acquire = e1000_acquire_phy_80003es2lan;
	phy->ops.check_polarity = e1000_check_polarity_m88;
	phy->ops.check_reset_block = e1000_check_reset_block_generic;
	phy->ops.commit = e1000_phy_sw_reset_generic;
	phy->ops.get_cfg_done = e1000_get_cfg_done_80003es2lan;
	phy->ops.get_info = e1000_get_phy_info_m88;
	phy->ops.release = e1000_release_phy_80003es2lan;
	phy->ops.reset = e1000_phy_hw_reset_generic;
	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;

	phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
	phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan;
	phy->ops.read_reg = e1000_read_phy_reg_gg82563_80003es2lan;
	phy->ops.write_reg = e1000_write_phy_reg_gg82563_80003es2lan;

	phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan;

	/* This can only be done after all function pointers are setup. */
	ret_val = e1000_get_phy_id(hw);

	/* Verify phy id */
	if (phy->id != GG82563_E_PHY_ID) {
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

out:
	return (ret_val);
}

/*
 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
 * @hw: pointer to the HW structure
 */
static s32
e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
	u16 size;

	DEBUGFUNC("e1000_init_nvm_params_80003es2lan");

	nvm->opcode_bits = 8;
	nvm->delay_usec = 1;
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
		break;
	}

	nvm->type = e1000_nvm_eeprom_spi;

	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
	    E1000_EECD_SIZE_EX_SHIFT);

	/*
	 * Added to a constant, "size" becomes the left-shift value
	 * for setting word_size.
	 */
	size += NVM_WORD_SIZE_BASE_SHIFT;

	/* EEPROM access above 16k is unsupported */
	if (size > 14)
		size = 14;
	nvm->word_size = 1 << size;

	/* Function Pointers */
	nvm->ops.acquire = e1000_acquire_nvm_80003es2lan;
	nvm->ops.read = e1000_read_nvm_eerd;
	nvm->ops.release = e1000_release_nvm_80003es2lan;
	nvm->ops.update = e1000_update_nvm_checksum_generic;
	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
	nvm->ops.validate = e1000_validate_nvm_checksum_generic;
	nvm->ops.write = e1000_write_nvm_80003es2lan;

	return (E1000_SUCCESS);
}

/*
 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 * @hw: pointer to the HW structure
 */
static s32
e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_init_mac_params_80003es2lan");

	/* Set media type */
	switch (hw->device_id) {
	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
		hw->phy.media_type = e1000_media_type_internal_serdes;
		break;
	default:
		hw->phy.media_type = e1000_media_type_copper;
		break;
	}

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES;
	/* Set if part includes ASF firmware */
	mac->asf_firmware_present = true;
	/* Set if manageability features are enabled. */
	mac->arc_subsystem_valid =
	    (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
	    ? true : false;

	/* Function pointers */

	/* bus type/speed/width */
	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
	/* reset */
	mac->ops.reset_hw = e1000_reset_hw_80003es2lan;
	/* hw initialization */
	mac->ops.init_hw = e1000_init_hw_80003es2lan;
	/* link setup */
	mac->ops.setup_link = e1000_setup_link_generic;
	/* physical interface link setup */
	mac->ops.setup_physical_interface =
	    (hw->phy.media_type == e1000_media_type_copper)
	    ? e1000_setup_copper_link_80003es2lan
	    : e1000_setup_fiber_serdes_link_generic;
	/* check for link */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		mac->ops.check_for_link = e1000_check_for_copper_link_generic;
		break;
	case e1000_media_type_fiber:
		mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
		break;
	case e1000_media_type_internal_serdes:
		mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
		break;
	default:
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}
	/* check management mode */
	mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
	/* multicast address update */
	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
	/* writing VFTA */
	mac->ops.write_vfta = e1000_write_vfta_generic;
	/* clearing VFTA */
	mac->ops.clear_vfta = e1000_clear_vfta_generic;
	/* setting MTA */
	mac->ops.mta_set = e1000_mta_set_generic;
	/* read mac address */
	mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan;
	/* ID LED init */
	mac->ops.id_led_init = e1000_id_led_init_generic;
	/* blink LED */
	mac->ops.blink_led = e1000_blink_led_generic;
	/* setup LED */
	mac->ops.setup_led = e1000_setup_led_generic;
	/* cleanup LED */
	mac->ops.cleanup_led = e1000_cleanup_led_generic;
	/* turn on/off LED */
	mac->ops.led_on = e1000_led_on_generic;
	mac->ops.led_off = e1000_led_off_generic;
	/* clear hardware counters */
	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan;
	/* link info */
	mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan;

	/* set lan id for port to determine which phy lock to use */
	hw->mac.ops.set_lan_id(hw);
out:
	return (ret_val);
}

/*
 * e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs.
 * @hw: pointer to the HW structure
 *
 * Called to initialize all function pointers and parameters.
 */
void
e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_init_function_pointers_80003es2lan");

	hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan;
	hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan;
	hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan;
}

/*
 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 * @hw: pointer to the HW structure
 *
 * A wrapper to acquire access rights to the correct PHY.
 */
static s32
e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
{
	u16 mask;

	DEBUGFUNC("e1000_acquire_phy_80003es2lan");

	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;

	return (e1000_acquire_swfw_sync_80003es2lan(hw, mask));
}

/*
 * e1000_release_phy_80003es2lan - Release rights to access PHY
 * @hw: pointer to the HW structure
 *
 * A wrapper to release access rights to the correct PHY.
 */
static void
e1000_release_phy_80003es2lan(struct e1000_hw *hw)
{
	u16 mask;

	DEBUGFUNC("e1000_release_phy_80003es2lan");

	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
	e1000_release_swfw_sync_80003es2lan(hw, mask);
}

/*
 * e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
 * @hw: pointer to the HW structure
 *
 * Acquire the semaphore to access the Kumeran interface.
 *
 */
static s32
e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
{
	u16 mask;

	DEBUGFUNC("e1000_acquire_mac_csr_80003es2lan");

	mask = E1000_SWFW_CSR_SM;

	return (e1000_acquire_swfw_sync_80003es2lan(hw, mask));
}

/*
 * e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
 * @hw: pointer to the HW structure
 *
 * Release the semaphore used to access the Kumeran interface
 */
static void
e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
{
	u16 mask;

	DEBUGFUNC("e1000_release_mac_csr_80003es2lan");

	mask = E1000_SWFW_CSR_SM;

	e1000_release_swfw_sync_80003es2lan(hw, mask);
}

/*
 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 * @hw: pointer to the HW structure
 *
 * Acquire the semaphore to access the EEPROM.
 */
static s32
e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
{
	s32 ret_val;

	DEBUGFUNC("e1000_acquire_nvm_80003es2lan");

	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
	if (ret_val)
		goto out;

	ret_val = e1000_acquire_nvm_generic(hw);

	if (ret_val)
		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);

out:
	return (ret_val);
}

/*
 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 * @hw: pointer to the HW structure
 *
 * Release the semaphore used to access the EEPROM.
 */
static void
e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_release_nvm_80003es2lan");

	e1000_release_nvm_generic(hw);
	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
}

/*
 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 * @hw: pointer to the HW structure
 * @mask: specifies which semaphore to acquire
 *
 * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 * will also specify which port we're acquiring the lock for.
 */
static s32
e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;
	u32 swmask = mask;
	u32 fwmask = mask << 16;
	s32 ret_val = E1000_SUCCESS;
	s32 i = 0, timeout = 50;

	DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan");

	while (i < timeout) {
		if (e1000_get_hw_semaphore_generic(hw)) {
			ret_val = -E1000_ERR_SWFW_SYNC;
			goto out;
		}

		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
		if (!(swfw_sync & (fwmask | swmask)))
			break;

		/*
		 * Firmware currently using resource (fwmask)
		 * or other software thread using resource (swmask)
		 */
		e1000_put_hw_semaphore_generic(hw);
		msec_delay_irq(5);
		i++;
	}

	if (i == timeout) {
		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
		ret_val = -E1000_ERR_SWFW_SYNC;
		goto out;
	}

	swfw_sync |= swmask;
	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);

	e1000_put_hw_semaphore_generic(hw);

out:
	return (ret_val);
}

/*
 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 * @hw: pointer to the HW structure
 * @mask: specifies which semaphore to acquire
 *
 * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 * will also specify which port we're releasing the lock for.
 */
static void
e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;

	DEBUGFUNC("e1000_release_swfw_sync_80003es2lan");

	while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) {
		/* Empty */
	}

	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
	swfw_sync &= ~mask;
	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);

	e1000_put_hw_semaphore_generic(hw);
}

/*
 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 * @hw: pointer to the HW structure
 * @offset: offset of the register to read
 * @data: pointer to the data returned from the operation
 *
 * Read the GG82563 PHY register.
 */
static s32
e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
    u32 offset, u16 *data)
{
	s32 ret_val;
	u32 page_select;
	u16 temp;

	DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan");

	ret_val = e1000_acquire_phy_80003es2lan(hw);
	if (ret_val)
		goto out;

	/* Select Configuration Page */
	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
		page_select = GG82563_PHY_PAGE_SELECT;
	} else {
		/*
		 * Use Alternative Page Select register to access
		 * registers 30 and 31
		 */
		page_select = GG82563_PHY_PAGE_SELECT_ALT;
	}

	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
	ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
	if (ret_val) {
		e1000_release_phy_80003es2lan(hw);
		goto out;
	}

	if (hw->dev_spec._80003es2lan.mdic_wa_enable == true) {
		/*
		 * The "ready" bit in the MDIC register may be incorrectly set
		 * before the device has completed the "Page Select" MDI
		 * transaction.  So we wait 200us after each MDI command...
		 */
		usec_delay(200);

		/* ...and verify the command was successful. */
		ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);

		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
			ret_val = -E1000_ERR_PHY;
			e1000_release_phy_80003es2lan(hw);
			goto out;
		}

		usec_delay(200);

		ret_val = e1000_read_phy_reg_mdic(hw,
		    MAX_PHY_REG_ADDRESS & offset,
		    data);

		usec_delay(200);
	} else
		ret_val = e1000_read_phy_reg_mdic(hw,
		    MAX_PHY_REG_ADDRESS & offset,
		    data);

	e1000_release_phy_80003es2lan(hw);

out:
	return (ret_val);
}

/*
 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 * @hw: pointer to the HW structure
 * @offset: offset of the register to read
 * @data: value to write to the register
 *
 * Write to the GG82563 PHY register.
 */
static s32
e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
    u32 offset, u16 data)
{
	s32 ret_val;
	u32 page_select;
	u16 temp;

	DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan");

	ret_val = e1000_acquire_phy_80003es2lan(hw);
	if (ret_val)
		goto out;

	/* Select Configuration Page */
	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
		page_select = GG82563_PHY_PAGE_SELECT;
	} else {
		/*
		 * Use Alternative Page Select register to access
		 * registers 30 and 31
		 */
		page_select = GG82563_PHY_PAGE_SELECT_ALT;
	}

	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
	ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
	if (ret_val) {
		e1000_release_phy_80003es2lan(hw);
		goto out;
	}

	if (hw->dev_spec._80003es2lan.mdic_wa_enable == true) {
		/*
		 * The "ready" bit in the MDIC register may be incorrectly set
		 * before the device has completed the "Page Select" MDI
		 * transaction.  So we wait 200us after each MDI command...
		 */
		usec_delay(200);

		/* ...and verify the command was successful. */
		ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);

		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
			ret_val = -E1000_ERR_PHY;
			e1000_release_phy_80003es2lan(hw);
			goto out;
		}

		usec_delay(200);

		ret_val = e1000_write_phy_reg_mdic(hw,
		    MAX_PHY_REG_ADDRESS & offset,
		    data);

		usec_delay(200);
	} else
		ret_val = e1000_write_phy_reg_mdic(hw,
		    MAX_PHY_REG_ADDRESS & offset,
		    data);

	e1000_release_phy_80003es2lan(hw);

out:
	return (ret_val);
}

/*
 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 * @hw: pointer to the HW structure
 * @offset: offset of the register to read
 * @words: number of words to write
 * @data: buffer of data to write to the NVM
 *
 * Write "words" of data to the ESB2 NVM.
 */
static s32
e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
    u16 words, u16 *data)
{
	DEBUGFUNC("e1000_write_nvm_80003es2lan");

	return (e1000_write_nvm_spi(hw, offset, words, data));
}

/*
 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 * @hw: pointer to the HW structure
 *
 * Wait a specific amount of time for manageability processes to complete.
 * This is a function pointer entry point called by the phy module.
 */
static s32
e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = E1000_SUCCESS;
	u32 mask = E1000_NVM_CFG_DONE_PORT_0;

	DEBUGFUNC("e1000_get_cfg_done_80003es2lan");

	if (hw->bus.func == 1)
		mask = E1000_NVM_CFG_DONE_PORT_1;

	while (timeout) {
		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
			break;
		msec_delay(1);
		timeout--;
	}
	if (!timeout) {
		DEBUGOUT("MNG configuration cycle has not completed.\n");
		ret_val = -E1000_ERR_RESET;
		goto out;
	}

out:
	return (ret_val);
}

/*
 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 * @hw: pointer to the HW structure
 *
 * Force the speed and duplex settings onto the PHY.  This is a
 * function pointer entry point called by the phy module.
 */
static s32
e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u16 phy_data;
	bool link;

	DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan");

	if (!(hw->phy.ops.read_reg))
		goto out;

	/*
	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		goto out;

	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
	ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		goto out;

	DEBUGOUT1("GG82563 PSCR: %X\n", phy_data);

	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data);
	if (ret_val)
		goto out;

	e1000_phy_force_speed_duplex_setup(hw, &phy_data);

	/* Reset the phy to commit changes. */
	phy_data |= MII_CR_RESET;

	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data);
	if (ret_val)
		goto out;

	usec_delay(1);

	if (hw->phy.autoneg_wait_to_complete) {
		DEBUGOUT("Waiting for forced speed/duplex link "
		    "on GG82563 phy.\n");

		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
		    100000, &link);
		if (ret_val)
			goto out;

		if (!link) {
			/*
			 * We didn't get link.
			 * Reset the DSP and cross our fingers.
			 */
			ret_val = e1000_phy_reset_dsp_generic(hw);
			if (ret_val)
				goto out;
		}

		/* Try once more */
		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
		    100000, &link);
		if (ret_val)
			goto out;
	}

	ret_val =
	    hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
	if (ret_val)
		goto out;

	/*
	 * Resetting the phy means we need to verify the TX_CLK corresponds
	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
	 */
	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
	else
		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;

	/*
	 * In addition, we must re-enable CRS on Tx for both half and full
	 * duplex.
	 */
	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
	ret_val =
	    hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);

out:
	return (ret_val);
}

/*
 * e1000_get_cable_length_80003es2lan - Set approximate cable length
 * @hw: pointer to the HW structure
 *
 * Find the approximate cable length as measured by the GG82563 PHY.
 * This is a function pointer entry point called by the phy module.
 */
static s32
e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = E1000_SUCCESS;
	u16 phy_data, index;

	DEBUGFUNC("e1000_get_cable_length_80003es2lan");

	if (!(hw->phy.ops.read_reg))
		goto out;

	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
	if (ret_val)
		goto out;

	index = phy_data & GG82563_DSPD_CABLE_LENGTH;

	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) {
		ret_val = E1000_ERR_PHY;
		goto out;
	}

	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

out:
	return (ret_val);
}

/*
 * e1000_get_link_up_info_80003es2lan - Report speed and duplex
 * @hw: pointer to the HW structure
 * @speed: pointer to speed buffer
 * @duplex: pointer to duplex buffer
 *
 * Retrieve the current speed and duplex configuration.
 */
static s32
e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, u16 *duplex)
{
	s32 ret_val;

	DEBUGFUNC("e1000_get_link_up_info_80003es2lan");

	if (hw->phy.media_type == e1000_media_type_copper) {
		ret_val = e1000_get_speed_and_duplex_copper_generic(hw,
		    speed,
		    duplex);
		hw->phy.ops.cfg_on_link_up(hw);
	} else {
		ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
		    speed,
		    duplex);
	}

	return (ret_val);
}

/*
 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 * @hw: pointer to the HW structure
 *
 * Perform a global reset to the ESB2 controller.
 */
static s32
e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	DEBUGFUNC("e1000_reset_hw_80003es2lan");

	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000_disable_pcie_master_generic(hw);
	if (ret_val)
		DEBUGOUT("PCI-E Master disable polling has failed.\n");

	DEBUGOUT("Masking off all interrupts\n");
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);

	E1000_WRITE_REG(hw, E1000_RCTL, 0);
	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
	E1000_WRITE_FLUSH(hw);

	msec_delay(10);

	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	ret_val = e1000_acquire_phy_80003es2lan(hw);
	DEBUGOUT("Issuing a global reset to MAC\n");
	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
	e1000_release_phy_80003es2lan(hw);

	ret_val = e1000_get_auto_rd_done_generic(hw);
	if (ret_val)
		/* We don't want to continue accessing MAC registers. */
		goto out;

	/* Clear any pending interrupt events. */
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
	(void) E1000_READ_REG(hw, E1000_ICR);

	ret_val = e1000_check_alt_mac_addr_generic(hw);

out:
	return (ret_val);
}

/*
 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 * @hw: pointer to the HW structure
 *
 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 */
static s32
e1000_init_hw_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 reg_data;
	s32 ret_val;
	u16 i;

	DEBUGFUNC("e1000_init_hw_80003es2lan");

	e1000_initialize_hw_bits_80003es2lan(hw);

	/* Initialize identification LED */
	ret_val = mac->ops.id_led_init(hw);
	if (ret_val) {
		DEBUGOUT("Error initializing identification LED\n");
		/* This is not fatal and we should not stop init due to this */
	}

	/* Disabling VLAN filtering */
	DEBUGOUT("Initializing the IEEE VLAN\n");
	mac->ops.clear_vfta(hw);

	/* Setup the receive address. */
	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
	DEBUGOUT("Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* Setup link and flow control */
	ret_val = mac->ops.setup_link(hw);

	/* Set the transmit descriptor write-back policy */
	reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
	    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);

	/* ...for both queues. */
	reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
	    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);

	/* Enable retransmit on late collisions */
	reg_data = E1000_READ_REG(hw, E1000_TCTL);
	reg_data |= E1000_TCTL_RTLC;
	E1000_WRITE_REG(hw, E1000_TCTL, reg_data);

	/* Configure Gigabit Carry Extend Padding */
	reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT);
	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
	E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data);

	/* Configure Transmit Inter-Packet Gap */
	reg_data = E1000_READ_REG(hw, E1000_TIPG);
	reg_data &= ~E1000_TIPG_IPGT_MASK;
	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
	E1000_WRITE_REG(hw, E1000_TIPG, reg_data);

	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
	reg_data &= ~0x00100000;
	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);

	/* default to true to enable the MDIC W/A */
	hw->dev_spec._80003es2lan.mdic_wa_enable = true;

	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
	    E1000_KMRNCTRLSTA_OFFSET >>
	    E1000_KMRNCTRLSTA_OFFSET_SHIFT,
	    &i);
	if (!ret_val) {
		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
		    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
			hw->dev_spec._80003es2lan.mdic_wa_enable = false;
	}

	/*
	 * Clear all of the statistics registers (clear on read).  It is
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_80003es2lan(hw);

	return (ret_val);
}

/*
 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 * @hw: pointer to the HW structure
 *
 * Initializes required hardware-dependent bits needed for normal operation.
 */
static void
e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
{
	u32 reg;

	DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan");

	/* Transmit Descriptor Control 0 */
	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
	reg |= (1 << 22);
	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);

	/* Transmit Descriptor Control 1 */
	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
	reg |= (1 << 22);
	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);

	/* Transmit Arbitration Control 0 */
	reg = E1000_READ_REG(hw, E1000_TARC(0));
	reg &= ~(0xF << 27);	/* 30:27 */
	if (hw->phy.media_type != e1000_media_type_copper)
		reg &= ~(1 << 20);
	E1000_WRITE_REG(hw, E1000_TARC(0), reg);

	/* Transmit Arbitration Control 1 */
	reg = E1000_READ_REG(hw, E1000_TARC(1));
	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
		reg &= ~(1 << 28);
	else
		reg |= (1 << 28);
	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
}

/*
 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 * @hw: pointer to the HW structure
 *
 * Setup some GG82563 PHY registers for obtaining link
 */
static s32
e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u32 ctrl_ext;
	u16 data;

	DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");

	if (!phy->reset_disable) {
		ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
		    &data);
		if (ret_val)
			goto out;

		data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
		/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
		data |= GG82563_MSCR_TX_CLK_1000MBPS_25;

		ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
		    data);
		if (ret_val)
			goto out;

		/*
		 * Options:
		 *   MDI/MDI-X = 0 (default)
		 *   0 - Auto for all speeds
		 *   1 - MDI mode
		 *   2 - MDI-X mode
		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
		 */
		ret_val =
		    hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data);
		if (ret_val)
			goto out;

		data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;

		switch (phy->mdix) {
		case 1:
			data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
			break;
		case 2:
			data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
			break;
		case 0:
		default:
			data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
			break;
		}

		/*
		 * Options:
		 *   disable_polarity_correction = 0 (default)
		 *	Automatic Correction for Reversed Cable Polarity
		 *   0 - Disabled
		 *   1 - Enabled
		 */
		data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
		if (phy->disable_polarity_correction)
			data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;

		ret_val =
		    hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data);
		if (ret_val)
			goto out;

		/* SW Reset the PHY so all changes take effect */
		ret_val = hw->phy.ops.commit(hw);
		if (ret_val) {
			DEBUGOUT("Error Resetting the PHY\n");
			goto out;
		}

	}

	/* Bypass Rx and Tx FIFO's */
	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
	    E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
	    E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
	    E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
	if (ret_val)
		goto out;

	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
	    E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
	    &data);
	if (ret_val)
		goto out;

	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
	    E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
	    data);
	if (ret_val)
		goto out;

	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data);
	if (ret_val)
		goto out;

	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
	ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data);
	if (ret_val)
		goto out;

	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
	ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);

	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
	if (ret_val)
		goto out;

	/*
	 * Do not init these registers when the HW is in IAMT mode, since the
	 * firmware will have already initialized them.  We only initialize
	 * them if the HW is not in IAMT mode.
	 */
	if (!(hw->mac.ops.check_mng_mode(hw))) {
		/* Enable Electrical Idle on the PHY */
		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
		ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
		    data);
		if (ret_val)
			goto out;
		ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
		    &data);

		if (ret_val)
			goto out;

		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
		ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
		    data);

		if (ret_val)
			goto out;
	}

	/*
	 * Workaround: Disable padding in Kumeran interface in the MAC
	 * and in the PHY to avoid CRC errors.
	 */
	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data);
	if (ret_val)
		goto out;

	data |= GG82563_ICR_DIS_PADDING;
	ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data);
	if (ret_val)
		goto out;

out:
	return (ret_val);
}

/*
 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
 * @hw: pointer to the HW structure
 *
 * Essentially a wrapper for setting up all things "copper" related.
 * This is a function pointer entry point called by the mac module.
 */
static s32
e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	u16 reg_data;

	DEBUGFUNC("e1000_setup_copper_link_80003es2lan");

	ctrl = E1000_READ_REG(hw, E1000_CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);

	/*
	 * Set the mac to wait the maximum time between each
	 * iteration and increase the max iterations when
	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
	 */
	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
	    0xFFFF);
	if (ret_val)
		goto out;
	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
	    &reg_data);
	if (ret_val)
		goto out;
	reg_data |= 0x3F;
	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
	    reg_data);
	if (ret_val)
		goto out;
	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
	    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
	    &reg_data);
	if (ret_val)
		goto out;
	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
	    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
	    reg_data);
	if (ret_val)
		goto out;

	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_setup_copper_link_generic(hw);

out:
	return (ret_val);
}

/*
 * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
 * @hw: pointer to the HW structure
 * @duplex: current duplex setting
 *
 * Configure the KMRN interface by applying last minute quirks for
 * 10/100 operation.
 */
static s32
e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u16 speed;
	u16 duplex;

	DEBUGFUNC("e1000_configure_on_link_up");

	if (hw->phy.media_type == e1000_media_type_copper) {

		ret_val = e1000_get_speed_and_duplex_copper_generic(hw,
		    &speed,
		    &duplex);
		if (ret_val)
			goto out;

		if (speed == SPEED_1000)
			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
		else
			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
	}

out:
	return (ret_val);
}

/*
 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
 * @hw: pointer to the HW structure
 * @duplex: current duplex setting
 *
 * Configure the KMRN interface by applying last minute quirks for
 * 10/100 operation.
 */
static s32
e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
{
	s32 ret_val = E1000_SUCCESS;
	u32 tipg;
	u32 i = 0;
	u16 reg_data, reg_data2;

	DEBUGFUNC("e1000_configure_kmrn_for_10_100");

	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
	    E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
	    reg_data);
	if (ret_val)
		goto out;

	/* Configure Transmit Inter-Packet Gap */
	tipg = E1000_READ_REG(hw, E1000_TIPG);
	tipg &= ~E1000_TIPG_IPGT_MASK;
	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
	E1000_WRITE_REG(hw, E1000_TIPG, tipg);


	do {
		ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
		    &reg_data);
		if (ret_val)
			goto out;

		ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
		    &reg_data2);
		if (ret_val)
			goto out;
		i++;
	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));

	if (duplex == HALF_DUPLEX)
		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
	else
		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;

	ret_val =
	    hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);

out:
	return (ret_val);
}

/*
 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
 * @hw: pointer to the HW structure
 *
 * Configure the KMRN interface by applying last minute quirks for
 * gigabit operation.
 */
static s32
e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u16 reg_data, reg_data2;
	u32 tipg;
	u32 i = 0;

	DEBUGFUNC("e1000_configure_kmrn_for_1000");

	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
	    E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
	    reg_data);
	if (ret_val)
		goto out;

	/* Configure Transmit Inter-Packet Gap */
	tipg = E1000_READ_REG(hw, E1000_TIPG);
	tipg &= ~E1000_TIPG_IPGT_MASK;
	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
	E1000_WRITE_REG(hw, E1000_TIPG, tipg);


	do {
		ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
		    &reg_data);
		if (ret_val)
			goto out;

		ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
		    &reg_data2);
		if (ret_val)
			goto out;
		i++;
	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));

	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
	ret_val =
	    hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);

out:
	return (ret_val);
}

/*
 * e1000_read_kmrn_reg_80003es2lan - Read kumeran register
 * @hw: pointer to the HW structure
 * @offset: register offset to be read
 * @data: pointer to the read data
 *
 * Acquire semaphore, then read the PHY register at offset
 * using the kumeran interface.  The information retrieved is stored in data.
 * Release the semaphore before exiting.
 */
static s32
e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, u16 *data)
{
	u32 kmrnctrlsta;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan");

	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
	if (ret_val)
		goto out;

	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
	    E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);

	usec_delay(2);

	kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
	*data = (u16)kmrnctrlsta;

	e1000_release_mac_csr_80003es2lan(hw);

out:
	return (ret_val);
}

/*
 * e1000_write_kmrn_reg_80003es2lan - Write kumeran register
 * @hw: pointer to the HW structure
 * @offset: register offset to write to
 * @data: data to write at register offset
 *
 * Acquire semaphore, then write the data to PHY register
 * at the offset using the kumeran interface.  Release semaphore
 * before exiting.
 */
static s32
e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, u16 data)
{
	u32 kmrnctrlsta;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan");

	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
	if (ret_val)
		goto out;

	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
	    E1000_KMRNCTRLSTA_OFFSET) | data;
	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);

	usec_delay(2);

	e1000_release_mac_csr_80003es2lan(hw);

out:
	return (ret_val);
}

/*
 * e1000_read_mac_addr_80003es2lan - Read device MAC address
 * @hw: pointer to the HW structure
 */
static s32
e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_read_mac_addr_80003es2lan");
	/*
	 * If there's an alternate MAC address place it in RAR0
	 * so that it will override the Si installed default perm
	 * address.
	 */
	ret_val = e1000_check_alt_mac_addr_generic(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_read_mac_addr_generic(hw);

out:
	return (ret_val);
}

/*
 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 */
static void
e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
{
	/* If the management interface is not enabled, then power down */
	if (!(hw->mac.ops.check_mng_mode(hw) ||
	    hw->phy.ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

/*
 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
 * @hw: pointer to the HW structure
 *
 * Clears the hardware counters by reading the counter registers.
 */
static void
e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan");

	e1000_clear_hw_cntrs_base_generic(hw);

	(void) E1000_READ_REG(hw, E1000_PRC64);
	(void) E1000_READ_REG(hw, E1000_PRC127);
	(void) E1000_READ_REG(hw, E1000_PRC255);
	(void) E1000_READ_REG(hw, E1000_PRC511);
	(void) E1000_READ_REG(hw, E1000_PRC1023);
	(void) E1000_READ_REG(hw, E1000_PRC1522);
	(void) E1000_READ_REG(hw, E1000_PTC64);
	(void) E1000_READ_REG(hw, E1000_PTC127);
	(void) E1000_READ_REG(hw, E1000_PTC255);
	(void) E1000_READ_REG(hw, E1000_PTC511);
	(void) E1000_READ_REG(hw, E1000_PTC1023);
	(void) E1000_READ_REG(hw, E1000_PTC1522);

	(void) E1000_READ_REG(hw, E1000_ALGNERRC);
	(void) E1000_READ_REG(hw, E1000_RXERRC);
	(void) E1000_READ_REG(hw, E1000_TNCRS);
	(void) E1000_READ_REG(hw, E1000_CEXTERR);
	(void) E1000_READ_REG(hw, E1000_TSCTC);
	(void) E1000_READ_REG(hw, E1000_TSCTFC);

	(void) E1000_READ_REG(hw, E1000_MGTPRC);
	(void) E1000_READ_REG(hw, E1000_MGTPDC);
	(void) E1000_READ_REG(hw, E1000_MGTPTC);

	(void) E1000_READ_REG(hw, E1000_IAC);
	(void) E1000_READ_REG(hw, E1000_ICRXOC);

	(void) E1000_READ_REG(hw, E1000_ICRXPTC);
	(void) E1000_READ_REG(hw, E1000_ICRXATC);
	(void) E1000_READ_REG(hw, E1000_ICTXPTC);
	(void) E1000_READ_REG(hw, E1000_ICTXATC);
	(void) E1000_READ_REG(hw, E1000_ICTXQEC);
	(void) E1000_READ_REG(hw, E1000_ICTXQMTC);
	(void) E1000_READ_REG(hw, E1000_ICRXDMTC);
}