view usr/src/uts/common/io/e1000g/e1000_82571.c @ 10680:45bda3640f27

6797885 need to add support for network device (8086,10ea) in a new Intel system 6803799 need to add network device support (8086,10ef) for a new Intel system 6808388 e1000g inteface experience packet lost when switch between joining and leaving a multicast stream
author Miles Xu, Sun Microsystems <Min.Xu@Sun.COM>
date Tue, 29 Sep 2009 12:12:23 +0800
parents 730a354b86ff
children e0feef27b61a
line wrap: on
line source

/*
 * This file is provided under a CDDLv1 license.  When using or
 * redistributing this file, you may do so under this license.
 * In redistributing this file this license must be included
 * and no other modification of this header file is permitted.
 *
 * CDDL LICENSE SUMMARY
 *
 * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
 *
 * The contents of this file are subject to the terms of Version
 * 1.0 of the Common Development and Distribution License (the "License").
 *
 * You should have received a copy of the License with this software.
 * You can obtain a copy of the License at
 *	http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 */

/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms of the CDDLv1.
 */

/*
 * IntelVersion: 1.113 v3-1-3_2009-8-20
 */

/*
 * 82571EB Gigabit Ethernet Controller
 * 82571EB Gigabit Ethernet Controller (Copper)
 * 82571EB Gigabit Ethernet Controller (Fiber)
 * 82571EB Dual Port Gigabit Mezzanine Adapter
 * 82571EB Quad Port Gigabit Mezzanine Adapter
 * 82571PT Gigabit PT Quad Port Server ExpressModule
 * 82572EI Gigabit Ethernet Controller (Copper)
 * 82572EI Gigabit Ethernet Controller (Fiber)
 * 82572EI Gigabit Ethernet Controller
 * 82573V Gigabit Ethernet Controller (Copper)
 * 82573E Gigabit Ethernet Controller (Copper)
 * 82573L Gigabit Ethernet Controller
 * 82574L Gigabit Network Connection
 * 82583V Gigabit Network Connection
 */

#include "e1000_api.h"

static s32 e1000_init_phy_params_82571(struct e1000_hw *hw);
static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw);
static s32 e1000_init_mac_params_82571(struct e1000_hw *hw);
static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw);
static void e1000_release_nvm_82571(struct e1000_hw *hw);
static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset,
    u16 words, u16 *data);
static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw);
static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw);
static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw);
static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw,
    bool active);
static s32 e1000_reset_hw_82571(struct e1000_hw *hw);
static s32 e1000_init_hw_82571(struct e1000_hw *hw);
static void e1000_clear_vfta_82571(struct e1000_hw *hw);
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
static s32 e1000_led_on_82574(struct e1000_hw *hw);
static s32 e1000_setup_link_82571(struct e1000_hw *hw);
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
static s32  e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data);
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
static s32  e1000_get_hw_semaphore_82571(struct e1000_hw *hw);
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
    u16 words, u16 *data);
static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw);
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);

/*
 * e1000_init_phy_params_82571 - Init PHY func ptrs.
 * @hw: pointer to the HW structure
 */
static s32
e1000_init_phy_params_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_init_phy_params_82571");

	if (hw->phy.media_type != e1000_media_type_copper) {
		phy->type = e1000_phy_none;
		goto out;
	}

	phy->addr = 1;
	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us = 100;

	phy->ops.acquire = e1000_get_hw_semaphore_82571;
	phy->ops.check_polarity = e1000_check_polarity_igp;
	phy->ops.check_reset_block = e1000_check_reset_block_generic;
	phy->ops.release = e1000_put_hw_semaphore_82571;
	phy->ops.reset = e1000_phy_hw_reset_generic;
	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82571;
	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
	phy->ops.power_up = e1000_power_up_phy_copper;
	phy->ops.power_down = e1000_power_down_phy_copper_82571;

	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		phy->type = e1000_phy_igp_2;
		phy->ops.get_cfg_done = e1000_get_cfg_done_82571;
		phy->ops.get_info = e1000_get_phy_info_igp;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
		phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
		phy->ops.read_reg = e1000_read_phy_reg_igp;
		phy->ops.write_reg = e1000_write_phy_reg_igp;

		/* This uses above function pointers */
		ret_val = e1000_get_phy_id_82571(hw);

		/* Verify PHY ID */
		if (phy->id != IGP01E1000_I_PHY_ID) {
			ret_val = -E1000_ERR_PHY;
			goto out;
		}
		break;
	case e1000_82573:
		phy->type = e1000_phy_m88;
		phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
		phy->ops.get_info = e1000_get_phy_info_m88;
		phy->ops.commit = e1000_phy_sw_reset_generic;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
		phy->ops.get_cable_length = e1000_get_cable_length_m88;
		phy->ops.read_reg = e1000_read_phy_reg_m88;
		phy->ops.write_reg = e1000_write_phy_reg_m88;

		/* This uses above function pointers */
		ret_val = e1000_get_phy_id_82571(hw);

		/* Verify PHY ID */
		if (phy->id != M88E1111_I_PHY_ID) {
			ret_val = -E1000_ERR_PHY;
			DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
			goto out;
		}
		break;
	case e1000_82574:
	case e1000_82583:
		phy->type = e1000_phy_bm;
		phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
		phy->ops.get_info = e1000_get_phy_info_m88;
		phy->ops.commit = e1000_phy_sw_reset_generic;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
		phy->ops.get_cable_length = e1000_get_cable_length_m88;
		phy->ops.read_reg = e1000_read_phy_reg_bm2;
		phy->ops.write_reg = e1000_write_phy_reg_bm2;

		/* This uses above function pointers */
		ret_val = e1000_get_phy_id_82571(hw);
		/* Verify PHY ID */
		if (phy->id != BME1000_E_PHY_ID_R2) {
			ret_val = -E1000_ERR_PHY;
			DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
			goto out;
		}
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

out:
	return (ret_val);
}

/*
 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
 * @hw: pointer to the HW structure
 */
static s32
e1000_init_nvm_params_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
	u16 size;

	DEBUGFUNC("e1000_init_nvm_params_82571");

	nvm->opcode_bits = 8;
	nvm->delay_usec = 1;
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
		break;
	}

	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (((eecd >> 15) & 0x3) == 0x3) {
			nvm->type = e1000_nvm_flash_hw;
			nvm->word_size = 2048;
			/*
			 * Autonomous Flash update bit must be cleared due
			 * to Flash update issue.
			 */
			eecd &= ~E1000_EECD_AUPDEN;
			E1000_WRITE_REG(hw, E1000_EECD, eecd);
			break;
		}
		/* Fall Through */
	default:
		nvm->type = e1000_nvm_eeprom_spi;
		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
		    E1000_EECD_SIZE_EX_SHIFT);
		/*
		 * Added to a constant, "size" becomes the left-shift value
		 * for setting word_size.
		 */
		size += NVM_WORD_SIZE_BASE_SHIFT;

		/* EEPROM access above 16k is unsupported */
		if (size > 14)
			size = 14;
		nvm->word_size = 1 << size;
		break;
	}

	/* Function Pointers */
	nvm->ops.acquire = e1000_acquire_nvm_82571;
	nvm->ops.read = e1000_read_nvm_eerd;
	nvm->ops.release = e1000_release_nvm_82571;
	nvm->ops.update = e1000_update_nvm_checksum_82571;
	nvm->ops.validate = e1000_validate_nvm_checksum_82571;
	nvm->ops.valid_led_default = e1000_valid_led_default_82571;
	nvm->ops.write = e1000_write_nvm_82571;

	return (E1000_SUCCESS);
}

/*
 * e1000_init_mac_params_82571 - Init MAC func ptrs.
 * @hw: pointer to the HW structure
 */
static s32
e1000_init_mac_params_82571(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val = E1000_SUCCESS;
	u32 swsm  = 0;
	u32 swsm2  = 0;
	bool force_clear_smbi = false;

	DEBUGFUNC("e1000_init_mac_params_82571");

	/* Set media type */
	switch (hw->device_id) {
	case E1000_DEV_ID_82571EB_FIBER:
	case E1000_DEV_ID_82572EI_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
		hw->phy.media_type = e1000_media_type_fiber;
		break;
	case E1000_DEV_ID_82571EB_SERDES:
	case E1000_DEV_ID_82571EB_SERDES_DUAL:
	case E1000_DEV_ID_82571EB_SERDES_QUAD:
	case E1000_DEV_ID_82572EI_SERDES:
		hw->phy.media_type = e1000_media_type_internal_serdes;
		break;
	default:
		hw->phy.media_type = e1000_media_type_copper;
		break;
	}

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES;
	/* Set if part includes ASF firmware */
	mac->asf_firmware_present = true;
	/* Set if manageability features are enabled. */
	mac->arc_subsystem_valid =
	    (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
	    ? true : false;

	/* Function pointers */

	/* bus type/speed/width */
	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
	/* function id */
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
		break;
	default:
		break;
	}
	/* reset */
	mac->ops.reset_hw = e1000_reset_hw_82571;
	/* hw initialization */
	mac->ops.init_hw = e1000_init_hw_82571;
	/* link setup */
	mac->ops.setup_link = e1000_setup_link_82571;
	/* physical interface link setup */
	mac->ops.setup_physical_interface =
	    (hw->phy.media_type == e1000_media_type_copper)
	    ? e1000_setup_copper_link_82571
	    : e1000_setup_fiber_serdes_link_82571;
	/* check for link */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		mac->ops.check_for_link = e1000_check_for_copper_link_generic;
		break;
	case e1000_media_type_fiber:
		mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
		break;
	case e1000_media_type_internal_serdes:
		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
		break;
	default:
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}
	/* check management mode */
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
		break;
	default:
		mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
		break;
	}
	/* multicast address update */
	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
	/* writing VFTA */
	mac->ops.write_vfta = e1000_write_vfta_generic;
	/* clearing VFTA */
	mac->ops.clear_vfta = e1000_clear_vfta_82571;
	/* setting MTA */
	mac->ops.mta_set = e1000_mta_set_generic;
	/* read mac address */
	mac->ops.read_mac_addr = e1000_read_mac_addr_82571;
	/* ID LED init */
	mac->ops.id_led_init = e1000_id_led_init_generic;
	/* blink LED */
	mac->ops.blink_led = e1000_blink_led_generic;
	/* setup LED */
	mac->ops.setup_led = e1000_setup_led_generic;
	/* cleanup LED */
	mac->ops.cleanup_led = e1000_cleanup_led_generic;
	/* turn on/off LED */
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
		mac->ops.led_on = e1000_led_on_82574;
		break;
	default:
		mac->ops.led_on = e1000_led_on_generic;
		break;
	}
	mac->ops.led_off = e1000_led_off_generic;
	/* clear hardware counters */
	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82571;
	/* link info */
	mac->ops.get_link_up_info =
	    (hw->phy.media_type == e1000_media_type_copper)
	    ? e1000_get_speed_and_duplex_copper_generic
	    : e1000_get_speed_and_duplex_fiber_serdes_generic;

	/*
	 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
	 * first NVM or PHY acess. This should be done for single-port
	 * devices, and for one port only on dual-port devices so that
	 * for those devices we can still use the SMBI lock to synchronize
	 * inter-port accesses to the PHY & NVM.
	 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		swsm2 = E1000_READ_REG(hw, E1000_SWSM2);

		if (!(swsm2 & E1000_SWSM2_LOCK)) {
			/* Only do this for the first interface on this card */
			E1000_WRITE_REG(hw, E1000_SWSM2,
			    swsm2 | E1000_SWSM2_LOCK);
				force_clear_smbi = true;
			} else
				force_clear_smbi = false;
		break;
	default:
		force_clear_smbi = true;
		break;
	}

	if (force_clear_smbi) {
		/* Make sure SWSM.SMBI is clear */
		swsm = E1000_READ_REG(hw, E1000_SWSM);
		if (swsm & E1000_SWSM_SMBI) {
			/*
			 * This bit should not be set on a first interface, and
			 * indicates that the bootagent or EFI code has
			 * improperly left this bit enabled
			 */
			DEBUGOUT("Please update your 82571 Bootagent\n");
		}
		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_SMBI);
	}

	/*
	 * Initialze device specific counter of SMBI acquisition
	 * timeouts.
	 */
	hw->dev_spec._82571.smb_counter = 0;

out:
	return (ret_val);
}

/*
 * e1000_init_function_pointers_82571 - Init func ptrs.
 * @hw: pointer to the HW structure
 *
 * Called to initialize all function pointers and parameters.
 */
void
e1000_init_function_pointers_82571(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_init_function_pointers_82571");

	hw->mac.ops.init_params = e1000_init_mac_params_82571;
	hw->nvm.ops.init_params = e1000_init_nvm_params_82571;
	hw->phy.ops.init_params = e1000_init_phy_params_82571;
}

/*
 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
 * @hw: pointer to the HW structure
 *
 * Reads the PHY registers and stores the PHY ID and possibly the PHY
 * revision in the hardware structure.
 */
static s32
e1000_get_phy_id_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = E1000_SUCCESS;
	u16 phy_id = 0;

	DEBUGFUNC("e1000_get_phy_id_82571");

	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		/*
		 * The 82571 firmware may still be configuring the PHY. In
		 * this case, we cannot access the PHY until the configuration
		 * is done.  So we explicitly set the PHY ID.
		 */
		phy->id = IGP01E1000_I_PHY_ID;
		break;
	case e1000_82573:
		ret_val = e1000_get_phy_id(hw);
		break;
	case e1000_82574:
	case e1000_82583:
		ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
		if (ret_val)
			goto out;

		phy->id = (u32)(phy_id << 16);
		usec_delay(20);
		ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
		if (ret_val)
			goto out;

		phy->id |= (u32)(phy_id);
		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		break;
	}

out:
	return (ret_val);
}

/*
 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
 * @hw: pointer to the HW structure
 *
 * Acquire the HW semaphore to access the PHY or NVM
 */
s32
e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;
	s32 ret_val = E1000_SUCCESS;
	s32 sw_timeout = hw->nvm.word_size + 1;
	s32 fw_timeout = hw->nvm.word_size + 1;
	s32 i = 0;

	DEBUGFUNC("e1000_get_hw_semaphore_82571");

	/*
	 * If we have timedout 3 times on trying to acquire
	 * the inter-port SMBI semaphore, there is old code
	 * operating on the other port, and it is not
	 * releasing SMBI. Modify the number of times that
	 * we try for the semaphore to interwork with this
	 * older code.
	 */
	if (hw->dev_spec._82571.smb_counter > 2)
		sw_timeout = 1;

	/* Get the SW semaphore */
	while (i < sw_timeout) {
		swsm = E1000_READ_REG(hw, E1000_SWSM);
		if (!(swsm & E1000_SWSM_SMBI))
			break;

		usec_delay(50);
		i++;
	}

	if (i == sw_timeout) {
		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
		hw->dev_spec._82571.smb_counter++;
	}
	/* Get the FW semaphore. */
	for (i = 0; i < fw_timeout; i++) {
		swsm = E1000_READ_REG(hw, E1000_SWSM);
		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
			break;

		usec_delay(50);
	}

	if (i == fw_timeout) {
		/* Release semaphores */
		e1000_put_hw_semaphore_82571(hw);
		DEBUGOUT("Driver can't access the NVM\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

out:
	return (ret_val);
}

/*
 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
 * @hw: pointer to the HW structure
 *
 * Release hardware semaphore used to access the PHY or NVM
 */
void
e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;

	DEBUGFUNC("e1000_put_hw_semaphore_generic");

	swsm = E1000_READ_REG(hw, E1000_SWSM);

	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);

	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
}

/*
 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
 * @hw: pointer to the HW structure
 *
 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
 * Then for non-82573 hardware, set the EEPROM access request bit and wait
 * for EEPROM access grant bit.  If the access grant bit is not set, release
 * hardware semaphore.
 */
static s32
e1000_acquire_nvm_82571(struct e1000_hw *hw)
{
	s32 ret_val;

	DEBUGFUNC("e1000_acquire_nvm_82571");

	ret_val = e1000_get_hw_semaphore_82571(hw);
	if (ret_val)
		goto out;

	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		break;
	default:
		ret_val = e1000_acquire_nvm_generic(hw);
		break;
	}

	if (ret_val)
		e1000_put_hw_semaphore_82571(hw);

out:
	return (ret_val);
}

/*
 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
 * @hw: pointer to the HW structure
 *
 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
 */
static void
e1000_release_nvm_82571(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_release_nvm_82571");

	e1000_release_nvm_generic(hw);
	e1000_put_hw_semaphore_82571(hw);
}

/*
 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
 * @hw: pointer to the HW structure
 * @offset: offset within the EEPROM to be written to
 * @words: number of words to write
 * @data: 16 bit word(s) to be written to the EEPROM
 *
 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
 *
 * If e1000_update_nvm_checksum is not called after this function, the
 * EEPROM will most likely contain an invalid checksum.
 */
static s32
e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
    u16 *data)
{
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_write_nvm_82571");

	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
		break;
	case e1000_82571:
	case e1000_82572:
		ret_val = e1000_write_nvm_spi(hw, offset, words, data);
		break;
	default:
		ret_val = -E1000_ERR_NVM;
		break;
	}

	return (ret_val);
}

/*
 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
 * @hw: pointer to the HW structure
 *
 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
 * up to the checksum.  Then calculates the EEPROM checksum and writes the
 * value to the EEPROM.
 */
static s32
e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
{
	u32 eecd;
	s32 ret_val;
	u16 i;

	DEBUGFUNC("e1000_update_nvm_checksum_82571");

	ret_val = e1000_update_nvm_checksum_generic(hw);
	if (ret_val)
		goto out;

	/*
	 * If our nvm is an EEPROM, then we're done otherwise, commit the
	 * checksum to the flash NVM.
	 */
	if (hw->nvm.type != e1000_nvm_flash_hw)
		goto out;

	/* Check for pending operations. */
	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
		msec_delay(1);
		if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0)
			break;
	}

	if (i == E1000_FLASH_UPDATES) {
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	/* Reset the firmware if using STM opcode. */
	if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) {
		/*
		 * The enabling of and the actual reset must be done in two
		 * write cycles.
		 */
		E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE);
		E1000_WRITE_FLUSH(hw);
		E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET);
	}

	/* Commit the write to flash */
	eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD;
	E1000_WRITE_REG(hw, E1000_EECD, eecd);

	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
		msec_delay(1);
		if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0)
			break;
	}

	if (i == E1000_FLASH_UPDATES) {
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

out:
	return (ret_val);
}

/*
 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
 * @hw: pointer to the HW structure
 *
 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
 */
static s32
e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_validate_nvm_checksum_82571");

	if (hw->nvm.type == e1000_nvm_flash_hw)
		(void) e1000_fix_nvm_checksum_82571(hw);

	return (e1000_validate_nvm_checksum_generic(hw));
}

/*
 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
 * @hw: pointer to the HW structure
 * @offset: offset within the EEPROM to be written to
 * @words: number of words to write
 * @data: 16 bit word(s) to be written to the EEPROM
 *
 * After checking for invalid values, poll the EEPROM to ensure the previous
 * command has completed before trying to write the next word.  After write
 * poll for completion.
 *
 * If e1000_update_nvm_checksum is not called after this function, the
 * EEPROM will most likely contain an invalid checksum.
 */
static s32
e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
    u16 words, u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 i, eewr = 0;
	s32 ret_val = 0;

	DEBUGFUNC("e1000_write_nvm_eewr_82571");

	/*
	 * A check for invalid values:  offset too large, too many words, and
	 * not enough words.
	 */
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
		DEBUGOUT("nvm parameter(s) out of bounds\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	for (i = 0; i < words; i++) {
		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
		    ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
		    E1000_NVM_RW_REG_START;

		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;

		E1000_WRITE_REG(hw, E1000_EEWR, eewr);

		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;
	}

out:
	return (ret_val);
}

/*
 * e1000_get_cfg_done_82571 - Poll for configuration done
 * @hw: pointer to the HW structure
 *
 * Reads the management control register for the config done bit to be set.
 */
static s32
e1000_get_cfg_done_82571(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_get_cfg_done_82571");

	while (timeout) {
		if (E1000_READ_REG(hw, E1000_EEMNGCTL) &
		    E1000_NVM_CFG_DONE_PORT_0)
			break;
		msec_delay(1);
		timeout--;
	}
	if (!timeout) {
		DEBUGOUT("MNG configuration cycle has not completed.\n");
		ret_val = -E1000_ERR_RESET;
		goto out;
	}

out:
	return (ret_val);
}

/*
 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
 * @hw: pointer to the HW structure
 * @active: true to enable LPLU, false to disable
 *
 * Sets the LPLU D0 state according to the active flag.  When activating LPLU
 * this function also disables smart speed and vice versa.  LPLU will not be
 * activated unless the device autonegotiation advertisement meets standards
 * of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
 * pointer entry point only called by PHY setup routines.
 */
static s32
e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = E1000_SUCCESS;
	u16 data;

	DEBUGFUNC("e1000_set_d0_lplu_state_82571");

	if (!(phy->ops.read_reg))
		goto out;

	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		goto out;

	if (active) {
		data |= IGP02E1000_PM_D0_LPLU;
		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
		    data);
		if (ret_val)
			goto out;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
		    &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
		    data);
		if (ret_val)
			goto out;
	} else {
		data &= ~IGP02E1000_PM_D0_LPLU;
		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
		    data);
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = phy->ops.read_reg(hw,
			    IGP01E1000_PHY_PORT_CONFIG,
			    &data);
			if (ret_val)
				goto out;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = phy->ops.write_reg(hw,
			    IGP01E1000_PHY_PORT_CONFIG,
			    data);
			if (ret_val)
				goto out;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = phy->ops.read_reg(hw,
			    IGP01E1000_PHY_PORT_CONFIG,
			    &data);
			if (ret_val)
				goto out;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = phy->ops.write_reg(hw,
			    IGP01E1000_PHY_PORT_CONFIG,
			    data);
			if (ret_val)
				goto out;
		}
	}

out:
	return (ret_val);
}

/*
 * e1000_reset_hw_82571 - Reset hardware
 * @hw: pointer to the HW structure
 *
 * This resets the hardware into a known state.
 */
static s32
e1000_reset_hw_82571(struct e1000_hw *hw)
{
	u32 ctrl, extcnf_ctrl, ctrl_ext;
	s32 ret_val;
	u16 i = 0;

	DEBUGFUNC("e1000_reset_hw_82571");

	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000_disable_pcie_master_generic(hw);
	if (ret_val)
		DEBUGOUT("PCI-E Master disable polling has failed.\n");

	DEBUGOUT("Masking off all interrupts\n");
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);

	E1000_WRITE_REG(hw, E1000_RCTL, 0);
	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
	E1000_WRITE_FLUSH(hw);

	msec_delay(10);

	/*
	 * Must acquire the MDIO ownership before MAC reset. Ownership
	 * defaults to firmware after a reset.
	 */
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

		do {
			E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
			extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);

			if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
				break;

			extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

			msec_delay(2);
			i++;
		} while (i < MDIO_OWNERSHIP_TIMEOUT);
		break;
	default:
		break;
	}

	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	DEBUGOUT("Issuing a global reset to MAC\n");
	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);

	if (hw->nvm.type == e1000_nvm_flash_hw) {
		usec_delay(10);
		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
		E1000_WRITE_FLUSH(hw);
	}

	ret_val = e1000_get_auto_rd_done_generic(hw);
	if (ret_val)
		/* We don't want to continue accessing MAC registers. */
		goto out;

	/*
	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
	 * Need to wait for Phy configuration completion before accessing
	 * NVM and Phy.
	 */
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		msec_delay(25);
		break;
	default:
		break;
	}

	/* Clear any pending interrupt events. */
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
	(void) E1000_READ_REG(hw, E1000_ICR);

	/* Install any alternate MAC address into RAR0 */
	ret_val = e1000_check_alt_mac_addr_generic(hw);
	if (ret_val)
		goto out;

	e1000_set_laa_state_82571(hw, true);

	/* Reinitialize the 82571 serdes link state machine */
	if (hw->phy.media_type == e1000_media_type_internal_serdes)
		hw->mac.serdes_link_state = e1000_serdes_link_down;

out:
	return (ret_val);
}

/*
 * e1000_init_hw_82571 - Initialize hardware
 * @hw: pointer to the HW structure
 *
 * This inits the hardware readying it for operation.
 */
static s32
e1000_init_hw_82571(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 reg_data;
	s32 ret_val;
	u16 i, rar_count = mac->rar_entry_count;

	DEBUGFUNC("e1000_init_hw_82571");

	e1000_initialize_hw_bits_82571(hw);

	/* Initialize identification LED */
	ret_val = mac->ops.id_led_init(hw);
	if (ret_val) {
		DEBUGOUT("Error initializing identification LED\n");
		/* This is not fatal and we should not stop init due to this */
	}

	/* Disabling VLAN filtering */
	DEBUGOUT("Initializing the IEEE VLAN\n");
	mac->ops.clear_vfta(hw);

	/* Setup the receive address. */
	/*
	 * If, however, a locally administered address was assigned to the
	 * 82571, we must reserve a RAR for it to work around an issue where
	 * resetting one port will reload the MAC on the other port.
	 */
	if (e1000_get_laa_state_82571(hw))
		rar_count--;
	e1000_init_rx_addrs_generic(hw, rar_count);

	/* Zero out the Multicast HASH table */
	DEBUGOUT("Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* Setup link and flow control */
	ret_val = mac->ops.setup_link(hw);

	/* Set the transmit descriptor write-back policy */
	reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
	    E1000_TXDCTL_FULL_TX_DESC_WB |
	    E1000_TXDCTL_COUNT_DESC;
	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);

	/* ...for both queues. */
	switch (mac->type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		e1000_enable_tx_pkt_filtering_generic(hw);
		reg_data = E1000_READ_REG(hw, E1000_GCR);
		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
		E1000_WRITE_REG(hw, E1000_GCR, reg_data);
		break;
	default:
		reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
		    E1000_TXDCTL_FULL_TX_DESC_WB |
		    E1000_TXDCTL_COUNT_DESC;
		E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
		break;
	}

	/*
	 * Clear all of the statistics registers (clear on read).  It is
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_82571(hw);

	return (ret_val);
}

/*
 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
 * @hw: pointer to the HW structure
 *
 * Initializes required hardware-dependent bits needed for normal operation.
 */
static void
e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
{
	u32 reg;

	DEBUGFUNC("e1000_initialize_hw_bits_82571");

	/* Transmit Descriptor Control 0 */
	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
	reg |= (1 << 22);
	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);

	/* Transmit Descriptor Control 1 */
	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
	reg |= (1 << 22);
	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);

	/* Transmit Arbitration Control 0 */
	reg = E1000_READ_REG(hw, E1000_TARC(0));
	reg &= ~(0xF << 27);	/* 30:27 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
		break;
	default:
		break;
	}
	E1000_WRITE_REG(hw, E1000_TARC(0), reg);

	/* Transmit Arbitration Control 1 */
	reg = E1000_READ_REG(hw, E1000_TARC(1));
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg &= ~((1 << 29) | (1 << 30));
		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
		if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
			reg &= ~(1 << 28);
		else
			reg |= (1 << 28);
		E1000_WRITE_REG(hw, E1000_TARC(1), reg);
		break;
	default:
		break;
	}

	/* Device Control */
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		reg = E1000_READ_REG(hw, E1000_CTRL);
		reg &= ~(1 << 29);
		E1000_WRITE_REG(hw, E1000_CTRL, reg);
		break;
	default:
		break;
	}

	/* Extended Device Control */
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
		reg &= ~(1 << 23);
		reg |= (1 << 22);
		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
		break;
	default:
		break;
	}

	if (hw->mac.type == e1000_82571) {
		reg = E1000_READ_REG(hw, E1000_PBA_ECC);
		reg |= E1000_PBA_ECC_CORR_EN;
		E1000_WRITE_REG(hw, E1000_PBA_ECC, reg);
	}

	/*
	 * Workaround for hardware errata.
	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
	 */
	if ((hw->mac.type == e1000_82571) ||
	    (hw->mac.type == e1000_82572)) {
		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
	}

	/* PCI-Ex Control Registers */
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
		reg = E1000_READ_REG(hw, E1000_GCR);
		reg |= (1 << 22);
		E1000_WRITE_REG(hw, E1000_GCR, reg);
		/*
		 * Workaround for hardware errata.
		 * apply workaround for hardware errata documented in errata
		 * docs Fixes issue where some error prone or unreliable PCIe
		 * completions are occurring, particularly with ASPM enabled.
		 * Without fix, issue can cause tx timeouts.
		 */
		reg = E1000_READ_REG(hw, E1000_GCR2);
		reg |= 1;
		E1000_WRITE_REG(hw, E1000_GCR2, reg);
		break;
	default:
		break;
	}
}

/*
 * e1000_clear_vfta_82571 - Clear VLAN filter table
 * @hw: pointer to the HW structure
 *
 * Clears the register array which contains the VLAN filter table by
 * setting all the values to 0.
 */
static void
e1000_clear_vfta_82571(struct e1000_hw *hw)
{
	u32 offset;
	u32 vfta_value = 0;
	u32 vfta_offset = 0;
	u32 vfta_bit_in_reg = 0;

	DEBUGFUNC("e1000_clear_vfta_82571");

	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (hw->mng_cookie.vlan_id != 0) {
			/*
			 * The VFTA is a 4096b bit-field, each identifying
			 * a single VLAN ID.  The following operations
			 * determine which 32b entry (i.e. offset) into the
			 * array we want to set the VLAN ID (i.e. bit) of
			 * the manageability unit.
			 */
			vfta_offset = (hw->mng_cookie.vlan_id >>
			    E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;

			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
			    E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
		}

		for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE;
		    offset ++) {
			/*
			 * If the offset we want to clear is the same offset of
			 * the manageability VLAN ID, then clear all bits except
			 * that of the manageability unit
			 */
			vfta_value = (offset == vfta_offset) ?
			    vfta_bit_in_reg : 0;
			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset,
			    vfta_value);
			E1000_WRITE_FLUSH(hw);
		}
		break;
	default:
		break;
	}
}

/*
 * e1000_check_mng_mode_82574 - Check manageability is enabled
 * @hw: pointer to the HW structure
 *
 * Reads the NVM Initialization Control Word 2 and returns true
 * (>0) if any manageability is enabled, else false (0).
 */
static bool
e1000_check_mng_mode_82574(struct e1000_hw *hw)
{
	u16 data;

	DEBUGFUNC("e1000_check_mng_mode_82574");

	hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
	return ((data & E1000_NVM_INIT_CTRL2_MNGM) != 0);
}

/*
 * e1000_led_on_82574 - Turn LED on
 * @hw: pointer to the HW structure
 *
 * Turn LED on.
 */
static s32
e1000_led_on_82574(struct e1000_hw *hw)
{
	u32 ctrl;
	u32 i;

	DEBUGFUNC("e1000_led_on_82574");

	ctrl = hw->mac.ledctl_mode2;
	if (!(E1000_STATUS_LU & E1000_READ_REG(hw, E1000_STATUS))) {
		/*
		 * If no link, then turn LED on by setting the invert bit
		 * for each LED that's "on" (0x0E) in ledctl_mode2.
		 */
		for (i = 0; i < 4; i++)
			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
			    E1000_LEDCTL_MODE_LED_ON)
				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
	}
	E1000_WRITE_REG(hw, E1000_LEDCTL, ctrl);

	return (E1000_SUCCESS);
}

/*
 * e1000_setup_link_82571 - Setup flow control and link settings
 * @hw: pointer to the HW structure
 *
 * Determines which flow control settings to use, then configures flow
 * control.  Calls the appropriate media-specific link configuration
 * function.  Assuming the adapter has a valid link partner, a valid link
 * should be established.  Assumes the hardware has previously been reset
 * and the transmitter and receiver are not enabled.
 */
static s32
e1000_setup_link_82571(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_setup_link_82571");

	/*
	 * 82573 does not have a word in the NVM to determine the default flow
	 * control setting, so we explicitly set it to full.
	 */
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (hw->fc.requested_mode == e1000_fc_default)
			hw->fc.requested_mode = e1000_fc_full;
		break;
	default:
		break;
	}
	return (e1000_setup_link_generic(hw));
}

/*
 * e1000_setup_copper_link_82571 - Configure copper link settings
 * @hw: pointer to the HW structure
 *
 * Configures the link for auto-neg or forced speed and duplex.  Then we check
 * for link, once link is established calls to configure collision distance
 * and flow control are called.
 */
static s32
e1000_setup_copper_link_82571(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	DEBUGFUNC("e1000_setup_copper_link_82571");

	ctrl = E1000_READ_REG(hw, E1000_CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);

	switch (hw->phy.type) {
	case e1000_phy_m88:
	case e1000_phy_bm:
		ret_val = e1000_copper_link_setup_m88(hw);
		break;
	case e1000_phy_igp_2:
		ret_val = e1000_copper_link_setup_igp(hw);
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		break;
	}

	if (ret_val)
		goto out;

	ret_val = e1000_setup_copper_link_generic(hw);

out:
	return (ret_val);
}

/*
 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
 * @hw: pointer to the HW structure
 *
 * Configures collision distance and flow control for fiber and serdes links.
 * Upon successful setup, poll for link.
 */
static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_setup_fiber_serdes_link_82571");

	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		/*
		 * If SerDes loopback mode is entered, there is no form of
		 * reset to take the adapter out of that mode.  So we have to
		 * explicitly take the adapter out of loopback mode.  This
		 * prevents drivers from twiddling their thumbs if another
		 * tool failed to take it out of loopback mode.
		 */
		E1000_WRITE_REG(hw, E1000_SCTL,
		    E1000_SCTL_DISABLE_SERDES_LOOPBACK);
		break;
	default:
		break;
	}

	return (e1000_setup_fiber_serdes_link_generic(hw));
}

/*
 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
 * @hw: pointer to the HW structure
 *
 * Reports the link state as up or down.
 *
 * If autonegotiation is supported by the link partner, the link state is
 * determined by the result of autongotiation. This is the most likely case.
 * If autonegotiation is not supported by the link partner, and the link
 * has a valid signal, force the link up.
 *
 * The link state is represented internally here by 4 states:
 *
 * 1) down
 * 2) autoneg_progress
 * 3) autoneg_complete (the link sucessfully autonegotiated)
 * 4) forced_up (the link has been forced up, it did not autonegotiate)
 */
s32
e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_check_for_serdes_link_82571");

	ctrl = E1000_READ_REG(hw, E1000_CTRL);
	status = E1000_READ_REG(hw, E1000_STATUS);
	rxcw = E1000_READ_REG(hw, E1000_RXCW);

	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {

		/* Receiver is synchronized with no invalid bits.  */
		switch (mac->serdes_link_state) {
		case e1000_serdes_link_autoneg_complete:
			if (!(status & E1000_STATUS_LU)) {
				/*
				 * We have lost link, retry autoneg before
				 * reporting link failure
				 */
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
				mac->serdes_has_link = false;
				DEBUGOUT("AN_UP     -> AN_PROG\n");
			}
			break;

		case e1000_serdes_link_forced_up:
			/*
			 * If we are receiving /C/ ordered sets, re-enable
			 * auto-negotiation in the TXCW register and disable
			 * forced link in the Device Control register in an
			 * attempt to auto-negotiate with our link partner.
			 */
			if (rxcw & E1000_RXCW_C) {
				/* Enable autoneg, and unforce link up */
				E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
				E1000_WRITE_REG(hw, E1000_CTRL,
				    (ctrl & ~E1000_CTRL_SLU));
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
				mac->serdes_has_link = false;
				DEBUGOUT("FORCED_UP -> AN_PROG\n");
			}
			break;

		case e1000_serdes_link_autoneg_progress:
			if (rxcw & E1000_RXCW_C) {
				/*
				 * We received /C/ ordered sets, meaning the
				 * link partner has autonegotiated, and we can
				 * trust the Link Up (LU) status bit
				 */
				if (status & E1000_STATUS_LU) {
					mac->serdes_link_state =
					    e1000_serdes_link_autoneg_complete;
					DEBUGOUT("AN_PROG   -> AN_UP\n");
					mac->serdes_has_link = true;
				} else {
					/* Autoneg completed, but failed */
					mac->serdes_link_state =
					    e1000_serdes_link_down;
					DEBUGOUT("AN_PROG   -> DOWN\n");
				}
			} else {
				/*
				 * The link partner did not autoneg.
				 * Force link up and full duplex, and change
				 * state to forced.
				 */
				E1000_WRITE_REG(hw, E1000_TXCW,
				    (mac->txcw & ~E1000_TXCW_ANE));
				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);

				/* Configure Flow Control after link up. */
				ret_val =
				    e1000_config_fc_after_link_up_generic(hw);
				if (ret_val) {
					DEBUGOUT("Error config flow control\n");
					break;
				}
				mac->serdes_link_state =
				    e1000_serdes_link_forced_up;
				mac->serdes_has_link = true;
				DEBUGOUT("AN_PROG   -> FORCED_UP\n");
			}
			break;

		case e1000_serdes_link_down:
		default:
			/*
			 * The link was down but the receiver has now gained
			 * valid sync, so lets see if we can bring the link
			 * up.
			 */
			E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
			E1000_WRITE_REG(hw, E1000_CTRL,
			    (ctrl & ~E1000_CTRL_SLU));
			mac->serdes_link_state =
			    e1000_serdes_link_autoneg_progress;
			DEBUGOUT("DOWN      -> AN_PROG\n");
			break;
		}
	} else {
		if (!(rxcw & E1000_RXCW_SYNCH)) {
			mac->serdes_has_link = false;
			mac->serdes_link_state = e1000_serdes_link_down;
			DEBUGOUT("ANYSTATE  -> DOWN\n");
		} else {
			/*
			 * We have sync, and can tolerate one
			 * invalid (IV) codeword before declaring
			 * link down, so reread to look again
			 */
			usec_delay(10);
			rxcw = E1000_READ_REG(hw, E1000_RXCW);
			if (rxcw & E1000_RXCW_IV) {
				mac->serdes_link_state = e1000_serdes_link_down;
				mac->serdes_has_link = false;
				DEBUGOUT("ANYSTATE  -> DOWN\n");
			}
		}
	}

	return (ret_val);
}

/*
 * e1000_valid_led_default_82571 - Verify a valid default LED config
 * @hw: pointer to the HW structure
 * @data: pointer to the NVM (EEPROM)
 *
 * Read the EEPROM for the current default LED configuration.  If the
 * LED configuration is not valid, set to a valid LED configuration.
 */
static s32
e1000_valid_led_default_82571(struct e1000_hw *hw, u16 * data)
{
	s32 ret_val;

	DEBUGFUNC("e1000_valid_led_default_82571");

	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
		DEBUGOUT("NVM Read Error\n");
		goto out;
	}

	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (*data == ID_LED_RESERVED_F746)
			*data = ID_LED_DEFAULT_82573;
		break;
	default:
		if (*data == ID_LED_RESERVED_0000 ||
		    *data == ID_LED_RESERVED_FFFF)
			*data = ID_LED_DEFAULT;
		break;
	}

out:
	return (ret_val);
}

/*
 * e1000_get_laa_state_82571 - Get locally administered address state
 * @hw: pointer to the HW structure
 *
 * Retrieve and return the current locally administered address state.
 */
bool
e1000_get_laa_state_82571(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_get_laa_state_82571");

	if (hw->mac.type != e1000_82571)
		return (false);

	return (hw->dev_spec._82571.laa_is_present);
}

/*
 * e1000_set_laa_state_82571 - Set locally administered address state
 * @hw: pointer to the HW structure
 * @state: enable/disable locally administered address
 *
 * Enable/Disable the current locally administered address state.
 */
void
e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
{
	DEBUGFUNC("e1000_set_laa_state_82571");

	if (hw->mac.type != e1000_82571)
		return;

	hw->dev_spec._82571.laa_is_present = state;

	/* If workaround is activated... */
	if (state) {
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
		 * between the time RAR[0] gets clobbered and the time it gets
		 * fixed, the actual LAA is in one of the RARs and no incoming
		 * packets directed to this port are dropped. Eventually the
		 * LAA will be in RAR[0] and RAR[14].
		 */
		e1000_rar_set_generic(hw, hw->mac.addr,
		    hw->mac.rar_entry_count - 1);
	}
}

/*
 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
 * @hw: pointer to the HW structure
 *
 * Verifies that the EEPROM has completed the update.  After updating the
 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
 * the checksum fix is not implemented, we need to set the bit and update
 * the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
 * we need to return bad checksum.
 */
static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	s32 ret_val = E1000_SUCCESS;
	u16 data;

	DEBUGFUNC("e1000_fix_nvm_checksum_82571");

	if (nvm->type != e1000_nvm_flash_hw)
		goto out;

	/*
	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
	 * 10h-12h.  Checksum may need to be fixed.
	 */
	ret_val = nvm->ops.read(hw, 0x10, 1, &data);
	if (ret_val)
		goto out;

	if (!(data & 0x10)) {
		/*
		 * Read 0x23 and check bit 15.  This bit is a 1 when the
		 * checksum has already been fixed.  If the checksum is still
		 * wrong and this bit is a 1, we need to return bad checksum.
		 * Otherwise, we need to set this bit to a 1 and update the
		 * checksum.
		 */
		ret_val = nvm->ops.read(hw, 0x23, 1, &data);
		if (ret_val)
			goto out;

		if (!(data & 0x8000)) {
			data |= 0x8000;
			ret_val = nvm->ops.write(hw, 0x23, 1, &data);
			if (ret_val)
				goto out;
			ret_val = nvm->ops.update(hw);
		}
	}

out:
	return (ret_val);
}

/*
 * e1000_read_mac_addr_82571 - Read device MAC address
 * @hw: pointer to the HW structure
 */
static s32
e1000_read_mac_addr_82571(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_read_mac_addr_82571");

	/*
	 * If there's an alternate MAC address place it in RAR0
	 * so that it will override the Si installed default perm
	 * address.
	 */
	ret_val = e1000_check_alt_mac_addr_generic(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_read_mac_addr_generic(hw);

out:
	return (ret_val);
}

/*
 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 */
static void
e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	struct e1000_mac_info *mac = &hw->mac;

	if (!(phy->ops.check_reset_block))
		return;

	/* If the management interface is not enabled, then power down */
	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

/*
 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
 * @hw: pointer to the HW structure
 *
 * Clears the hardware counters by reading the counter registers.
 */
static void
e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_clear_hw_cntrs_82571");

	e1000_clear_hw_cntrs_base_generic(hw);

	(void) E1000_READ_REG(hw, E1000_PRC64);
	(void) E1000_READ_REG(hw, E1000_PRC127);
	(void) E1000_READ_REG(hw, E1000_PRC255);
	(void) E1000_READ_REG(hw, E1000_PRC511);
	(void) E1000_READ_REG(hw, E1000_PRC1023);
	(void) E1000_READ_REG(hw, E1000_PRC1522);
	(void) E1000_READ_REG(hw, E1000_PTC64);
	(void) E1000_READ_REG(hw, E1000_PTC127);
	(void) E1000_READ_REG(hw, E1000_PTC255);
	(void) E1000_READ_REG(hw, E1000_PTC511);
	(void) E1000_READ_REG(hw, E1000_PTC1023);
	(void) E1000_READ_REG(hw, E1000_PTC1522);

	(void) E1000_READ_REG(hw, E1000_ALGNERRC);
	(void) E1000_READ_REG(hw, E1000_RXERRC);
	(void) E1000_READ_REG(hw, E1000_TNCRS);
	(void) E1000_READ_REG(hw, E1000_CEXTERR);
	(void) E1000_READ_REG(hw, E1000_TSCTC);
	(void) E1000_READ_REG(hw, E1000_TSCTFC);

	(void) E1000_READ_REG(hw, E1000_MGTPRC);
	(void) E1000_READ_REG(hw, E1000_MGTPDC);
	(void) E1000_READ_REG(hw, E1000_MGTPTC);

	(void) E1000_READ_REG(hw, E1000_IAC);
	(void) E1000_READ_REG(hw, E1000_ICRXOC);

	(void) E1000_READ_REG(hw, E1000_ICRXPTC);
	(void) E1000_READ_REG(hw, E1000_ICRXATC);
	(void) E1000_READ_REG(hw, E1000_ICTXPTC);
	(void) E1000_READ_REG(hw, E1000_ICTXATC);
	(void) E1000_READ_REG(hw, E1000_ICTXQEC);
	(void) E1000_READ_REG(hw, E1000_ICTXQMTC);
	(void) E1000_READ_REG(hw, E1000_ICRXDMTC);
}