view usr/src/uts/common/io/igb/igb_82575.c @ 13599:b51e5a82e5e2

2038 Add in I350 and ET2 support into igb Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com> Reviewed by: Dan McDonald <danmcd@nexenta.com> Reviewed by: Gordon Ross <gwr@nexenta.com> Reviewed by: Garrett D'Amore <garrett@damore.org> Approved by: Albert Lee <trisk@nexenta.com>
author Robert Mustacchi <rm@joyent.com>
date Mon, 06 Feb 2012 13:23:22 -0500
parents a462ebfcbf99
children 0a75a6efa936
line wrap: on
line source

/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright (c) 2007-2012 Intel Corporation. All rights reserved.
 */

/*
 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
 */

/* IntelVersion: 1.146.2.2 v3_3_14_3_BHSW1 */

/*
 * 82575EB Gigabit Network Connection
 * 82575EB Gigabit Backplane Connection
 * 82575GB Gigabit Network Connection
 * 82576 Gigabit Network Connection
 * 82576 Quad Port Gigabit Mezzanine Adapter
 */

#include "igb_api.h"

static s32 e1000_init_phy_params_82575(struct e1000_hw *hw);
static s32 e1000_init_nvm_params_82575(struct e1000_hw *hw);
static s32 e1000_init_mac_params_82575(struct e1000_hw *hw);
static s32 e1000_acquire_phy_82575(struct e1000_hw *hw);
static void e1000_release_phy_82575(struct e1000_hw *hw);
static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw);
static void e1000_release_nvm_82575(struct e1000_hw *hw);
static s32 e1000_check_for_link_82575(struct e1000_hw *hw);
static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw);
static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
    u16 *duplex);
static s32 e1000_init_hw_82575(struct e1000_hw *hw);
static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
    u16 *data);
static s32 e1000_reset_hw_82575(struct e1000_hw *hw);
static s32 e1000_reset_hw_82580(struct e1000_hw *hw);
static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset,
    u16 *data);
static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset,
    u16 data);
static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
    bool active);
static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw);
static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw);
static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
    u32 offset, u16 data);
static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
    u16 *speed, u16 *duplex);
static s32 e1000_get_phy_id_82575(struct e1000_hw *hw);
static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
static s32 e1000_reset_init_script_82575(struct e1000_hw *hw);
static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw);
static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);

static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw,
    u16 offset);
static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
    u16 offset);
static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw);
static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw);
static void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value);
static void e1000_clear_vfta_i350(struct e1000_hw *hw);

static const u16 e1000_82580_rxpbs_table[] =
	{36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140};
#define	E1000_82580_RXPBS_TABLE_SIZE \
	(sizeof (e1000_82580_rxpbs_table)/sizeof (u16))

/*
 * e1000_init_phy_params_82575 - Init PHY func ptrs.
 * @hw: pointer to the HW structure
 */
static s32
e1000_init_phy_params_82575(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_init_phy_params_82575");

	if (hw->phy.media_type != e1000_media_type_copper) {
		phy->type = e1000_phy_none;
		goto out;
	}

	phy->ops.power_up = e1000_power_up_phy_copper;
	phy->ops.power_down = e1000_power_down_phy_copper_82575;

	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us = 100;

	phy->ops.acquire = e1000_acquire_phy_82575;
	phy->ops.check_reset_block = e1000_check_reset_block_generic;
	phy->ops.commit = e1000_phy_sw_reset_generic;
	phy->ops.get_cfg_done = e1000_get_cfg_done_82575;
	phy->ops.release = e1000_release_phy_82575;

	if (e1000_sgmii_active_82575(hw)) {
		phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
		phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
		phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
	} else if (hw->mac.type == e1000_82580) {
		phy->ops.reset = e1000_phy_hw_reset_generic;
		phy->ops.read_reg = e1000_read_phy_reg_82580;
		phy->ops.write_reg = e1000_write_phy_reg_82580;
	} else {
		phy->ops.reset = e1000_phy_hw_reset_generic;
		phy->ops.read_reg = e1000_read_phy_reg_igp;
		phy->ops.write_reg = e1000_write_phy_reg_igp;
	}

	/* Set phy->phy_addr and phy->id. */
	ret_val = e1000_get_phy_id_82575(hw);

	/* Verify phy id and set remaining function pointers */
	switch (phy->id) {
	case M88E1111_I_PHY_ID:
		phy->type = e1000_phy_m88;
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.get_info = e1000_get_phy_info_m88;
		phy->ops.get_cable_length = e1000_get_cable_length_m88;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
		break;
	case IGP03E1000_E_PHY_ID:
	case IGP04E1000_E_PHY_ID:
		phy->type = e1000_phy_igp_3;
		phy->ops.check_polarity = e1000_check_polarity_igp;
		phy->ops.get_info = e1000_get_phy_info_igp;
		phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
		break;
	case I82580_I_PHY_ID:
	case I350_I_PHY_ID:
		phy->type = e1000_phy_82580;
		phy->ops.check_polarity = e1000_check_polarity_82577;
		phy->ops.force_speed_duplex =
		    e1000_phy_force_speed_duplex_82577;
		phy->ops.get_cable_length = e1000_get_cable_length_82577;
		phy->ops.get_info = e1000_get_phy_info_82577;
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

out:
	return (ret_val);
}

/*
 * e1000_init_nvm_params_82575 - Init NVM func ptrs.
 * @hw: pointer to the HW structure
 */
static s32
e1000_init_nvm_params_82575(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
	u16 size;

	DEBUGFUNC("e1000_init_nvm_params_82575");

	nvm->opcode_bits = 8;
	nvm->delay_usec = 1;
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
		break;
	}

	nvm->type = e1000_nvm_eeprom_spi;

	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
	    E1000_EECD_SIZE_EX_SHIFT);

	/*
	 * Added to a constant, "size" becomes the left-shift value
	 * for setting word_size.
	 */
	size += NVM_WORD_SIZE_BASE_SHIFT;

	/* EEPROM access above 16k is unsupported */
	if (size > 14)
		size = 14;
	nvm->word_size = 1 << size;

	/* Function Pointers */
	nvm->ops.acquire = e1000_acquire_nvm_82575;
	nvm->ops.read = e1000_read_nvm_eerd;
	nvm->ops.release = e1000_release_nvm_82575;
	nvm->ops.update = e1000_update_nvm_checksum_generic;
	nvm->ops.valid_led_default = e1000_valid_led_default_82575;
	nvm->ops.validate = e1000_validate_nvm_checksum_generic;
	nvm->ops.write = e1000_write_nvm_spi;

	/* override genric family function pointers for specific descendants */
	switch (hw->mac.type) {
	case e1000_i350:
		nvm->ops.validate = e1000_validate_nvm_checksum_i350;
		nvm->ops.update = e1000_update_nvm_checksum_i350;
		break;
	default:
		break;
	}


	return (E1000_SUCCESS);
}

/*
 * e1000_init_mac_params_82575 - Init MAC func ptrs.
 * @hw: pointer to the HW structure
 */
static s32
e1000_init_mac_params_82575(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
	u32 ctrl_ext = 0;

	DEBUGFUNC("e1000_init_mac_params_82575");

	/* Set media type */
	/*
	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
	 * based on the EEPROM. We cannot rely upon device ID. There
	 * is no distinguishable difference between fiber and internal
	 * SerDes mode on the 82575. There can be an external PHY attached
	 * on the SGMII interface. For this, we'll set sgmii_active to true.
	 */
	hw->phy.media_type = e1000_media_type_copper;
	dev_spec->sgmii_active = false;

	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
	case E1000_CTRL_EXT_LINK_MODE_SGMII:
		dev_spec->sgmii_active = true;
		ctrl_ext |= E1000_CTRL_I2C_ENA;
		break;
	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
		hw->phy.media_type = e1000_media_type_internal_serdes;
		ctrl_ext |= E1000_CTRL_I2C_ENA;
		break;
	default:
		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
		break;
	}

	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);

	/*
	 * if using i2c make certain the MDICNFG register is cleared to prevent
	 * communications from being misrouted to the mdic registers
	 */
	if ((ctrl_ext & E1000_CTRL_I2C_ENA) && (hw->mac.type == e1000_82580))
		E1000_WRITE_REG(hw, E1000_MDICNFG, 0);

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set uta register count */
	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
	if (mac->type == e1000_82576)
		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
	if (mac->type == e1000_82580)
		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
	if (mac->type == e1000_i350) {
		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
		/* Enable EEE default settings for i350 */
		dev_spec->eee_disable = B_FALSE;
	}
	/* Set if part includes ASF firmware */
	mac->asf_firmware_present = true;
	/* Set if manageability features are enabled. */
	mac->arc_subsystem_valid =
	    (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
	    ? true : false;

	/* Function pointers */

	/* bus type/speed/width */
	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
	/* reset */
	if (mac->type == e1000_82580)
		mac->ops.reset_hw = e1000_reset_hw_82580;
	else
		mac->ops.reset_hw = e1000_reset_hw_82575;
	/* hw initialization */
	mac->ops.init_hw = e1000_init_hw_82575;
	/* link setup */
	mac->ops.setup_link = e1000_setup_link_generic;
	/* physical interface link setup */
	mac->ops.setup_physical_interface =
	    (hw->phy.media_type == e1000_media_type_copper)
	    ? e1000_setup_copper_link_82575
	    : e1000_setup_serdes_link_82575;
	/* physical interface shutdown */
	mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
	/* check for link */
	mac->ops.check_for_link = e1000_check_for_link_82575;
	/* receive address register setting */
	mac->ops.rar_set = e1000_rar_set_generic;
	/* read mac address */
	mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
	/* multicast address update */
	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;

	if (hw->mac.type == e1000_i350) {
		/* writing VFTA */
		mac->ops.write_vfta = e1000_write_vfta_i350;
		/* clearing VFTA */
		mac->ops.clear_vfta = e1000_clear_vfta_i350;
	} else {
		/* writing VFTA */
		mac->ops.write_vfta = e1000_write_vfta_generic;
		/* clearing VFTA */
		mac->ops.clear_vfta = e1000_clear_vfta_generic;
	}
	/* setting MTA */
	mac->ops.mta_set = e1000_mta_set_generic;
	/* ID LED init */
	mac->ops.id_led_init = e1000_id_led_init_generic;
	/* blink LED */
	mac->ops.blink_led = e1000_blink_led_generic;
	/* setup LED */
	mac->ops.setup_led = e1000_setup_led_generic;
	/* cleanup LED */
	mac->ops.cleanup_led = e1000_cleanup_led_generic;
	/* turn on/off LED */
	mac->ops.led_on = e1000_led_on_generic;
	mac->ops.led_off = e1000_led_off_generic;
	/* clear hardware counters */
	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
	/* link info */
	mac->ops.get_link_up_info = e1000_get_link_up_info_82575;

	/* set lan id for port to determine which phy lock to use */
	hw->mac.ops.set_lan_id(hw);

	return (E1000_SUCCESS);
}

/*
 * e1000_init_function_pointers_82575 - Init func ptrs.
 * @hw: pointer to the HW structure
 *
 * Called to initialize all function pointers and parameters.
 */
void
e1000_init_function_pointers_82575(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_init_function_pointers_82575");

	hw->mac.ops.init_params = e1000_init_mac_params_82575;
	hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
	hw->phy.ops.init_params = e1000_init_phy_params_82575;
}

/*
 * e1000_acquire_phy_82575 - Acquire rights to access PHY
 * @hw: pointer to the HW structure
 *
 * Acquire access rights to the correct PHY.
 */
static s32
e1000_acquire_phy_82575(struct e1000_hw *hw)
{
	u16 mask = E1000_SWFW_PHY0_SM;

	DEBUGFUNC("e1000_acquire_phy_82575");

	if (hw->bus.func == E1000_FUNC_1)
		mask = E1000_SWFW_PHY1_SM;
	else if (hw->bus.func == E1000_FUNC_2)
		mask = E1000_SWFW_PHY2_SM;
	else if (hw->bus.func == E1000_FUNC_3)
		mask = E1000_SWFW_PHY3_SM;

	return (e1000_acquire_swfw_sync_82575(hw, mask));
}

/*
 * e1000_release_phy_82575 - Release rights to access PHY
 * @hw: pointer to the HW structure
 *
 * A wrapper to release access rights to the correct PHY.
 */
static void
e1000_release_phy_82575(struct e1000_hw *hw)
{
	u16 mask = E1000_SWFW_PHY0_SM;

	DEBUGFUNC("e1000_release_phy_82575");

	if (hw->bus.func == E1000_FUNC_1)
		mask = E1000_SWFW_PHY1_SM;
	else if (hw->bus.func == E1000_FUNC_2)
		mask = E1000_SWFW_PHY2_SM;
	else if (hw->bus.func == E1000_FUNC_3)
		mask = E1000_SWFW_PHY3_SM;

	e1000_release_swfw_sync_82575(hw, mask);
}

/*
 * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 * @hw: pointer to the HW structure
 * @offset: register offset to be read
 * @data: pointer to the read data
 *
 * Reads the PHY register at offset using the serial gigabit media independent
 * interface and stores the retrieved information in data.
 */
static s32
e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val = -E1000_ERR_PARAM;

	DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");

	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
		DEBUGOUT1("PHY Address %u is out of range\n", offset);
		goto out;
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_read_phy_reg_i2c(hw, offset, data);

	hw->phy.ops.release(hw);

out:
	return (ret_val);
}

/*
 * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 * @hw: pointer to the HW structure
 * @offset: register offset to write to
 * @data: data to write at register offset
 *
 * Writes the data to PHY register at the offset using the serial gigabit
 * media independent interface.
 */
static s32
e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val = -E1000_ERR_PARAM;

	DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");

	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
		DEBUGOUT1("PHY Address %d is out of range\n", offset);
		goto out;
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_write_phy_reg_i2c(hw, offset, data);

	hw->phy.ops.release(hw);

out:
	return (ret_val);
}

/*
 * e1000_get_phy_id_82575 - Retrieve PHY addr and id
 * @hw: pointer to the HW structure
 *
 * Retrieves the PHY address and ID for both PHY's which do and do not use
 * sgmi interface.
 */
static s32
e1000_get_phy_id_82575(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = E1000_SUCCESS;
	u16 phy_id;
	u32 ctrl_ext;

	DEBUGFUNC("e1000_get_phy_id_82575");

	/*
	 * For SGMII PHYs, we try the list of possible addresses until
	 * we find one that works.  For non-SGMII PHYs
	 * (e.g. integrated copper PHYs), an address of 1 should
	 * work.  The result of this function should mean phy->phy_addr
	 * and phy->id are set correctly.
	 */
	if (!e1000_sgmii_active_82575(hw)) {
		phy->addr = 1;
		ret_val = e1000_get_phy_id(hw);
		goto out;
	}

	/* Power on sgmii phy if it is disabled */
	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
	E1000_WRITE_REG(hw, E1000_CTRL_EXT,
	    ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
	E1000_WRITE_FLUSH(hw);
	msec_delay(300);

	/*
	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
	 * Therefore, we need to test 1-7
	 */
	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
		ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
		if (ret_val == E1000_SUCCESS) {
			DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
			    phy_id,
			    phy->addr);
			/*
			 * At the time of this writing, The M88 part is
			 * the only supported SGMII PHY product.
			 */
			if (phy_id == M88_VENDOR)
				break;
		} else {
			DEBUGOUT1("PHY address %u was unreadable\n",
			    phy->addr);
		}
	}

	/* A valid PHY type couldn't be found. */
	if (phy->addr == 8) {
		phy->addr = 0;
		ret_val = -E1000_ERR_PHY;
	} else {
		ret_val = e1000_get_phy_id(hw);
	}

	/* restore previous sfp cage power state */
	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);

out:
	return (ret_val);
}

/*
 * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 * @hw: pointer to the HW structure
 *
 * Resets the PHY using the serial gigabit media independent interface.
 */
static s32
e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");

	/*
	 * This isn't a true "hard" reset, but is the only reset
	 * available to us at this time.
	 */

	DEBUGOUT("Soft resetting SGMII attached PHY...\n");

	if (!(hw->phy.ops.write_reg))
		goto out;

	/*
	 * SFP documentation requires the following to configure the SPF module
	 * to work on SGMII.  No further documentation is given.
	 */
	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
	if (ret_val)
		goto out;

	ret_val = hw->phy.ops.commit(hw);

out:
	return (ret_val);
}

/*
 * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 * @hw: pointer to the HW structure
 * @active: true to enable LPLU, false to disable
 *
 * Sets the LPLU D0 state according to the active flag.  When
 * activating LPLU this function also disables smart speed
 * and vice versa.  LPLU will not be activated unless the
 * device autonegotiation advertisement meets standards of
 * either 10 or 10/100 or 10/100/1000 at all duplexes.
 * This is a function pointer entry point only called by
 * PHY setup routines.
 */
static s32
e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = E1000_SUCCESS;
	u16 data;

	DEBUGFUNC("e1000_set_d0_lplu_state_82575");

	if (!(hw->phy.ops.read_reg))
		goto out;

	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		goto out;

	if (active) {
		data |= IGP02E1000_PM_D0_LPLU;
		ret_val = phy->ops.write_reg(hw,
		    IGP02E1000_PHY_POWER_MGMT,
		    data);
		if (ret_val)
			goto out;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = phy->ops.read_reg(hw,
		    IGP01E1000_PHY_PORT_CONFIG,
		    &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = phy->ops.write_reg(hw,
		    IGP01E1000_PHY_PORT_CONFIG,
		    data);
		if (ret_val)
			goto out;
	} else {
		data &= ~IGP02E1000_PM_D0_LPLU;
		ret_val = phy->ops.write_reg(hw,
		    IGP02E1000_PHY_POWER_MGMT,
		    data);
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = phy->ops.read_reg(hw,
			    IGP01E1000_PHY_PORT_CONFIG,
			    &data);
			if (ret_val)
				goto out;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = phy->ops.write_reg(hw,
			    IGP01E1000_PHY_PORT_CONFIG,
			    data);
			if (ret_val)
				goto out;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = phy->ops.read_reg(hw,
			    IGP01E1000_PHY_PORT_CONFIG,
			    &data);
			if (ret_val)
				goto out;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = phy->ops.write_reg(hw,
			    IGP01E1000_PHY_PORT_CONFIG,
			    data);
			if (ret_val)
				goto out;
		}
	}

out:
	return (ret_val);
}

/*
 * e1000_acquire_nvm_82575 - Request for access to EEPROM
 * @hw: pointer to the HW structure
 *
 * Acquire the necessary semaphores for exclusive access to the EEPROM.
 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
 * Return successful if access grant bit set, else clear the request for
 * EEPROM access and return -E1000_ERR_NVM (-1).
 */
static s32
e1000_acquire_nvm_82575(struct e1000_hw *hw)
{
	s32 ret_val;

	DEBUGFUNC("e1000_acquire_nvm_82575");

	ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
	if (ret_val)
		goto out;

	/*
	 * Check if there is some access
	 * error this access may hook on
	 */
	if (hw->mac.type == e1000_i350) {
		u32 eecd = E1000_READ_REG(hw, E1000_EECD);
		if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT |
		    E1000_EECD_TIMEOUT)) {
			/* Clear all access error flags */
			E1000_WRITE_REG(hw, E1000_EECD, eecd |
			    E1000_EECD_ERROR_CLR);
			DEBUGOUT("Nvm bit banging access error "
			    "detected and cleared.\n");
		}
	}

	ret_val = e1000_acquire_nvm_generic(hw);

	if (ret_val)
		e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);

out:
	return (ret_val);
}

/*
 * e1000_release_nvm_82575 - Release exclusive access to EEPROM
 * @hw: pointer to the HW structure
 *
 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
 * then release the semaphores acquired.
 */
static void
e1000_release_nvm_82575(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_release_nvm_82575");

	e1000_release_nvm_generic(hw);
	e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
}

/*
 * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
 * @hw: pointer to the HW structure
 * @mask: specifies which semaphore to acquire
 *
 * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 * will also specify which port we're acquiring the lock for.
 */
static s32
e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;
	u32 swmask = mask;
	u32 fwmask = mask << 16;
	s32 ret_val = E1000_SUCCESS;
	s32 i = 0, timeout = 200;	/* FIXME: find real value to use here */

	DEBUGFUNC("e1000_acquire_swfw_sync_82575");

	while (i < timeout) {
		if (e1000_get_hw_semaphore_generic(hw)) {
			ret_val = -E1000_ERR_SWFW_SYNC;
			goto out;
		}

		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
		if (!(swfw_sync & (fwmask | swmask)))
			break;

		/*
		 * Firmware currently using resource (fwmask)
		 * or other software thread using resource (swmask)
		 */
		e1000_put_hw_semaphore_generic(hw);
		msec_delay_irq(5);
		i++;
	}

	if (i == timeout) {
		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
		ret_val = -E1000_ERR_SWFW_SYNC;
		goto out;
	}

	swfw_sync |= swmask;
	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);

	e1000_put_hw_semaphore_generic(hw);

out:
	return (ret_val);
}

/*
 * e1000_release_swfw_sync_82575 - Release SW/FW semaphore
 * @hw: pointer to the HW structure
 * @mask: specifies which semaphore to acquire
 *
 * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 * will also specify which port we're releasing the lock for.
 */
static void
e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;

	DEBUGFUNC("e1000_release_swfw_sync_82575");

	while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) {
		/* Empty */
	}

	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
	swfw_sync &= ~mask;
	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);

	e1000_put_hw_semaphore_generic(hw);
}

/*
 * e1000_get_cfg_done_82575 - Read config done bit
 * @hw: pointer to the HW structure
 *
 * Read the management control register for the config done bit for
 * completion status.  NOTE: silicon which is EEPROM-less will fail trying
 * to read the config done bit, so an error is *ONLY* logged and returns
 * E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
 * would not be able to be reset or change link.
 */
static s32
e1000_get_cfg_done_82575(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = E1000_SUCCESS;
	u32 mask = E1000_NVM_CFG_DONE_PORT_0;

	DEBUGFUNC("e1000_get_cfg_done_82575");

	if (hw->bus.func == E1000_FUNC_1)
		mask = E1000_NVM_CFG_DONE_PORT_1;
	else if (hw->bus.func == E1000_FUNC_2)
		mask = E1000_NVM_CFG_DONE_PORT_2;
	else if (hw->bus.func == E1000_FUNC_3)
		mask = E1000_NVM_CFG_DONE_PORT_3;

	while (timeout) {
		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
			break;
		msec_delay(1);
		timeout--;
	}
	if (!timeout)
		DEBUGOUT("MNG configuration cycle has not completed.\n");

	/* If EEPROM is not marked present, init the PHY manually */
	if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) &&
	    (hw->phy.type == e1000_phy_igp_3))
		(void) e1000_phy_init_script_igp3(hw);

	return (ret_val);
}

/*
 * e1000_get_link_up_info_82575 - Get link speed/duplex info
 * @hw: pointer to the HW structure
 * @speed: stores the current speed
 * @duplex: stores the current duplex
 *
 * This is a wrapper function, if using the serial gigabit media independent
 * interface, use PCS to retrieve the link speed and duplex information.
 * Otherwise, use the generic function to get the link speed and duplex info.
 */
static s32
e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, u16 *duplex)
{
	s32 ret_val;

	DEBUGFUNC("e1000_get_link_up_info_82575");

	if (hw->phy.media_type != e1000_media_type_copper)
		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
		    duplex);
	else
		ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
		    duplex);

	return (ret_val);
}

/*
 * e1000_check_for_link_82575 - Check for link
 * @hw: pointer to the HW structure
 *
 * If sgmii is enabled, then use the pcs register to determine link, otherwise
 * use the generic interface for determining link.
 */
static s32
e1000_check_for_link_82575(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 speed, duplex;

	DEBUGFUNC("e1000_check_for_link_82575");

	/* SGMII link check is done through the PCS register. */
	if (hw->phy.media_type != e1000_media_type_copper) {
		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
		    &duplex);
		/*
		 * Use this flag to determine if link needs to be checked or
		 * not.  If we have link clear the flag so that we do not
		 * continue to check for link.
		 */
		hw->mac.get_link_status = !hw->mac.serdes_has_link;
	} else {
		ret_val = e1000_check_for_copper_link_generic(hw);
	}

	return (ret_val);
}

/*
 * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
 * @hw: pointer to the HW structure
 * @speed: stores the current speed
 * @duplex: stores the current duplex
 *
 * Using the physical coding sub-layer (PCS), retrieve the current speed and
 * duplex, then store the values in the pointers provided.
 */
static s32
e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
    u16 *speed, u16 *duplex)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 pcs;

	DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");

	/* Set up defaults for the return values of this function */
	mac->serdes_has_link = false;
	*speed = 0;
	*duplex = 0;

	/*
	 * Read the PCS Status register for link state. For non-copper mode,
	 * the status register is not accurate. The PCS status register is
	 * used instead.
	 */
	pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);

	/*
	 * The link up bit determines when link is up on autoneg. The sync ok
	 * gets set once both sides sync up and agree upon link. Stable link
	 * can be determined by checking for both link up and link sync ok
	 */
	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
		mac->serdes_has_link = true;

		/* Detect and store PCS speed */
		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
			*speed = SPEED_1000;
		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
			*speed = SPEED_100;
		} else {
			*speed = SPEED_10;
		}

		/* Detect and store PCS duplex */
		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
			*duplex = FULL_DUPLEX;
		} else {
			*duplex = HALF_DUPLEX;
		}
	}

	return (E1000_SUCCESS);
}

/*
 * e1000_shutdown_serdes_link_82575 - Remove link during power down
 * @hw: pointer to the HW structure
 *
 * In the case of serdes shut down sfp and PCS on driver unload
 * when management pass thru is not enabled.
 */
void
e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
{
	u32 reg;
	u16 eeprom_data = 0;

	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
	    !e1000_sgmii_active_82575(hw))
		return;

	if (hw->bus.func == E1000_FUNC_0)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
	else if (hw->mac.type == e1000_82580)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		    NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		    &eeprom_data);
	else if (hw->bus.func == E1000_FUNC_1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);

	/*
	 * If APM is not enabled in the EEPROM and management interface is
	 * not enabled, then power down.
	 */
	if (!(eeprom_data & E1000_NVM_APME_82575) &&
	    !e1000_enable_mng_pass_thru(hw)) {
		/* Disable PCS to turn off link */
		reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
		reg &= ~E1000_PCS_CFG_PCS_EN;
		E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);

		/* shutdown the laser */
		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
		reg |= E1000_CTRL_EXT_SDP3_DATA;
		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);

		/* flush the write to verify completion */
		E1000_WRITE_FLUSH(hw);
		msec_delay(1);
	}
}

/*
 * e1000_reset_hw_82575 - Reset hardware
 * @hw: pointer to the HW structure
 *
 * This resets the hardware into a known state.
 */
static s32
e1000_reset_hw_82575(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	DEBUGFUNC("e1000_reset_hw_82575");

	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000_disable_pcie_master_generic(hw);
	if (ret_val) {
		DEBUGOUT("PCI-E Master disable polling has failed.\n");
	}

	/* set the completion timeout for interface */
	ret_val = e1000_set_pcie_completion_timeout(hw);
	if (ret_val) {
		DEBUGOUT("PCI-E Set completion timeout has failed.\n");
	}

	DEBUGOUT("Masking off all interrupts\n");
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);

	E1000_WRITE_REG(hw, E1000_RCTL, 0);
	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
	E1000_WRITE_FLUSH(hw);

	msec_delay(10);

	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	DEBUGOUT("Issuing a global reset to MAC\n");
	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);

	ret_val = e1000_get_auto_rd_done_generic(hw);
	if (ret_val) {
		/*
		 * When auto config read does not complete, do not
		 * return with an error. This can happen in situations
		 * where there is no eeprom and prevents getting link.
		 */
		DEBUGOUT("Auto Read Done did not complete\n");
	}

	/* If EEPROM is not present, run manual init scripts */
	if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
		(void) e1000_reset_init_script_82575(hw);

	/* Clear any pending interrupt events. */
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
	(void) E1000_READ_REG(hw, E1000_ICR);

	/* Install any alternate MAC address into RAR0 */
	ret_val = e1000_check_alt_mac_addr_generic(hw);

	return (ret_val);
}

/*
 * e1000_init_hw_82575 - Initialize hardware
 * @hw: pointer to the HW structure
 *
 * This inits the hardware readying it for operation.
 */
static s32
e1000_init_hw_82575(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	u16 i, rar_count = mac->rar_entry_count;

	DEBUGFUNC("e1000_init_hw_82575");

	/* Initialize identification LED */
	ret_val = mac->ops.id_led_init(hw);
	if (ret_val) {
		DEBUGOUT("Error initializing identification LED\n");
		/* This is not fatal and we should not stop init due to this */
	}

	/* Disabling VLAN filtering */
	DEBUGOUT("Initializing the IEEE VLAN\n");
	mac->ops.clear_vfta(hw);

	/* Setup the receive address */
	e1000_init_rx_addrs_generic(hw, rar_count);
	/* Zero out the Multicast HASH table */
	DEBUGOUT("Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* Zero out the Unicast HASH table */
	DEBUGOUT("Zeroing the UTA\n");
	for (i = 0; i < mac->uta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);

	/* Setup link and flow control */
	ret_val = mac->ops.setup_link(hw);

	/*
	 * Clear all of the statistics registers (clear on read).  It is
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_82575(hw);

	return (ret_val);
}

/*
 * e1000_setup_copper_link_82575 - Configure copper link settings
 * @hw: pointer to the HW structure
 *
 * Configures the link for auto-neg or forced speed and duplex.  Then we check
 * for link, once link is established calls to configure collision distance
 * and flow control are called.
 */
static s32
e1000_setup_copper_link_82575(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	DEBUGFUNC("e1000_setup_copper_link_82575");

	ctrl = E1000_READ_REG(hw, E1000_CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);

	ret_val = e1000_setup_serdes_link_82575(hw);
	if (ret_val)
		goto out;

	if (e1000_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
		/* allow time for SFP cage time to power up phy */
		msec_delay(300);

		ret_val = hw->phy.ops.reset(hw);
		if (ret_val) {
			DEBUGOUT("Error resetting the PHY.\n");
			goto out;
		}
	}
	switch (hw->phy.type) {
	case e1000_phy_m88:
		ret_val = e1000_copper_link_setup_m88(hw);
		break;
	case e1000_phy_igp_3:
		ret_val = e1000_copper_link_setup_igp(hw);
		break;
	case e1000_phy_82580:
		ret_val = e1000_copper_link_setup_82577(hw);
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		break;
	}

	if (ret_val)
		goto out;

	ret_val = e1000_setup_copper_link_generic(hw);
out:
	return (ret_val);
}

/*
 * e1000_setup_serdes_link_82575 - Setup link for serdes
 * @hw: pointer to the HW structure
 *
 * Configure the physical coding sub-layer (PCS) link.  The PCS link is
 * used on copper connections where the serialized gigabit media independent
 * interface (sgmii), or serdes fiber is being used.  Configures the link
 * for auto-negotiation or forces speed/duplex.
 */
static s32
e1000_setup_serdes_link_82575(struct e1000_hw *hw)
{
	u32 ctrl_ext, ctrl_reg, reg;
	bool pcs_autoneg;

	DEBUGFUNC("e1000_setup_serdes_link_82575");

	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
	    !e1000_sgmii_active_82575(hw))
		return (E1000_SUCCESS);

	/*
	 * On the 82575, SerDes loopback mode persists until it is
	 * explicitly turned off or a power cycle is performed.  A read to
	 * the register does not indicate its status.  Therefore, we ensure
	 * loopback mode is disabled during initialization.
	 */
	E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);

	/* power on the sfp cage if present */
	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);

	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
	ctrl_reg |= E1000_CTRL_SLU;

	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
		/* set both sw defined pins */
		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;

		/* Set switch control to serdes energy detect */
		reg = E1000_READ_REG(hw, E1000_CONNSW);
		reg |= E1000_CONNSW_ENRGSRC;
		E1000_WRITE_REG(hw, E1000_CONNSW, reg);
	}

	reg = E1000_READ_REG(hw, E1000_PCS_LCTL);

	/* default pcs_autoneg to the same setting as mac autoneg */
	pcs_autoneg = hw->mac.autoneg;

	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
	case E1000_CTRL_EXT_LINK_MODE_SGMII:
		/* sgmii mode lets the phy handle forcing speed/duplex */
		pcs_autoneg = true;
		/* autoneg time out should be disabled for SGMII mode */
		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
		break;
	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
		/* disable PCS autoneg and support parallel detect only */
		pcs_autoneg = false;
	default:
		/*
		 * non-SGMII modes only supports a speed of 1000/Full for the
		 * link so it is best to just force the MAC and let the pcs
		 * link either autoneg or be forced to 1000/Full
		 */
		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
		    E1000_CTRL_FD | E1000_CTRL_FRCDPX;

		/* set speed of 1000/Full if speed/duplex is forced */
		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
		break;
	}

	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);

	/*
	 * New SerDes mode allows for forcing speed or autonegotiating speed
	 * at 1gb. Autoneg should be default set by most drivers. This is the
	 * mode that will be compatible with older link partners and switches.
	 * However, both are supported by the hardware and some drivers/tools.
	 */

	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
	    E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);

	/*
	 * We force flow control to prevent the CTRL register values from being
	 * overwritten by the autonegotiated flow control values
	 */
	reg |= E1000_PCS_LCTL_FORCE_FCTRL;

	if (pcs_autoneg) {
		/* Set PCS register for autoneg */
		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
		    E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
		DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
	} else {
		/* Set PCS register for forced link */
		reg |= E1000_PCS_LCTL_FSD;	/* Force Speed */
		DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
	}

	E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);

	if (!e1000_sgmii_active_82575(hw))
		(void) e1000_force_mac_fc_generic(hw);

	return (E1000_SUCCESS);
}

/*
 * e1000_valid_led_default_82575 - Verify a valid default LED config
 * @hw: pointer to the HW structure
 * @data: pointer to the NVM (EEPROM)
 *
 * Read the EEPROM for the current default LED configuration.  If the
 * LED configuration is not valid, set to a valid LED configuration.
 */
static s32
e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	DEBUGFUNC("e1000_valid_led_default_82575");

	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
		DEBUGOUT("NVM Read Error\n");
		goto out;
	}

	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
		switch (hw->phy.media_type) {
		case e1000_media_type_internal_serdes:
			*data = ID_LED_DEFAULT_82575_SERDES;
			break;
		case e1000_media_type_copper:
		default:
			*data = ID_LED_DEFAULT;
			break;
		}
	}
out:
	return (ret_val);
}

/*
 * e1000_sgmii_active_82575 - Return sgmii state
 * @hw: pointer to the HW structure
 *
 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
 * which can be enabled for use in the embedded applications.  Simply
 * return the current state of the sgmii interface.
 */
static bool
e1000_sgmii_active_82575(struct e1000_hw *hw)
{
	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
	return (dev_spec->sgmii_active);
}

/*
 * e1000_reset_init_script_82575 - Inits HW defaults after reset
 * @hw: pointer to the HW structure
 *
 * Inits recommended HW defaults after a reset when there is no EEPROM
 * detected. This is only for the 82575.
 */
static s32
e1000_reset_init_script_82575(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_reset_init_script_82575");

	if (hw->mac.type == e1000_82575) {
		DEBUGOUT("Running reset init script for 82575\n");
		/* SerDes configuration via SERDESCTRL */
		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL,
		    0x00, 0x0C);
		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL,
		    0x01, 0x78);
		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL,
		    0x1B, 0x23);
		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL,
		    0x23, 0x15);

		/* CCM configuration via CCMCTL register */
		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL,
		    0x14, 0x00);
		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL,
		    0x10, 0x00);

		/* PCIe lanes configuration */
		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL,
		    0x00, 0xEC);
		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL,
		    0x61, 0xDF);
		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL,
		    0x34, 0x05);
		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL,
		    0x2F, 0x81);

		/* PCIe PLL Configuration */
		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL,
		    0x02, 0x47);
		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL,
		    0x14, 0x00);
		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL,
		    0x10, 0x00);
	}

	return (E1000_SUCCESS);
}

/*
 * e1000_read_mac_addr_82575 - Read device MAC address
 * @hw: pointer to the HW structure
 */
static s32
e1000_read_mac_addr_82575(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_read_mac_addr_82575");

	/*
	 * If there's an alternate MAC address place it in RAR0
	 * so that it will override the Si installed default perm
	 * address.
	 */
	ret_val = e1000_check_alt_mac_addr_generic(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_read_mac_addr_generic(hw);

out:
	return (ret_val);
}

/*
 * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 */
static void
e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	struct e1000_mac_info *mac = &hw->mac;

	if (!(phy->ops.check_reset_block))
		return;

	/* If the management interface is not enabled, then power down */
	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

/*
 * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
 * @hw: pointer to the HW structure
 *
 * Clears the hardware counters by reading the counter registers.
 */
static void
e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_clear_hw_cntrs_82575");

	e1000_clear_hw_cntrs_base_generic(hw);

	(void) E1000_READ_REG(hw, E1000_PRC64);
	(void) E1000_READ_REG(hw, E1000_PRC127);
	(void) E1000_READ_REG(hw, E1000_PRC255);
	(void) E1000_READ_REG(hw, E1000_PRC511);
	(void) E1000_READ_REG(hw, E1000_PRC1023);
	(void) E1000_READ_REG(hw, E1000_PRC1522);
	(void) E1000_READ_REG(hw, E1000_PTC64);
	(void) E1000_READ_REG(hw, E1000_PTC127);
	(void) E1000_READ_REG(hw, E1000_PTC255);
	(void) E1000_READ_REG(hw, E1000_PTC511);
	(void) E1000_READ_REG(hw, E1000_PTC1023);
	(void) E1000_READ_REG(hw, E1000_PTC1522);

	(void) E1000_READ_REG(hw, E1000_ALGNERRC);
	(void) E1000_READ_REG(hw, E1000_RXERRC);
	(void) E1000_READ_REG(hw, E1000_TNCRS);
	(void) E1000_READ_REG(hw, E1000_CEXTERR);
	(void) E1000_READ_REG(hw, E1000_TSCTC);
	(void) E1000_READ_REG(hw, E1000_TSCTFC);

	(void) E1000_READ_REG(hw, E1000_MGTPRC);
	(void) E1000_READ_REG(hw, E1000_MGTPDC);
	(void) E1000_READ_REG(hw, E1000_MGTPTC);

	(void) E1000_READ_REG(hw, E1000_IAC);
	(void) E1000_READ_REG(hw, E1000_ICRXOC);

	(void) E1000_READ_REG(hw, E1000_ICRXPTC);
	(void) E1000_READ_REG(hw, E1000_ICRXATC);
	(void) E1000_READ_REG(hw, E1000_ICTXPTC);
	(void) E1000_READ_REG(hw, E1000_ICTXATC);
	(void) E1000_READ_REG(hw, E1000_ICTXQEC);
	(void) E1000_READ_REG(hw, E1000_ICTXQMTC);
	(void) E1000_READ_REG(hw, E1000_ICRXDMTC);

	(void) E1000_READ_REG(hw, E1000_CBTMPC);
	(void) E1000_READ_REG(hw, E1000_HTDPMC);
	(void) E1000_READ_REG(hw, E1000_CBRMPC);
	(void) E1000_READ_REG(hw, E1000_RPTHC);
	(void) E1000_READ_REG(hw, E1000_HGPTC);
	(void) E1000_READ_REG(hw, E1000_HTCBDPC);
	(void) E1000_READ_REG(hw, E1000_HGORCL);
	(void) E1000_READ_REG(hw, E1000_HGORCH);
	(void) E1000_READ_REG(hw, E1000_HGOTCL);
	(void) E1000_READ_REG(hw, E1000_HGOTCH);
	(void) E1000_READ_REG(hw, E1000_LENERRS);

	/* This register should not be read in copper configurations */
	if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
	    e1000_sgmii_active_82575(hw))
		(void) E1000_READ_REG(hw, E1000_SCVPC);
}

/*
 * e1000_rx_fifo_flush_82575 - Clean rx fifo after RX enable
 * @hw: pointer to the HW structure
 *
 * After rx enable if managability is enabled then there is likely some
 * bad data at the start of the fifo and possibly in the DMA fifo.  This
 * function clears the fifos and flushes any packets that came in as rx was
 * being enabled.
 */
void
e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
{
	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
	int i, ms_wait;

	DEBUGFUNC("e1000_rx_fifo_workaround_82575");
	if (hw->mac.type != e1000_82575 ||
	    !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
		return;

	/* Disable all RX queues */
	for (i = 0; i < 4; i++) {
		rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
		E1000_WRITE_REG(hw, E1000_RXDCTL(i),
		    rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
	}
	/* Poll all queues to verify they have shut down */
	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
		msec_delay(1);
		rx_enabled = 0;
		for (i = 0; i < 4; i++)
			rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
			break;
	}

	if (ms_wait == 10)
		DEBUGOUT("Queue disable timed out after 10ms\n");

	/*
	 * Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
	 * incoming packets are rejected.  Set enable and wait 2ms so that
	 * any packet that was coming in as RCTL.EN was set is flushed
	 */
	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);

	rlpml = E1000_READ_REG(hw, E1000_RLPML);
	E1000_WRITE_REG(hw, E1000_RLPML, 0);

	rctl = E1000_READ_REG(hw, E1000_RCTL);
	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
	temp_rctl |= E1000_RCTL_LPE;

	E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
	E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
	E1000_WRITE_FLUSH(hw);
	msec_delay(2);

	/*
	 * Enable RX queues that were previously enabled and restore our
	 * previous state
	 */
	for (i = 0; i < 4; i++)
		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
	E1000_WRITE_FLUSH(hw);

	E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);

	/* Flush receive errors generated by workaround */
	(void) E1000_READ_REG(hw, E1000_ROC);
	(void) E1000_READ_REG(hw, E1000_RNBC);
	(void) E1000_READ_REG(hw, E1000_MPC);
}

/*
 * e1000_set_pcie_completion_timeout - set pci-e completion timeout
 * @hw: pointer to the HW structure
 *
 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
 * however the hardware default for these parts is 500us to 1ms which is less
 * than the 10ms recommended by the pci-e spec.  To address this we need to
 * increase the value to either 10ms to 200ms for capability version 1 config,
 * or 16ms to 55ms for version 2.
 */
static s32
e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
{
	u32 gcr = E1000_READ_REG(hw, E1000_GCR);
	s32 ret_val = E1000_SUCCESS;
	u16 pcie_devctl2;

	/* only take action if timeout value is defaulted to 0 */
	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
		goto out;

	/*
	 * if capababilities version is type 1 we can write the
	 * timeout of 10ms to 200ms through the GCR register
	 */
	if (!(gcr & E1000_GCR_CAP_VER2)) {
		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
		goto out;
	}

	/*
	 * for version 2 capabilities we need to write the config space
	 * directly in order to set the completion timeout value for
	 * 16ms to 55ms
	 */
	ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
	    &pcie_devctl2);
	if (ret_val)
		goto out;

	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;

	ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
	    &pcie_devctl2);
out:
	/* disable completion timeout resend */
	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;

	E1000_WRITE_REG(hw, E1000_GCR, gcr);
	return (ret_val);
}

/*
 * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
 * @hw: pointer to the hardware struct
 * @enable: state to enter, either enabled or disabled
 *
 * enables/disables L2 switch loopback functionality.
 */
void
e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
{
	u32 dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);

	if (enable)
		dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
	else
		dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;

	E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
}

/*
 * e1000_vmdq_set_replication_pf - enable or disable vmdq replication
 * @hw: pointer to the hardware struct
 * @enable: state to enter, either enabled or disabled
 *
 * enables/disables replication of packets across multiple pools.
 */
void
e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
{
	u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);

	if (enable)
		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
	else
		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;

	E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
}

/*
 * e1000_read_phy_reg_82580 - Read 82580 MDI control register
 * @hw: pointer to the HW structure
 * @offset: register offset to be read
 * @data: pointer to the read data
 *
 * Reads the MDI control register in the PHY at offset and stores the
 * information read to data.
 */
static s32
e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
{
	u32 mdicnfg = 0;
	s32 ret_val;

	DEBUGFUNC("e1000_read_phy_reg_82580");

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	/*
	 * We config the phy address in MDICNFG register now. Same bits
	 * as before. The values in MDIC can be written but will be
	 * ignored. This allows us to call the old function after
	 * configuring the PHY address in the new register
	 */
	mdicnfg = (hw->phy.addr << E1000_MDIC_PHY_SHIFT);
	E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);

	ret_val = e1000_read_phy_reg_mdic(hw, offset, data);

	hw->phy.ops.release(hw);

out:
	return (ret_val);
}

/*
 * e1000_write_phy_reg_82580 - Write 82580 MDI control register
 * @hw: pointer to the HW structure
 * @offset: register offset to write to
 * @data: data to write to register at offset
 *
 * Writes data to MDI control register in the PHY at offset.
 */
static s32
e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
{
	u32 mdicnfg = 0;
	s32 ret_val;

	DEBUGFUNC("e1000_write_phy_reg_82580");

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	/*
	 * We config the phy address in MDICNFG register now. Same bits
	 * as before. The values in MDIC can be written but will be
	 * ignored. This allows us to call the old function after
	 * configuring the PHY address in the new register
	 */
	mdicnfg = (hw->phy.addr << E1000_MDIC_PHY_SHIFT);
	E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);

	ret_val = e1000_write_phy_reg_mdic(hw, offset, data);

	hw->phy.ops.release(hw);

out:
	return (ret_val);
}

/*
 * e1000_reset_hw_82580 - Reset hardware
 * @hw: pointer to the HW structure
 *
 * This resets function or entire device (all ports, etc.)
 * to a known state.
 */
static s32
e1000_reset_hw_82580(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	/* BH SW mailbox bit in SW_FW_SYNC */
	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
	u32 ctrl;
	bool global_device_reset = hw->dev_spec._82575.global_device_reset;

	DEBUGFUNC("e1000_reset_hw_82580");

	hw->dev_spec._82575.global_device_reset = false;

	/* Get current control state. */
	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000_disable_pcie_master_generic(hw);
	if (ret_val)
		DEBUGOUT("PCI-E Master disable polling has failed.\n");

	DEBUGOUT("Masking off all interrupts\n");
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
	E1000_WRITE_REG(hw, E1000_RCTL, 0);
	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
	E1000_WRITE_FLUSH(hw);

	msec_delay(10);

	/* Determine whether or not a global dev reset is requested */
	if (global_device_reset &&
	    e1000_acquire_swfw_sync_82575(hw, swmbsw_mask))
		global_device_reset = false;

	if (global_device_reset &&
	    !(E1000_READ_REG(hw, E1000_STATUS) & E1000_STAT_DEV_RST_SET))
		ctrl |= E1000_CTRL_DEV_RST;
	else
		ctrl |= E1000_CTRL_RST;

	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);

	/* Add delay to insure DEV_RST has time to complete */
	if (global_device_reset)
		msec_delay(5);

	ret_val = e1000_get_auto_rd_done_generic(hw);
	if (ret_val) {
		/*
		 * When auto config read does not complete, do not
		 * return with an error. This can happen in situations
		 * where there is no eeprom and prevents getting link.
		 */
		DEBUGOUT("Auto Read Done did not complete\n");
	}

	/* If EEPROM is not present, run manual init scripts */
	if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
		(void) e1000_reset_init_script_82575(hw);

	/* clear global device reset status bit */
	E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);

	/* Clear any pending interrupt events. */
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
	(void) E1000_READ_REG(hw, E1000_ICR);

	/* Install any alternate MAC address into RAR0 */
	ret_val = e1000_check_alt_mac_addr_generic(hw);

	/* Release semaphore */
	if (global_device_reset)
		e1000_release_swfw_sync_82575(hw, swmbsw_mask);

	return (ret_val);
}

/*
 * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
 * @data: data received by reading RXPBS register
 *
 * The 82580 uses a table based approach for packet buffer allocation sizes.
 * This function converts the retrieved value into the correct table value
 *    0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
 * 0x0 36  72 144   1   2   4   8  16
 * 0x8 35  70 140 rsv rsv rsv rsv rsv
 */
u16
e1000_rxpbs_adjust_82580(u32 data)
{
	u16 ret_val = 0;

	if (data < E1000_82580_RXPBS_TABLE_SIZE)
		ret_val = e1000_82580_rxpbs_table[data];

	return (ret_val);
}

/*
 * Due to a hw errata, if the host tries to  configure the VFTA register
 * while performing queries from the BMC or DMA, then the VFTA in some
 * cases won't be written.
 */

/*
 *  e1000_clear_vfta_i350 - Clear VLAN filter table
 *  @hw: pointer to the HW structure
 *
 *  Clears the register array which contains the VLAN filter table by
 *  setting all the values to 0.
 */
void
e1000_clear_vfta_i350(struct e1000_hw *hw)
{
	u32 offset;
	int i;

	DEBUGFUNC("e1000_clear_vfta_350");

	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
		for (i = 0; i < 10; i++)
			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);

		E1000_WRITE_FLUSH(hw);
	}
}

/*
 *  e1000_write_vfta_i350 - Write value to VLAN filter table
 *  @hw: pointer to the HW structure
 *  @offset: register offset in VLAN filter table
 *  @value: register value written to VLAN filter table
 *
 *  Writes value at the given offset in the register array which stores
 *  the VLAN filter table.
 */
void
e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
{
	int i;

	DEBUGFUNC("e1000_write_vfta_350");

	for (i = 0; i < 10; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);

	E1000_WRITE_FLUSH(hw);
}

/*
 *  e1000_validate_nvm_checksum_with_offset - Validate EEPROM
 *  checksum
 *  @hw: pointer to the HW structure
 *  @offset: offset in words of the checksum protected region
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 */
s32
e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
{
	s32 ret_val = E1000_SUCCESS;
	u16 checksum = 0;
	u16 i, nvm_data;

	DEBUGFUNC("e1000_validate_nvm_checksum_with_offset");

	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
		if (ret_val) {
			DEBUGOUT("NVM Read Error\n");
			goto out;
		}
		checksum += nvm_data;
	}

	if (checksum != (u16) NVM_SUM) {
		DEBUGOUT("NVM Checksum Invalid\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

out:
	return (ret_val);
}

/*
 *  e1000_update_nvm_checksum_with_offset - Update EEPROM
 *  checksum
 *  @hw: pointer to the HW structure
 *  @offset: offset in words of the checksum protected region
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM.
 */
s32
e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
{
	s32 ret_val;
	u16 checksum = 0;
	u16 i, nvm_data;

	DEBUGFUNC("e1000_update_nvm_checksum_with_offset");

	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
		if (ret_val) {
			DEBUGOUT("NVM Read Error while updating checksum.\n");
			goto out;
		}
		checksum += nvm_data;
	}
	checksum = (u16) NVM_SUM - checksum;
	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
	    &checksum);
	if (ret_val)
		DEBUGOUT("NVM Write Error while updating checksum.\n");

out:
	return (ret_val);
}

/*
 *  e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM section checksum by reading/adding each word of
 *  the EEPROM and then verifies that the sum of the EEPROM is
 *  equal to 0xBABA.
 */
static s32
e1000_validate_nvm_checksum_i350(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u16 j;
	u16 nvm_offset;

	DEBUGFUNC("e1000_validate_nvm_checksum_i350");

	for (j = 0; j < 4; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = e1000_validate_nvm_checksum_with_offset(hw,
		    nvm_offset);
		if (ret_val != E1000_SUCCESS)
			goto out;
	}

out:
	return (ret_val);
}

/*
 *  e1000_update_nvm_checksum_i350 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
 *  checksum and writes the value to the EEPROM.
 */
static s32
e1000_update_nvm_checksum_i350(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u16 j;
	u16 nvm_offset;

	DEBUGFUNC("e1000_update_nvm_checksum_i350");

	for (j = 0; j < 4; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
		if (ret_val != E1000_SUCCESS)
			goto out;
	}

out:
	return (ret_val);
}



/*
 *  e1000_set_eee_i350 - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *
 *  Enable/disable EEE based on setting in dev_spec structure.
 *
 */
s32
e1000_set_eee_i350(struct e1000_hw *hw)
{

	s32 ret_val = E1000_SUCCESS;
	u32 ipcnfg, eeer;

	DEBUGFUNC("e1000_set_eee_i350");

	if ((hw->mac.type < e1000_i350) ||
	    (hw->phy.media_type != e1000_media_type_copper))
		goto out;
	ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
	eeer = E1000_READ_REG(hw, E1000_EEER);

	/* enable or disable per user setting */
	if (!(hw->dev_spec._82575.eee_disable)) {
		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
		    E1000_EEER_LPI_FC);

	} else {
		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
		eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
		    E1000_EEER_LPI_FC);
	}
	E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg);
	E1000_WRITE_REG(hw, E1000_EEER, eeer);
	ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
	eeer = E1000_READ_REG(hw, E1000_EEER);
out:

	return (ret_val);
}