view usr/src/uts/common/io/igb/igb_nvm.c @ 14091:d9da93cfe39c

3856 want FW config version number for igb and ixgbe Reviewed by: Dan McDonald <danmcd@nexenta.com> Reviewed by: Carlos Cardenas <carlos.cardenas@joyent.com> Approved by: Richard Lowe <richlowe@richlowe.net>
author Keith M Wesolowski <wesolows@foobazco.org>
date Sun, 30 Jun 2013 18:37:54 +0000
parents a462ebfcbf99
children
line wrap: on
line source

/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright(c) 2007-2010 Intel Corporation. All rights reserved.
 */

/*
 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
 */

/* IntelVersion: 1.49 v3_3_14_3_BHSW1 */

#include "igb_api.h"

static void e1000_stop_nvm(struct e1000_hw *hw);
static void e1000_reload_nvm_generic(struct e1000_hw *hw);

/*
 * e1000_init_nvm_ops_generic - Initialize NVM function pointers
 * @hw: pointer to the HW structure
 *
 * Setups up the function pointers to no-op functions
 */
void
e1000_init_nvm_ops_generic(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	DEBUGFUNC("e1000_init_nvm_ops_generic");

	/* Initialize function pointers */
	nvm->ops.init_params = e1000_null_ops_generic;
	nvm->ops.acquire = e1000_null_ops_generic;
	nvm->ops.read = e1000_null_read_nvm;
	nvm->ops.release = e1000_null_nvm_generic;
	nvm->ops.reload = e1000_reload_nvm_generic;
	nvm->ops.update = e1000_null_ops_generic;
	nvm->ops.valid_led_default = e1000_null_led_default;
	nvm->ops.validate = e1000_null_ops_generic;
	nvm->ops.write = e1000_null_write_nvm;
}

/*
 * e1000_null_nvm_read - No-op function, return 0
 * @hw: pointer to the HW structure
 */
s32
e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c)
{
	DEBUGFUNC("e1000_null_read_nvm");
	UNREFERENCED_4PARAMETER(hw, a, b, c);
	return (E1000_SUCCESS);
}

/*
 * e1000_null_nvm_generic - No-op function, return void
 * @hw: pointer to the HW structure
 */
void
e1000_null_nvm_generic(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_null_nvm_generic");
	UNREFERENCED_1PARAMETER(hw);
}

/*
 * e1000_null_led_default - No-op function, return 0
 * @hw: pointer to the HW structure
 */
s32
e1000_null_led_default(struct e1000_hw *hw, u16 *data)
{
	DEBUGFUNC("e1000_null_led_default");
	UNREFERENCED_2PARAMETER(hw, data);
	return (E1000_SUCCESS);
}

/*
 * e1000_null_write_nvm - No-op function, return 0
 * @hw: pointer to the HW structure
 */
s32
e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c)
{
	DEBUGFUNC("e1000_null_write_nvm");
	UNREFERENCED_4PARAMETER(hw, a, b, c);
	return (E1000_SUCCESS);
}

/*
 * e1000_raise_eec_clk - Raise EEPROM clock
 * @hw: pointer to the HW structure
 * @eecd: pointer to the EEPROM
 *
 * Enable/Raise the EEPROM clock bit.
 */
static void
e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
{
	*eecd = *eecd | E1000_EECD_SK;
	E1000_WRITE_REG(hw, E1000_EECD, *eecd);
	E1000_WRITE_FLUSH(hw);
	usec_delay(hw->nvm.delay_usec);
}

/*
 * e1000_lower_eec_clk - Lower EEPROM clock
 * @hw: pointer to the HW structure
 * @eecd: pointer to the EEPROM
 *
 * Clear/Lower the EEPROM clock bit.
 */
static void
e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
{
	*eecd = *eecd & ~E1000_EECD_SK;
	E1000_WRITE_REG(hw, E1000_EECD, *eecd);
	E1000_WRITE_FLUSH(hw);
	usec_delay(hw->nvm.delay_usec);
}

/*
 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
 * @hw: pointer to the HW structure
 * @data: data to send to the EEPROM
 * @count: number of bits to shift out
 *
 * We need to shift 'count' bits out to the EEPROM.  So, the value in the
 * "data" parameter will be shifted out to the EEPROM one bit at a time.
 * In order to do this, "data" must be broken down into bits.
 */
static void
e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
	u32 mask;

	DEBUGFUNC("e1000_shift_out_eec_bits");

	mask = 0x01 << (count - 1);
	if (nvm->type == e1000_nvm_eeprom_microwire)
		eecd &= ~E1000_EECD_DO;
	else if (nvm->type == e1000_nvm_eeprom_spi)
		eecd |= E1000_EECD_DO;

	do {
		eecd &= ~E1000_EECD_DI;

		if (data & mask)
			eecd |= E1000_EECD_DI;

		E1000_WRITE_REG(hw, E1000_EECD, eecd);
		E1000_WRITE_FLUSH(hw);

		usec_delay(nvm->delay_usec);

		e1000_raise_eec_clk(hw, &eecd);
		e1000_lower_eec_clk(hw, &eecd);

		mask >>= 1;
	} while (mask);

	eecd &= ~E1000_EECD_DI;
	E1000_WRITE_REG(hw, E1000_EECD, eecd);
}

/*
 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
 * @hw: pointer to the HW structure
 * @count: number of bits to shift in
 *
 * In order to read a register from the EEPROM, we need to shift 'count' bits
 * in from the EEPROM.  Bits are "shifted in" by raising the clock input to
 * the EEPROM (setting the SK bit), and then reading the value of the data out
 * "DO" bit.  During this "shifting in" process the data in "DI" bit should
 * always be clear.
 */
static u16
e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
{
	u32 eecd;
	u32 i;
	u16 data;

	DEBUGFUNC("e1000_shift_in_eec_bits");

	eecd = E1000_READ_REG(hw, E1000_EECD);

	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
	data = 0;

	for (i = 0; i < count; i++) {
		data <<= 1;
		e1000_raise_eec_clk(hw, &eecd);

		eecd = E1000_READ_REG(hw, E1000_EECD);

		eecd &= ~E1000_EECD_DI;
		if (eecd & E1000_EECD_DO)
			data |= 1;

		e1000_lower_eec_clk(hw, &eecd);
	}

	return (data);
}

/*
 * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
 * @hw: pointer to the HW structure
 * @ee_reg: EEPROM flag for polling
 *
 * Polls the EEPROM status bit for either read or write completion based
 * upon the value of 'ee_reg'.
 */
s32
e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
{
	u32 attempts = 100000;
	u32 i, reg = 0;
	s32 ret_val = -E1000_ERR_NVM;

	DEBUGFUNC("e1000_poll_eerd_eewr_done");

	for (i = 0; i < attempts; i++) {
		if (ee_reg == E1000_NVM_POLL_READ)
			reg = E1000_READ_REG(hw, E1000_EERD);
		else
			reg = E1000_READ_REG(hw, E1000_EEWR);

		if (reg & E1000_NVM_RW_REG_DONE) {
			ret_val = E1000_SUCCESS;
			break;
		}

		usec_delay(5);
	}

	return (ret_val);
}

/*
 * e1000_acquire_nvm_generic - Generic request for access to EEPROM
 * @hw: pointer to the HW structure
 *
 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
 * Return successful if access grant bit set, else clear the request for
 * EEPROM access and return -E1000_ERR_NVM (-1).
 */
s32
e1000_acquire_nvm_generic(struct e1000_hw *hw)
{
	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_acquire_nvm_generic");

	E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
	eecd = E1000_READ_REG(hw, E1000_EECD);

	while (timeout) {
		if (eecd & E1000_EECD_GNT)
			break;
		usec_delay(5);
		eecd = E1000_READ_REG(hw, E1000_EECD);
		timeout--;
	}

	if (!timeout) {
		eecd &= ~E1000_EECD_REQ;
		E1000_WRITE_REG(hw, E1000_EECD, eecd);
		DEBUGOUT("Could not acquire NVM grant\n");
		ret_val = -E1000_ERR_NVM;
	}

	return (ret_val);
}

/*
 * e1000_standby_nvm - Return EEPROM to standby state
 * @hw: pointer to the HW structure
 *
 * Return the EEPROM to a standby state.
 */
static void
e1000_standby_nvm(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = E1000_READ_REG(hw, E1000_EECD);

	DEBUGFUNC("e1000_standby_nvm");

	if (nvm->type == e1000_nvm_eeprom_microwire) {
		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
		E1000_WRITE_REG(hw, E1000_EECD, eecd);
		E1000_WRITE_FLUSH(hw);
		usec_delay(nvm->delay_usec);

		e1000_raise_eec_clk(hw, &eecd);

		/* Select EEPROM */
		eecd |= E1000_EECD_CS;
		E1000_WRITE_REG(hw, E1000_EECD, eecd);
		E1000_WRITE_FLUSH(hw);
		usec_delay(nvm->delay_usec);

		e1000_lower_eec_clk(hw, &eecd);
	} else if (nvm->type == e1000_nvm_eeprom_spi) {
		/* Toggle CS to flush commands */
		eecd |= E1000_EECD_CS;
		E1000_WRITE_REG(hw, E1000_EECD, eecd);
		E1000_WRITE_FLUSH(hw);
		usec_delay(nvm->delay_usec);
		eecd &= ~E1000_EECD_CS;
		E1000_WRITE_REG(hw, E1000_EECD, eecd);
		E1000_WRITE_FLUSH(hw);
		usec_delay(nvm->delay_usec);
	}
}

/*
 * e1000_stop_nvm - Terminate EEPROM command
 * @hw: pointer to the HW structure
 *
 * Terminates the current command by inverting the EEPROM's chip select pin.
 */
void
e1000_stop_nvm(struct e1000_hw *hw)
{
	u32 eecd;

	DEBUGFUNC("e1000_stop_nvm");

	eecd = E1000_READ_REG(hw, E1000_EECD);
	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
		/* Pull CS high */
		eecd |= E1000_EECD_CS;
		e1000_lower_eec_clk(hw, &eecd);
	} else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
		/* CS on Microwire is active-high */
		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
		E1000_WRITE_REG(hw, E1000_EECD, eecd);
		e1000_raise_eec_clk(hw, &eecd);
		e1000_lower_eec_clk(hw, &eecd);
	}
}

/*
 * e1000_release_nvm_generic - Release exclusive access to EEPROM
 * @hw: pointer to the HW structure
 *
 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
 */
void
e1000_release_nvm_generic(struct e1000_hw *hw)
{
	u32 eecd;

	DEBUGFUNC("e1000_release_nvm_generic");

	e1000_stop_nvm(hw);

	eecd = E1000_READ_REG(hw, E1000_EECD);
	eecd &= ~E1000_EECD_REQ;
	E1000_WRITE_REG(hw, E1000_EECD, eecd);
}

/*
 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
 * @hw: pointer to the HW structure
 *
 * Setups the EEPROM for reading and writing.
 */
static s32
e1000_ready_nvm_eeprom(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
	s32 ret_val = E1000_SUCCESS;
	u16 timeout = 0;
	u8 spi_stat_reg;

	DEBUGFUNC("e1000_ready_nvm_eeprom");

	if (nvm->type == e1000_nvm_eeprom_microwire) {
		/* Clear SK and DI */
		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
		E1000_WRITE_REG(hw, E1000_EECD, eecd);
		/* Set CS */
		eecd |= E1000_EECD_CS;
		E1000_WRITE_REG(hw, E1000_EECD, eecd);
	} else if (nvm->type == e1000_nvm_eeprom_spi) {
		/* Clear SK and CS */
		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
		E1000_WRITE_REG(hw, E1000_EECD, eecd);
		usec_delay(1);
		timeout = NVM_MAX_RETRY_SPI;

		/*
		 * Read "Status Register" repeatedly until the LSB is cleared.
		 * The EEPROM will signal that the command has been completed
		 * by clearing bit 0 of the internal status register.  If it's
		 * not cleared within 'timeout', then error out.
		 */
		while (timeout) {
			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
			    hw->nvm.opcode_bits);
			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
				break;

			usec_delay(5);
			e1000_standby_nvm(hw);
			timeout--;
		}

		if (!timeout) {
			DEBUGOUT("SPI NVM Status error\n");
			ret_val = -E1000_ERR_NVM;
			goto out;
		}
	}

out:
	return (ret_val);
}

/*
 * e1000_read_nvm_microwire - Reads EEPROM's using microwire
 * @hw: pointer to the HW structure
 * @offset: offset of word in the EEPROM to read
 * @words: number of words to read
 * @data: word read from the EEPROM
 *
 * Reads a 16 bit word from the EEPROM.
 */
s32
e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
    u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 i = 0;
	s32 ret_val;
	u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;

	DEBUGFUNC("e1000_read_nvm_microwire");

	/*
	 * A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
		DEBUGOUT("nvm parameter(s) out of bounds\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	ret_val = nvm->ops.acquire(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_ready_nvm_eeprom(hw);
	if (ret_val)
		goto release;

	for (i = 0; i < words; i++) {
		/* Send the READ command (opcode + addr) */
		e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
		e1000_shift_out_eec_bits(hw, (u16)(offset + i),
		    nvm->address_bits);

		/*
		 * Read the data.  For microwire, each word requires the
		 * overhead of setup and tear-down.
		 */
		data[i] = e1000_shift_in_eec_bits(hw, 16);
		e1000_standby_nvm(hw);
	}

release:
	nvm->ops.release(hw);

out:
	return (ret_val);
}

/*
 * e1000_read_nvm_eerd - Reads EEPROM using EERD register
 * @hw: pointer to the HW structure
 * @offset: offset of word in the EEPROM to read
 * @words: number of words to read
 * @data: word read from the EEPROM
 *
 * Reads a 16 bit word from the EEPROM using the EERD register.
 */
s32
e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 i, eerd = 0;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_read_nvm_eerd");

	/*
	 * A check for invalid values:  offset too large, too many words,
	 * too many words for the offset, and not enough words.
	 */
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
		DEBUGOUT("nvm parameter(s) out of bounds\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	for (i = 0; i < words; i++) {
		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
		    E1000_NVM_RW_REG_START;

		E1000_WRITE_REG(hw, E1000_EERD, eerd);
		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
		if (ret_val)
			break;

		data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
		    E1000_NVM_RW_REG_DATA);
	}

out:
	return (ret_val);
}

/*
 * e1000_write_nvm_spi - Write to EEPROM using SPI
 * @hw: pointer to the HW structure
 * @offset: offset within the EEPROM to be written to
 * @words: number of words to write
 * @data: 16 bit word(s) to be written to the EEPROM
 *
 * Writes data to EEPROM at offset using SPI interface.
 *
 * If e1000_update_nvm_checksum is not called after this function , the
 * EEPROM will most likely contain an invalid checksum.
 */
s32
e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	s32 ret_val;
	u16 widx = 0;

	DEBUGFUNC("e1000_write_nvm_spi");

	/*
	 * A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
		DEBUGOUT("nvm parameter(s) out of bounds\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	ret_val = nvm->ops.acquire(hw);
	if (ret_val)
		goto out;

	while (widx < words) {
		u8 write_opcode = NVM_WRITE_OPCODE_SPI;

		ret_val = e1000_ready_nvm_eeprom(hw);
		if (ret_val)
			goto release;

		e1000_standby_nvm(hw);

		/* Send the WRITE ENABLE command (8 bit opcode) */
		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
		    nvm->opcode_bits);

		e1000_standby_nvm(hw);

		/*
		 * Some SPI eeproms use the 8th address bit embedded in the
		 * opcode
		 */
		if ((nvm->address_bits == 8) && (offset >= 128))
			write_opcode |= NVM_A8_OPCODE_SPI;

		/* Send the Write command (8-bit opcode + addr) */
		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
		    nvm->address_bits);

		/* Loop to allow for up to whole page write of eeprom */
		while (widx < words) {
			u16 word_out = data[widx];
			word_out = (word_out >> 8) | (word_out << 8);
			e1000_shift_out_eec_bits(hw, word_out, 16);
			widx++;

			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
				e1000_standby_nvm(hw);
				break;
			}
		}
	}

	msec_delay(10);
release:
	nvm->ops.release(hw);

out:
	return (ret_val);
}

/*
 * e1000_write_nvm_microwire - Writes EEPROM using microwire
 * @hw: pointer to the HW structure
 * @offset: offset within the EEPROM to be written to
 * @words: number of words to write
 * @data: 16 bit word(s) to be written to the EEPROM
 *
 * Writes data to EEPROM at offset using microwire interface.
 *
 * If e1000_update_nvm_checksum is not called after this function , the
 * EEPROM will most likely contain an invalid checksum.
 */
s32
e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
	u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	s32  ret_val;
	u32 eecd;
	u16 words_written = 0;
	u16 widx = 0;

	DEBUGFUNC("e1000_write_nvm_microwire");

	/*
	 * A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
		DEBUGOUT("nvm parameter(s) out of bounds\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	ret_val = nvm->ops.acquire(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_ready_nvm_eeprom(hw);
	if (ret_val)
		goto release;

	e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
	    (u16)(nvm->opcode_bits + 2));

	e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));

	e1000_standby_nvm(hw);

	while (words_written < words) {
		e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
		    nvm->opcode_bits);

		e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
		    nvm->address_bits);

		e1000_shift_out_eec_bits(hw, data[words_written], 16);

		e1000_standby_nvm(hw);

		for (widx = 0; widx < 200; widx++) {
			eecd = E1000_READ_REG(hw, E1000_EECD);
			if (eecd & E1000_EECD_DO)
				break;
			usec_delay(50);
		}

		if (widx == 200) {
			DEBUGOUT("NVM Write did not complete\n");
			ret_val = -E1000_ERR_NVM;
			goto release;
		}

		e1000_standby_nvm(hw);

		words_written++;
	}

	e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
	    (u16)(nvm->opcode_bits + 2));

	e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));

release:
	nvm->ops.release(hw);

out:
	return (ret_val);
}

/*
 * e1000_read_pba_string_generic - Read device part number
 * @hw: pointer to the HW structure
 * @pba_num: pointer to device part number
 * @pba_num_size: size of part number buffer
 *
 * Reads the product board assembly (PBA) number from the EEPROM and stores
 * the value in pba_num.
 */
s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
    u32 pba_num_size)
{
	s32 ret_val;
	u16 nvm_data;
	u16 pba_ptr;
	u16 offset;
	u16 length;

	DEBUGFUNC("e1000_read_pba_string_generic");

	if (pba_num == NULL) {
		DEBUGOUT("PBA string buffer was null\n");
		return (-E1000_ERR_INVALID_ARGUMENT);
	}

	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
	if (ret_val) {
		DEBUGOUT("NVM Read Error\n");
		return (ret_val);
	}

	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
	if (ret_val) {
		DEBUGOUT("NVM Read Error\n");
		return (ret_val);
	}

	/* if nvm_data is not ptr guard the PBA must be in legacy format which
	 * means pba_ptr is actually our second data word for the PBA number
	 * and we can decode it into an ascii string
	 */
	if (nvm_data != NVM_PBA_PTR_GUARD) {
		DEBUGOUT("NVM PBA number is not stored as string\n");

		/* make sure callers buffer is big enough to store the PBA */
		if (pba_num_size < E1000_PBANUM_LENGTH) {
			DEBUGOUT("PBA string buffer too small\n");
			return (-E1000_ERR_NO_SPACE);
		}

		/* extract hex string from data and pba_ptr */
		pba_num[0] = (nvm_data >> 12) & 0xF;
		pba_num[1] = (nvm_data >> 8) & 0xF;
		pba_num[2] = (nvm_data >> 4) & 0xF;
		pba_num[3] = nvm_data & 0xF;
		pba_num[4] = (pba_ptr >> 12) & 0xF;
		pba_num[5] = (pba_ptr >> 8) & 0xF;
		pba_num[6] = '-';
		pba_num[7] = 0;
		pba_num[8] = (pba_ptr >> 4) & 0xF;
		pba_num[9] = pba_ptr & 0xF;

		/* put a null character on the end of our string */
		pba_num[10] = '\0';

		/* switch all the data but the '-' to hex char */
		for (offset = 0; offset < 10; offset++) {
			if (pba_num[offset] < 0xA)
				pba_num[offset] += '0';
			else if (pba_num[offset] < 0x10)
				pba_num[offset] += 'A' - 0xA;
		}

		return (E1000_SUCCESS);
	}

	ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
	if (ret_val) {
		DEBUGOUT("NVM Read Error\n");
		return (ret_val);
	}

	if (length == 0xFFFF || length == 0) {
		DEBUGOUT("NVM PBA number section invalid length\n");
		return (-E1000_ERR_NVM_PBA_SECTION);
	}
	/* check if pba_num buffer is big enough */
	if (pba_num_size < (((u32)length * 2) - 1)) {
		DEBUGOUT("PBA string buffer too small\n");
		return (-E1000_ERR_NO_SPACE);
	}

	/* trim pba length from start of string */
	pba_ptr++;
	length--;

	for (offset = 0; offset < length; offset++) {
		ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
		if (ret_val) {
			DEBUGOUT("NVM Read Error\n");
			return (ret_val);
		}
		pba_num[offset * 2] = (u8)(nvm_data >> 8);
		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
	}
	pba_num[offset * 2] = '\0';

	return (E1000_SUCCESS);
}

/*
 *  e1000_read_pba_length_generic - Read device part number length
 *  @hw: pointer to the HW structure
 *  @pba_num_size: size of part number buffer
 *
 *  Reads the product board assembly (PBA) number length from the EEPROM and
 *  stores the value in pba_num_size.
 */
s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size)
{
	s32 ret_val;
	u16 nvm_data;
	u16 pba_ptr;
	u16 length;

	DEBUGFUNC("e1000_read_pba_length_generic");

	if (pba_num_size == NULL) {
		DEBUGOUT("PBA buffer size was null\n");
		return (-E1000_ERR_INVALID_ARGUMENT);
	}

	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
	if (ret_val) {
		DEBUGOUT("NVM Read Error\n");
		return (ret_val);
	}

	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
	if (ret_val) {
		DEBUGOUT("NVM Read Error\n");
		return (ret_val);
	}

	 /* if data is not ptr guard the PBA must be in legacy format */
	if (nvm_data != NVM_PBA_PTR_GUARD) {
		*pba_num_size = E1000_PBANUM_LENGTH;
		return (E1000_SUCCESS);
	}

	ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
	if (ret_val) {
		DEBUGOUT("NVM Read Error\n");
		return (ret_val);
	}

	if (length == 0xFFFF || length == 0) {
		DEBUGOUT("NVM PBA number section invalid length\n");
		return (-E1000_ERR_NVM_PBA_SECTION);
	}

	/* Convert from length in u16 values to u8 chars, add 1 for NULL,
	 * and subtract 2 because length field is included in length.
	 */
	*pba_num_size = ((u32)length * 2) - 1;

	return (E1000_SUCCESS);
}

/*
 * e1000_read_mac_addr_generic - Read device MAC address
 * @hw: pointer to the HW structure
 *
 * Reads the device MAC address from the EEPROM and stores the value.
 * Since devices with two ports use the same EEPROM, we increment the
 * last bit in the MAC address for the second port.
 */
s32
e1000_read_mac_addr_generic(struct e1000_hw *hw)
{
	u32 rar_high;
	u32 rar_low;
	u16 i;

	rar_high = E1000_READ_REG(hw, E1000_RAH(0));
	rar_low = E1000_READ_REG(hw, E1000_RAL(0));

	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));

	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));

	for (i = 0; i < ETH_ADDR_LEN; i++)
		hw->mac.addr[i] = hw->mac.perm_addr[i];

	return (E1000_SUCCESS);
}

/*
 * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
 * @hw: pointer to the HW structure
 *
 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
 */
s32
e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u16 checksum = 0;
	u16 i, nvm_data;

	DEBUGFUNC("e1000_validate_nvm_checksum_generic");

	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
		if (ret_val) {
			DEBUGOUT("NVM Read Error\n");
			goto out;
		}
		checksum += nvm_data;
	}

	if (checksum != (u16) NVM_SUM) {
		DEBUGOUT("NVM Checksum Invalid\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

out:
	return (ret_val);
}

/*
 * e1000_update_nvm_checksum_generic - Update EEPROM checksum
 * @hw: pointer to the HW structure
 *
 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
 * up to the checksum.  Then calculates the EEPROM checksum and writes the
 * value to the EEPROM.
 */
s32
e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
{
	s32  ret_val;
	u16 checksum = 0;
	u16 i, nvm_data;

	DEBUGFUNC("e1000_update_nvm_checksum");

	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
		if (ret_val) {
			DEBUGOUT("NVM Read Error while updating checksum.\n");
			goto out;
		}
		checksum += nvm_data;
	}
	checksum = (u16) NVM_SUM - checksum;
	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
	if (ret_val)
		DEBUGOUT("NVM Write Error while updating checksum.\n");

out:
	return (ret_val);
}

/*
 * e1000_reload_nvm_generic - Reloads EEPROM
 * @hw: pointer to the HW structure
 *
 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
 * extended control register.
 */
void
e1000_reload_nvm_generic(struct e1000_hw *hw)
{
	u32 ctrl_ext;

	DEBUGFUNC("e1000_reload_nvm_generic");

	usec_delay(10);
	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
	E1000_WRITE_FLUSH(hw);
}