diff usr/src/uts/intel/ia32/os/archdep.c @ 0:68f95e015346

OpenSolaris Launch
author stevel@tonic-gate
date Tue, 14 Jun 2005 00:00:00 -0700
parents
children f95ffdc997b7
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/intel/ia32/os/archdep.c	Tue Jun 14 00:00:00 2005 -0700
@@ -0,0 +1,1380 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License, Version 1.0 only
+ * (the "License").  You may not use this file except in compliance
+ * with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms.
+ */
+
+/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
+/*	  All Rights Reserved  	*/
+
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#include <sys/param.h>
+#include <sys/types.h>
+#include <sys/vmparam.h>
+#include <sys/systm.h>
+#include <sys/signal.h>
+#include <sys/stack.h>
+#include <sys/regset.h>
+#include <sys/privregs.h>
+#include <sys/frame.h>
+#include <sys/proc.h>
+#include <sys/psw.h>
+#include <sys/siginfo.h>
+#include <sys/cpuvar.h>
+#include <sys/asm_linkage.h>
+#include <sys/kmem.h>
+#include <sys/errno.h>
+#include <sys/bootconf.h>
+#include <sys/archsystm.h>
+#include <sys/debug.h>
+#include <sys/elf.h>
+#include <sys/spl.h>
+#include <sys/time.h>
+#include <sys/atomic.h>
+#include <sys/sysmacros.h>
+#include <sys/cmn_err.h>
+#include <sys/modctl.h>
+#include <sys/kobj.h>
+#include <sys/panic.h>
+#include <sys/reboot.h>
+#include <sys/time.h>
+#include <sys/fp.h>
+#include <sys/x86_archext.h>
+#include <sys/auxv.h>
+#include <sys/auxv_386.h>
+#include <sys/dtrace.h>
+
+extern const struct fnsave_state x87_initial;
+extern const struct fxsave_state sse_initial;
+
+/*
+ * Map an fnsave-formatted save area into an fxsave-formatted save area.
+ *
+ * Most fields are the same width, content and semantics.  However
+ * the tag word is compressed.
+ */
+static void
+fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx)
+{
+	uint_t i, tagbits;
+
+	fx->fx_fcw = fn->f_fcw;
+	fx->fx_fsw = fn->f_fsw;
+
+	/*
+	 * copy element by element (because of holes)
+	 */
+	for (i = 0; i < 8; i++)
+		bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0],
+		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
+
+	/*
+	 * synthesize compressed tag bits
+	 */
+	fx->fx_fctw = 0;
+	for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2)
+		if ((tagbits & 3) != 3)
+			fx->fx_fctw |= (1 << i);
+
+	fx->fx_fop = fn->f_fop;
+
+#if defined(__amd64)
+	fx->fx_rip = (uint64_t)fn->f_eip;
+	fx->fx_rdp = (uint64_t)fn->f_dp;
+#else
+	fx->fx_eip = fn->f_eip;
+	fx->fx_cs = fn->f_cs;
+	fx->__fx_ign0 = 0;
+	fx->fx_dp = fn->f_dp;
+	fx->fx_ds = fn->f_ds;
+	fx->__fx_ign1 = 0;
+#endif
+}
+
+/*
+ * Map from an fxsave-format save area to an fnsave-format save area.
+ */
+static void
+fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn)
+{
+	uint_t i, top, tagbits;
+
+	fn->f_fcw = fx->fx_fcw;
+	fn->__f_ign0 = 0;
+	fn->f_fsw = fx->fx_fsw;
+	fn->__f_ign1 = 0;
+
+	top = (fx->fx_fsw & FPS_TOP) >> 11;
+
+	/*
+	 * copy element by element (because of holes)
+	 */
+	for (i = 0; i < 8; i++)
+		bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0],
+		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
+
+	/*
+	 * synthesize uncompressed tag bits
+	 */
+	fn->f_ftw = 0;
+	for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) {
+		uint_t ibit, expo;
+		const uint16_t *fpp;
+		static const uint16_t zero[5] = { 0, 0, 0, 0, 0 };
+
+		if ((tagbits & 1) == 0) {
+			fn->f_ftw |= 3 << (i << 1);	/* empty */
+			continue;
+		}
+
+		/*
+		 * (tags refer to *physical* registers)
+		 */
+		fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0];
+		ibit = fpp[3] >> 15;
+		expo = fpp[4] & 0x7fff;
+
+		if (ibit && expo != 0 && expo != 0x7fff)
+			continue;			/* valid fp number */
+
+		if (bcmp(fpp, &zero, sizeof (zero)))
+			fn->f_ftw |= 2 << (i << 1);	/* NaN */
+		else
+			fn->f_ftw |= 1 << (i << 1);	/* fp zero */
+	}
+
+	fn->f_fop = fx->fx_fop;
+
+	fn->__f_ign2 = 0;
+#if defined(__amd64)
+	fn->f_eip = (uint32_t)fx->fx_rip;
+	fn->f_cs = U32CS_SEL;
+	fn->f_dp = (uint32_t)fx->fx_rdp;
+	fn->f_ds = UDS_SEL;
+#else
+	fn->f_eip = fx->fx_eip;
+	fn->f_cs = fx->fx_cs;
+	fn->f_dp = fx->fx_dp;
+	fn->f_ds = fx->fx_ds;
+#endif
+	fn->__f_ign3 = 0;
+}
+
+/*
+ * Map from an fpregset_t into an fxsave-format save area
+ */
+static void
+fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx)
+{
+#if defined(__amd64)
+	bcopy(fp, fx, sizeof (*fx));
+#else
+	const struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
+
+	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
+	fx->fx_mxcsr = fc->mxcsr;
+	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
+#endif
+	/*
+	 * avoid useless #gp exceptions - mask reserved bits
+	 */
+	fx->fx_mxcsr &= sse_mxcsr_mask;
+}
+
+/*
+ * Map from an fxsave-format save area into a fpregset_t
+ */
+static void
+fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp)
+{
+#if defined(__amd64)
+	bcopy(fx, fp, sizeof (*fx));
+#else
+	struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
+
+	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
+	fc->mxcsr = fx->fx_mxcsr;
+	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
+#endif
+}
+
+#if defined(_SYSCALL32_IMPL)
+static void
+fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx)
+{
+	const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
+
+	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
+	/*
+	 * avoid useless #gp exceptions - mask reserved bits
+	 */
+	fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr;
+	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
+}
+
+static void
+fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp)
+{
+	struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
+
+	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
+	fc->mxcsr = fx->fx_mxcsr;
+	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
+}
+
+static void
+fpregset_nto32(const fpregset_t *src, fpregset32_t *dst)
+{
+	fxsave_to_fpregset32((struct fxsave_state *)src, dst);
+	dst->fp_reg_set.fpchip_state.status =
+	    src->fp_reg_set.fpchip_state.status;
+	dst->fp_reg_set.fpchip_state.xstatus =
+	    src->fp_reg_set.fpchip_state.xstatus;
+}
+
+static void
+fpregset_32ton(const fpregset32_t *src, fpregset_t *dst)
+{
+	fpregset32_to_fxsave(src, (struct fxsave_state *)dst);
+	dst->fp_reg_set.fpchip_state.status =
+	    src->fp_reg_set.fpchip_state.status;
+	dst->fp_reg_set.fpchip_state.xstatus =
+	    src->fp_reg_set.fpchip_state.xstatus;
+}
+#endif
+
+/*
+ * Set floating-point registers from a native fpregset_t.
+ */
+void
+setfpregs(klwp_t *lwp, fpregset_t *fp)
+{
+	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
+
+	if (fpu->fpu_flags & FPU_EN) {
+		if (!(fpu->fpu_flags & FPU_VALID)) {
+			/*
+			 * FPU context is still active, release the
+			 * ownership.
+			 */
+			fp_free(fpu, 0);
+		}
+#if !defined(__amd64)
+		if (fp_kind == __FP_SSE) {
+#endif
+			fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx);
+			fpu->fpu_regs.kfpu_xstatus =
+			    fp->fp_reg_set.fpchip_state.xstatus;
+#if !defined(__amd64)
+		} else
+			bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn,
+			    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
+#endif
+		fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
+		fpu->fpu_flags |= FPU_VALID;
+
+		/*
+		 * If we are changing the fpu_flags in the current context,
+		 * disable floating point (turn on CR0_TS bit) to track
+		 * FPU_VALID after clearing any errors (frstor chokes
+		 * otherwise)
+		 */
+		if (lwp == ttolwp(curthread)) {
+			(void) fperr_reset();
+			fpdisable();
+		}
+	} else {
+		/*
+		 * If we are trying to change the FPU state of a thread which
+		 * hasn't yet initialized floating point, store the state in
+		 * the pcb and indicate that the state is valid.  When the
+		 * thread enables floating point, it will use this state instead
+		 * of the default state.
+		 */
+#if !defined(__amd64)
+		if (fp_kind == __FP_SSE) {
+#endif
+			fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx);
+			fpu->fpu_regs.kfpu_xstatus =
+			    fp->fp_reg_set.fpchip_state.xstatus;
+#if !defined(__amd64)
+		} else
+			bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn,
+			    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
+#endif
+		fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
+		fpu->fpu_flags |= FPU_VALID;
+	}
+}
+
+/*
+ * Get floating-point registers into a native fpregset_t.
+ */
+void
+getfpregs(klwp_t *lwp, fpregset_t *fp)
+{
+	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
+
+	kpreempt_disable();
+	if (fpu->fpu_flags & FPU_EN) {
+		/*
+		 * If we have FPU hw and the thread's pcb doesn't have
+		 * a valid FPU state then get the state from the hw.
+		 */
+		if (fpu_exists && ttolwp(curthread) == lwp &&
+		    !(fpu->fpu_flags & FPU_VALID))
+			fp_save(fpu); /* get the current FPU state */
+	}
+
+	/*
+	 * There are 3 possible cases we have to be aware of here:
+	 *
+	 * 1. FPU is enabled.  FPU state is stored in the current LWP.
+	 *
+	 * 2. FPU is not enabled, and there have been no intervening /proc
+	 *    modifications.  Return initial FPU state.
+	 *
+	 * 3. FPU is not enabled, but a /proc consumer has modified FPU state.
+	 *    FPU state is stored in the current LWP.
+	 */
+	if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) {
+		/*
+		 * Cases 1 and 3.
+		 */
+#if !defined(__amd64)
+		if (fp_kind == __FP_SSE) {
+#endif
+			fxsave_to_fpregset(&fpu->fpu_regs.kfpu_u.kfpu_fx, fp);
+			fp->fp_reg_set.fpchip_state.xstatus =
+			    fpu->fpu_regs.kfpu_xstatus;
+#if !defined(__amd64)
+		} else
+			bcopy(&fpu->fpu_regs.kfpu_u.kfpu_fn, fp,
+			    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
+#endif
+		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
+	} else {
+		/*
+		 * Case 2.
+		 */
+#if !defined(__amd64)
+		if (fp_kind == __FP_SSE) {
+#endif
+			fxsave_to_fpregset(&sse_initial, fp);
+			fp->fp_reg_set.fpchip_state.xstatus =
+			    fpu->fpu_regs.kfpu_xstatus;
+#if !defined(__amd64)
+		} else
+			bcopy(&x87_initial, fp, sizeof (x87_initial));
+#endif
+		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
+	}
+	kpreempt_enable();
+}
+
+#if defined(_SYSCALL32_IMPL)
+
+/*
+ * Set floating-point registers from an fpregset32_t.
+ */
+void
+setfpregs32(klwp_t *lwp, fpregset32_t *fp)
+{
+	fpregset_t fpregs;
+
+	fpregset_32ton(fp, &fpregs);
+	setfpregs(lwp, &fpregs);
+}
+
+/*
+ * Get floating-point registers into an fpregset32_t.
+ */
+void
+getfpregs32(klwp_t *lwp, fpregset32_t *fp)
+{
+	fpregset_t fpregs;
+
+	getfpregs(lwp, &fpregs);
+	fpregset_nto32(&fpregs, fp);
+}
+
+#endif	/* _SYSCALL32_IMPL */
+
+/*
+ * Return the general registers
+ */
+void
+getgregs(klwp_t *lwp, gregset_t grp)
+{
+	struct regs *rp = lwptoregs(lwp);
+#if defined(__amd64)
+	struct pcb *pcb = &lwp->lwp_pcb;
+	int thisthread = lwptot(lwp) == curthread;
+
+	grp[REG_RDI] = rp->r_rdi;
+	grp[REG_RSI] = rp->r_rsi;
+	grp[REG_RDX] = rp->r_rdx;
+	grp[REG_RCX] = rp->r_rcx;
+	grp[REG_R8] = rp->r_r8;
+	grp[REG_R9] = rp->r_r9;
+	grp[REG_RAX] = rp->r_rax;
+	grp[REG_RBX] = rp->r_rbx;
+	grp[REG_RBP] = rp->r_rbp;
+	grp[REG_R10] = rp->r_r10;
+	grp[REG_R11] = rp->r_r11;
+	grp[REG_R12] = rp->r_r12;
+	grp[REG_R13] = rp->r_r13;
+	grp[REG_R14] = rp->r_r14;
+	grp[REG_R15] = rp->r_r15;
+	grp[REG_FSBASE] = pcb->pcb_fsbase;
+	grp[REG_GSBASE] = pcb->pcb_gsbase;
+	if (thisthread)
+		kpreempt_disable();
+	if (pcb->pcb_flags & RUPDATE_PENDING) {
+		grp[REG_DS] = pcb->pcb_ds;
+		grp[REG_ES] = pcb->pcb_es;
+		grp[REG_FS] = pcb->pcb_fs;
+		grp[REG_GS] = pcb->pcb_gs;
+	} else {
+		grp[REG_DS] = rp->r_ds;
+		grp[REG_ES] = rp->r_es;
+		grp[REG_FS] = rp->r_fs;
+		grp[REG_GS] = rp->r_gs;
+	}
+	if (thisthread)
+		kpreempt_enable();
+	grp[REG_TRAPNO] = rp->r_trapno;
+	grp[REG_ERR] = rp->r_err;
+	grp[REG_RIP] = rp->r_rip;
+	grp[REG_CS] = rp->r_cs;
+	grp[REG_SS] = rp->r_ss;
+	grp[REG_RFL] = rp->r_rfl;
+	grp[REG_RSP] = rp->r_rsp;
+#else
+	bcopy(&rp->r_gs, grp, sizeof (gregset_t));
+#endif
+}
+
+#if defined(_SYSCALL32_IMPL)
+
+void
+getgregs32(klwp_t *lwp, gregset32_t grp)
+{
+	struct regs *rp = lwptoregs(lwp);
+	struct pcb *pcb = &lwp->lwp_pcb;
+	int thisthread = lwptot(lwp) == curthread;
+
+	if (thisthread)
+		kpreempt_disable();
+	if (pcb->pcb_flags & RUPDATE_PENDING) {
+		grp[GS] = (uint16_t)pcb->pcb_gs;
+		grp[FS] = (uint16_t)pcb->pcb_fs;
+		grp[DS] = (uint16_t)pcb->pcb_ds;
+		grp[ES] = (uint16_t)pcb->pcb_es;
+	} else {
+		grp[GS] = (uint16_t)rp->r_gs;
+		grp[FS] = (uint16_t)rp->r_fs;
+		grp[DS] = (uint16_t)rp->r_ds;
+		grp[ES] = (uint16_t)rp->r_es;
+	}
+	if (thisthread)
+		kpreempt_enable();
+	grp[EDI] = (greg32_t)rp->r_rdi;
+	grp[ESI] = (greg32_t)rp->r_rsi;
+	grp[EBP] = (greg32_t)rp->r_rbp;
+	grp[ESP] = 0;
+	grp[EBX] = (greg32_t)rp->r_rbx;
+	grp[EDX] = (greg32_t)rp->r_rdx;
+	grp[ECX] = (greg32_t)rp->r_rcx;
+	grp[EAX] = (greg32_t)rp->r_rax;
+	grp[TRAPNO] = (greg32_t)rp->r_trapno;
+	grp[ERR] = (greg32_t)rp->r_err;
+	grp[EIP] = (greg32_t)rp->r_rip;
+	grp[CS] = (uint16_t)rp->r_cs;
+	grp[EFL] = (greg32_t)rp->r_rfl;
+	grp[UESP] = (greg32_t)rp->r_rsp;
+	grp[SS] = (uint16_t)rp->r_ss;
+}
+
+void
+ucontext_32ton(const ucontext32_t *src, ucontext_t *dst)
+{
+	mcontext_t *dmc = &dst->uc_mcontext;
+	const mcontext32_t *smc = &src->uc_mcontext;
+
+	bzero(dst, sizeof (*dst));
+	dst->uc_flags = src->uc_flags;
+	dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link;
+
+	bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask));
+
+	dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp;
+	dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
+	dst->uc_stack.ss_flags = src->uc_stack.ss_flags;
+
+	dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS];
+	dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS];
+	dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES];
+	dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS];
+	dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI];
+	dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI];
+	dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP];
+	dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX];
+	dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX];
+	dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX];
+	dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX];
+	dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO];
+	dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR];
+	dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP];
+	dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS];
+	dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL];
+	dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP];
+	dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS];
+
+	/*
+	 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set
+	 * otherwise there is no guarantee that anything in fpregs is valid.
+	 */
+	if (src->uc_flags & UC_FPU)
+		fpregset_32ton(&src->uc_mcontext.fpregs,
+		    &dst->uc_mcontext.fpregs);
+}
+
+#endif	/* _SYSCALL32_IMPL */
+
+/*
+ * Return the user-level PC.
+ * If in a system call, return the address of the syscall trap.
+ */
+greg_t
+getuserpc()
+{
+	greg_t upc = lwptoregs(ttolwp(curthread))->r_pc;
+	uint32_t insn;
+
+	if (curthread->t_sysnum == 0)
+		return (upc);
+
+	/*
+	 * We might've gotten here from sysenter (0xf 0x34),
+	 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0).
+	 *
+	 * Go peek at the binary to figure it out..
+	 */
+	if (fuword32((void *)(upc - 2), &insn) != -1 &&
+	    (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f)
+		return (upc - 2);
+	return (upc - 7);
+}
+
+/*
+ * Protect segment registers from non-user privilege levels and GDT selectors
+ * other than USER_CS, USER_DS and lwp FS and GS values.  If the segment
+ * selector is non-null and not USER_CS/USER_DS, we make sure that the
+ * TI bit is set to point into the LDT and that the RPL is set to 3.
+ *
+ * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
+ * also explicitly zero the top 16 bits since they may be coming from the
+ * user's address space via setcontext(2) or /proc.
+ */
+
+/*ARGSUSED*/
+static greg_t
+fix_segreg(greg_t sr, model_t datamodel)
+{
+	switch (sr &= 0xffff) {
+#if defined(__amd64)
+	/*
+	 * If lwp attempts to switch data model then force their
+	 * code selector to be null selector.
+	 */
+	case U32CS_SEL:
+		if (datamodel == DATAMODEL_NATIVE)
+			return (0);
+		else
+			return (sr);
+
+	case UCS_SEL:
+		if (datamodel == DATAMODEL_ILP32)
+			return (0);
+#elif defined(__i386)
+	case UCS_SEL:
+#endif
+	/*FALLTHROUGH*/
+	case UDS_SEL:
+	case LWPFS_SEL:
+	case LWPGS_SEL:
+	case 0:
+		return (sr);
+	default:
+		break;
+	}
+
+	/*
+	 * Force it into the LDT in ring 3 for 32-bit processes.
+	 * 64-bit processes get the null gdt selector since they
+	 * are not allowed to have a private LDT.
+	 */
+#if defined(__amd64)
+	return (datamodel == DATAMODEL_ILP32 ? (sr | SEL_TI_LDT | SEL_UPL) : 0);
+#elif defined(__i386)
+	return (sr | SEL_TI_LDT | SEL_UPL);
+#endif
+}
+
+/*
+ * Set general registers.
+ */
+void
+setgregs(klwp_t *lwp, gregset_t grp)
+{
+	struct regs *rp = lwptoregs(lwp);
+	model_t	datamodel = lwp_getdatamodel(lwp);
+
+#if defined(__amd64)
+	struct pcb *pcb = &lwp->lwp_pcb;
+	int thisthread = lwptot(lwp) == curthread;
+
+	if (datamodel == DATAMODEL_NATIVE) {
+
+		if (thisthread)
+			(void) save_syscall_args();	/* copy the args */
+
+		rp->r_rdi = grp[REG_RDI];
+		rp->r_rsi = grp[REG_RSI];
+		rp->r_rdx = grp[REG_RDX];
+		rp->r_rcx = grp[REG_RCX];
+		rp->r_r8 = grp[REG_R8];
+		rp->r_r9 = grp[REG_R9];
+		rp->r_rax = grp[REG_RAX];
+		rp->r_rbx = grp[REG_RBX];
+		rp->r_rbp = grp[REG_RBP];
+		rp->r_r10 = grp[REG_R10];
+		rp->r_r11 = grp[REG_R11];
+		rp->r_r12 = grp[REG_R12];
+		rp->r_r13 = grp[REG_R13];
+		rp->r_r14 = grp[REG_R14];
+		rp->r_r15 = grp[REG_R15];
+		rp->r_trapno = grp[REG_TRAPNO];
+		rp->r_err = grp[REG_ERR];
+		rp->r_rip = grp[REG_RIP];
+		/*
+		 * Setting %cs or %ss to anything else is quietly but
+		 * quite definitely forbidden!
+		 */
+		rp->r_cs = UCS_SEL;
+		rp->r_ss = UDS_SEL;
+		rp->r_rsp = grp[REG_RSP];
+
+		if (thisthread)
+			kpreempt_disable();
+
+		pcb->pcb_ds = UDS_SEL;
+		pcb->pcb_es = UDS_SEL;
+
+		/*
+		 * 64-bit processes -are- allowed to set their fsbase/gsbase
+		 * values directly, but only if they're using the segment
+		 * selectors that allow that semantic.
+		 *
+		 * (32-bit processes must use lwp_set_private().)
+		 */
+		pcb->pcb_fsbase = grp[REG_FSBASE];
+		pcb->pcb_gsbase = grp[REG_GSBASE];
+		pcb->pcb_fs = fix_segreg(grp[REG_FS], datamodel);
+		pcb->pcb_gs = fix_segreg(grp[REG_GS], datamodel);
+
+		/*
+		 * Ensure that we go out via update_sregs
+		 */
+		pcb->pcb_flags |= RUPDATE_PENDING;
+		lwptot(lwp)->t_post_sys = 1;
+		if (thisthread)
+			kpreempt_enable();
+#if defined(_SYSCALL32_IMPL)
+	} else {
+		rp->r_rdi = (uint32_t)grp[REG_RDI];
+		rp->r_rsi = (uint32_t)grp[REG_RSI];
+		rp->r_rdx = (uint32_t)grp[REG_RDX];
+		rp->r_rcx = (uint32_t)grp[REG_RCX];
+		rp->r_rax = (uint32_t)grp[REG_RAX];
+		rp->r_rbx = (uint32_t)grp[REG_RBX];
+		rp->r_rbp = (uint32_t)grp[REG_RBP];
+		rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
+		rp->r_err = (uint32_t)grp[REG_ERR];
+		rp->r_rip = (uint32_t)grp[REG_RIP];
+
+		/*
+		 * The kernel uses %cs to determine if it is dealing with
+		 * another part of the kernel or with a userland application.
+		 * Specifically, it tests the privilege bits. For this reason,
+		 * we must prevent user apps from ending up with a NULL selector
+		 * in %cs. Instead, we'll use index 0 into the GDT but with the
+		 * privilege bits set to usermode.
+		 */
+		rp->r_cs = fix_segreg(grp[REG_CS], datamodel) | SEL_UPL;
+		rp->r_ss = fix_segreg(grp[REG_DS], datamodel);
+
+		rp->r_rsp = (uint32_t)grp[REG_RSP];
+
+		if (thisthread)
+			kpreempt_disable();
+
+		pcb->pcb_ds = fix_segreg(grp[REG_DS], datamodel);
+		pcb->pcb_es = fix_segreg(grp[REG_ES], datamodel);
+
+		/*
+		 * (See fsbase/gsbase commentary above)
+		 */
+		pcb->pcb_fs = fix_segreg(grp[REG_FS], datamodel);
+		pcb->pcb_gs = fix_segreg(grp[REG_GS], datamodel);
+
+		/*
+		 * Ensure that we go out via update_sregs
+		 */
+		pcb->pcb_flags |= RUPDATE_PENDING;
+		lwptot(lwp)->t_post_sys = 1;
+		if (thisthread)
+			kpreempt_enable();
+#endif
+	}
+
+	/*
+	 * Only certain bits of the flags register can be modified.
+	 */
+	rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
+	    (grp[REG_RFL] & PSL_USERMASK);
+
+#elif defined(__i386)
+
+	/*
+	 * Only certain bits of the flags register can be modified.
+	 */
+	grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK);
+
+	/*
+	 * Copy saved registers from user stack.
+	 */
+	bcopy(grp, &rp->r_gs, sizeof (gregset_t));
+
+	rp->r_cs = fix_segreg(rp->r_cs, datamodel);
+	rp->r_ss = fix_segreg(rp->r_ss, datamodel);
+	rp->r_ds = fix_segreg(rp->r_ds, datamodel);
+	rp->r_es = fix_segreg(rp->r_es, datamodel);
+	rp->r_fs = fix_segreg(rp->r_fs, datamodel);
+	rp->r_gs = fix_segreg(rp->r_gs, datamodel);
+
+#endif	/* __i386 */
+}
+
+/*
+ * Determine whether eip is likely to have an interrupt frame
+ * on the stack.  We do this by comparing the address to the
+ * range of addresses spanned by several well-known routines.
+ */
+extern void _interrupt();
+extern void _allsyscalls();
+extern void _cmntrap();
+extern void fakesoftint();
+
+extern size_t _interrupt_size;
+extern size_t _allsyscalls_size;
+extern size_t _cmntrap_size;
+extern size_t _fakesoftint_size;
+
+/*
+ * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
+ * Returns MIN(current stack depth, pcstack_limit).
+ */
+int
+getpcstack(pc_t *pcstack, int pcstack_limit)
+{
+	struct frame *fp = (struct frame *)getfp();
+	struct frame *nextfp, *minfp, *stacktop;
+	int depth = 0;
+	int on_intr;
+	uintptr_t pc;
+
+	if ((on_intr = CPU_ON_INTR(CPU)) != 0)
+		stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
+	else
+		stacktop = (struct frame *)curthread->t_stk;
+	minfp = fp;
+
+	pc = ((struct regs *)fp)->r_pc;
+
+	while (depth < pcstack_limit) {
+		nextfp = (struct frame *)fp->fr_savfp;
+		pc = fp->fr_savpc;
+		if (nextfp <= minfp || nextfp >= stacktop) {
+			if (on_intr) {
+				/*
+				 * Hop from interrupt stack to thread stack.
+				 */
+				stacktop = (struct frame *)curthread->t_stk;
+				minfp = (struct frame *)curthread->t_stkbase;
+				on_intr = 0;
+				continue;
+			}
+			break;
+		}
+		pcstack[depth++] = (pc_t)pc;
+		fp = nextfp;
+		minfp = fp;
+	}
+	return (depth);
+}
+
+/*
+ * The following ELF header fields are defined as processor-specific
+ * in the V8 ABI:
+ *
+ *	e_ident[EI_DATA]	encoding of the processor-specific
+ *				data in the object file
+ *	e_machine		processor identification
+ *	e_flags			processor-specific flags associated
+ *				with the file
+ */
+
+/*
+ * The value of at_flags reflects a platform's cpu module support.
+ * at_flags is used to check for allowing a binary to execute and
+ * is passed as the value of the AT_FLAGS auxiliary vector.
+ */
+int at_flags = 0;
+
+/*
+ * Check the processor-specific fields of an ELF header.
+ *
+ * returns 1 if the fields are valid, 0 otherwise
+ */
+/*ARGSUSED2*/
+int
+elfheadcheck(
+	unsigned char e_data,
+	Elf32_Half e_machine,
+	Elf32_Word e_flags)
+{
+	if (e_data != ELFDATA2LSB)
+		return (0);
+#if defined(__amd64)
+	if (e_machine == EM_AMD64)
+		return (1);
+#endif
+	return (e_machine == EM_386);
+}
+
+uint_t auxv_hwcap_include = 0;	/* patch to enable unrecognized features */
+uint_t auxv_hwcap_exclude = 0;	/* patch for broken cpus, debugging */
+#if defined(_SYSCALL32_IMPL)
+uint_t auxv_hwcap32_include = 0;	/* ditto for 32-bit apps */
+uint_t auxv_hwcap32_exclude = 0;	/* ditto for 32-bit apps */
+#endif
+
+/*
+ * Gather information about the processor and place it into auxv_hwcap
+ * so that it can be exported to the linker via the aux vector.
+ *
+ * We use this seemingly complicated mechanism so that we can ensure
+ * that /etc/system can be used to override what the system can or
+ * cannot discover for itself.
+ */
+void
+bind_hwcap(void)
+{
+	uint_t cpu_hwcap_flags = cpuid_pass4(NULL);
+
+	auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags) &
+	    ~auxv_hwcap_exclude;
+
+#if defined(__amd64)
+	/*
+	 * On AMD processors, sysenter just doesn't work at all
+	 * when the kernel is in long mode.  On IA-32e processors
+	 * it does, but there's no real point in all the alternate
+	 * mechanism when syscall works on both.
+	 *
+	 * Besides, the kernel's sysenter handler is expecting a
+	 * 32-bit lwp ...
+	 */
+	auxv_hwcap &= ~AV_386_SEP;
+#endif
+
+	if (auxv_hwcap_include || auxv_hwcap_exclude)
+		cmn_err(CE_CONT, "?user ABI extensions: %b\n",
+		    auxv_hwcap, FMT_AV_386);
+
+#if defined(_SYSCALL32_IMPL)
+	auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags) &
+		~auxv_hwcap32_exclude;
+
+#if defined(__amd64)
+	/*
+	 * If this is an amd64 architecture machine from Intel, then
+	 * syscall -doesn't- work in compatibility mode, only sysenter does.
+	 *
+	 * Sigh.
+	 */
+	if (!cpuid_syscall32_insn(NULL))
+		auxv_hwcap32 &= ~AV_386_AMD_SYSC;
+#endif
+
+	if (auxv_hwcap32_include || auxv_hwcap32_exclude)
+		cmn_err(CE_CONT, "?32-bit user ABI extensions: %b\n",
+		    auxv_hwcap32, FMT_AV_386);
+#endif
+}
+
+/*
+ *	sync_icache() - this is called
+ *	in proc/fs/prusrio.c. x86 has an unified cache and therefore
+ *	this is a nop.
+ */
+/* ARGSUSED */
+void
+sync_icache(caddr_t addr, uint_t len)
+{
+	/* Do nothing for now */
+}
+
+/*ARGSUSED*/
+void
+sync_data_memory(caddr_t va, size_t len)
+{
+	/* Not implemented for this platform */
+}
+
+int
+__ipltospl(int ipl)
+{
+	return (ipltospl(ipl));
+}
+
+/*
+ * The panic code invokes panic_saveregs() to record the contents of a
+ * regs structure into the specified panic_data structure for debuggers.
+ */
+void
+panic_saveregs(panic_data_t *pdp, struct regs *rp)
+{
+	panic_nv_t *pnv = PANICNVGET(pdp);
+
+	struct cregs	creg;
+
+	getcregs(&creg);
+
+#if defined(__amd64)
+	PANICNVADD(pnv, "rdi", rp->r_rdi);
+	PANICNVADD(pnv, "rsi", rp->r_rsi);
+	PANICNVADD(pnv, "rdx", rp->r_rdx);
+	PANICNVADD(pnv, "rcx", rp->r_rcx);
+	PANICNVADD(pnv, "r8", rp->r_r8);
+	PANICNVADD(pnv, "r9", rp->r_r9);
+	PANICNVADD(pnv, "rax", rp->r_rax);
+	PANICNVADD(pnv, "rbx", rp->r_rbx);
+	PANICNVADD(pnv, "rbp", rp->r_rbp);
+	PANICNVADD(pnv, "r10", rp->r_r10);
+	PANICNVADD(pnv, "r10", rp->r_r10);
+	PANICNVADD(pnv, "r11", rp->r_r11);
+	PANICNVADD(pnv, "r12", rp->r_r12);
+	PANICNVADD(pnv, "r13", rp->r_r13);
+	PANICNVADD(pnv, "r14", rp->r_r14);
+	PANICNVADD(pnv, "r15", rp->r_r15);
+	PANICNVADD(pnv, "fsbase", rp->r_fsbase);
+	PANICNVADD(pnv, "gsbase", rp->r_gsbase);
+	PANICNVADD(pnv, "ds", rp->r_ds);
+	PANICNVADD(pnv, "es", rp->r_es);
+	PANICNVADD(pnv, "fs", rp->r_fs);
+	PANICNVADD(pnv, "gs", rp->r_gs);
+	PANICNVADD(pnv, "trapno", rp->r_trapno);
+	PANICNVADD(pnv, "err", rp->r_err);
+	PANICNVADD(pnv, "rip", rp->r_rip);
+	PANICNVADD(pnv, "cs", rp->r_cs);
+	PANICNVADD(pnv, "rflags", rp->r_rfl);
+	PANICNVADD(pnv, "rsp", rp->r_rsp);
+	PANICNVADD(pnv, "ss", rp->r_ss);
+	PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
+	PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
+	PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
+	PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
+#elif defined(__i386)
+	PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs);
+	PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs);
+	PANICNVADD(pnv, "es", (uint32_t)rp->r_es);
+	PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds);
+	PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi);
+	PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi);
+	PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp);
+	PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp);
+	PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx);
+	PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx);
+	PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx);
+	PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax);
+	PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno);
+	PANICNVADD(pnv, "err", (uint32_t)rp->r_err);
+	PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip);
+	PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs);
+	PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl);
+	PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp);
+	PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss);
+	PANICNVADD(pnv, "gdt", creg.cr_gdt);
+	PANICNVADD(pnv, "idt", creg.cr_idt);
+#endif	/* __i386 */
+
+	PANICNVADD(pnv, "ldt", creg.cr_ldt);
+	PANICNVADD(pnv, "task", creg.cr_task);
+	PANICNVADD(pnv, "cr0", creg.cr_cr0);
+	PANICNVADD(pnv, "cr2", creg.cr_cr2);
+	PANICNVADD(pnv, "cr3", creg.cr_cr3);
+	if (creg.cr_cr4)
+		PANICNVADD(pnv, "cr4", creg.cr_cr4);
+
+	PANICNVSET(pdp, pnv);
+}
+
+#define	TR_ARG_MAX 6	/* Max args to print, same as SPARC */
+
+#if !defined(__amd64)
+
+/*
+ * Given a return address (%eip), determine the likely number of arguments
+ * that were pushed on the stack prior to its execution.  We do this by
+ * expecting that a typical call sequence consists of pushing arguments on
+ * the stack, executing a call instruction, and then performing an add
+ * on %esp to restore it to the value prior to pushing the arguments for
+ * the call.  We attempt to detect such an add, and divide the addend
+ * by the size of a word to determine the number of pushed arguments.
+ *
+ * If we do not find such an add, we punt and return TR_ARG_MAX. It is not
+ * possible to reliably determine if a function took no arguments (i.e. was
+ * void) because assembler routines do not reliably perform an add on %esp
+ * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is
+ * safer than returning 0.
+ */
+static ulong_t
+argcount(uintptr_t eip)
+{
+	const uint8_t *ins = (const uint8_t *)eip;
+	ulong_t n;
+
+	enum {
+		M_MODRM_ESP = 0xc4,	/* Mod/RM byte indicates %esp */
+		M_ADD_IMM32 = 0x81,	/* ADD imm32 to r/m32 */
+		M_ADD_IMM8  = 0x83	/* ADD imm8 to r/m32 */
+	};
+
+	if (eip < KERNELBASE || ins[1] != M_MODRM_ESP)
+		return (TR_ARG_MAX);
+
+	switch (ins[0]) {
+	case M_ADD_IMM32:
+		n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24);
+		break;
+
+	case M_ADD_IMM8:
+		n = ins[2];
+		break;
+
+	default:
+		return (TR_ARG_MAX);
+	}
+
+	n /= sizeof (long);
+	return (MIN(n, TR_ARG_MAX));
+}
+
+#endif	/* !__amd64 */
+
+/*
+ * Print a stack backtrace using the specified frame pointer.  We delay two
+ * seconds before continuing, unless this is the panic traceback.  Note
+ * that the frame for the starting stack pointer value is omitted because
+ * the corresponding %eip is not known.
+ */
+#if defined(__amd64)
+
+void
+traceback(caddr_t fpreg)
+{
+	struct frame	*fp = (struct frame *)fpreg;
+	struct frame	*nextfp;
+	uintptr_t	pc, nextpc;
+	ulong_t		off;
+	char		args[TR_ARG_MAX * 2 + 16], *sym;
+
+	if (!panicstr)
+		printf("traceback: %%fp = %p\n", (void *)fp);
+
+	if ((uintptr_t)fp < KERNELBASE)
+		goto out;
+
+	pc = fp->fr_savpc;
+	fp = (struct frame *)fp->fr_savfp;
+
+	while ((uintptr_t)fp >= KERNELBASE) {
+		/*
+		 * XX64 Until port is complete tolerate 8-byte aligned
+		 * frame pointers but flag with a warning so they can
+		 * be fixed.
+		 */
+		if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
+			if (((uintptr_t)fp & (8 - 1)) == 0) {
+				printf("  >> warning! 8-byte"
+				    " aligned %%fp = %p\n", (void *)fp);
+			} else {
+				printf(
+				    "  >> mis-aligned %%fp = %p\n", (void *)fp);
+				break;
+			}
+		}
+
+		args[0] = '\0';
+		nextpc = (uintptr_t)fp->fr_savpc;
+		nextfp = (struct frame *)fp->fr_savfp;
+		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
+			printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
+			    mod_containing_pc((caddr_t)pc), sym, off, args);
+		} else {
+			printf("%016lx %lx (%s)\n",
+			    (uintptr_t)fp, pc, args);
+		}
+
+		pc = nextpc;
+		fp = nextfp;
+	}
+out:
+	if (!panicstr) {
+		printf("end of traceback\n");
+		DELAY(2 * MICROSEC);
+	}
+}
+
+#elif defined(__i386)
+
+void
+traceback(caddr_t fpreg)
+{
+	struct frame *fp = (struct frame *)fpreg;
+	struct frame *nextfp, *minfp, *stacktop;
+	uintptr_t pc, nextpc;
+
+	cpu_t *cpu;
+
+	/*
+	 * args[] holds TR_ARG_MAX hex long args, plus ", " or '\0'.
+	 */
+	char args[TR_ARG_MAX * 2 + 8], *p;
+
+	int on_intr;
+	ulong_t off;
+	char *sym;
+
+	if (!panicstr)
+		printf("traceback: %%fp = %p\n", (void *)fp);
+
+	/*
+	 * If we are panicking, all high-level interrupt information in
+	 * CPU was overwritten.  panic_cpu has the correct values.
+	 */
+	kpreempt_disable();			/* prevent migration */
+
+	cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU;
+
+	if ((on_intr = CPU_ON_INTR(cpu)) != 0)
+		stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME));
+	else
+		stacktop = (struct frame *)curthread->t_stk;
+
+	kpreempt_enable();
+
+	if ((uintptr_t)fp < KERNELBASE)
+		goto out;
+
+	minfp = fp;	/* Baseline minimum frame pointer */
+	pc = fp->fr_savpc;
+	fp = (struct frame *)fp->fr_savfp;
+
+	while ((uintptr_t)fp >= KERNELBASE) {
+		ulong_t argc;
+		long *argv;
+
+		if (fp <= minfp || fp >= stacktop) {
+			if (on_intr) {
+				/*
+				 * Hop from interrupt stack to thread stack.
+				 */
+				stacktop = (struct frame *)curthread->t_stk;
+				minfp = (struct frame *)curthread->t_stkbase;
+				on_intr = 0;
+				continue;
+			}
+			break; /* we're outside of the expected range */
+		}
+
+		if ((uintptr_t)fp & (STACK_ALIGN - 1)) {
+			printf("  >> mis-aligned %%fp = %p\n", (void *)fp);
+			break;
+		}
+
+		nextpc = fp->fr_savpc;
+		nextfp = (struct frame *)fp->fr_savfp;
+		argc = argcount(nextpc);
+		argv = (long *)((char *)fp + sizeof (struct frame));
+
+		args[0] = '\0';
+		p = args;
+		while (argc-- > 0 && argv < (long *)stacktop) {
+			p += snprintf(p, args + sizeof (args) - p,
+			    "%s%lx", (p == args) ? "" : ", ", *argv++);
+		}
+
+		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
+			printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
+			    mod_containing_pc((caddr_t)pc), sym, off, args);
+		} else {
+			printf("%08lx %lx (%s)\n",
+			    (uintptr_t)fp, pc, args);
+		}
+
+		minfp = fp;
+		pc = nextpc;
+		fp = nextfp;
+	}
+out:
+	if (!panicstr) {
+		printf("end of traceback\n");
+		DELAY(2 * MICROSEC);
+	}
+}
+
+#endif	/* __i386 */
+
+/*
+ * Generate a stack backtrace from a saved register set.
+ */
+void
+traceregs(struct regs *rp)
+{
+	traceback((caddr_t)rp->r_fp);
+}
+
+void
+exec_set_sp(size_t stksize)
+{
+	klwp_t *lwp = ttolwp(curthread);
+
+	lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
+}
+
+hrtime_t
+gethrtime_waitfree(void)
+{
+	return (dtrace_gethrtime());
+}
+
+hrtime_t
+gethrtime(void)
+{
+	return (gethrtimef());
+}
+
+hrtime_t
+gethrtime_unscaled(void)
+{
+	return (gethrtimeunscaledf());
+}
+
+void
+scalehrtime(hrtime_t *hrt)
+{
+	scalehrtimef(hrt);
+}
+
+void
+gethrestime(timespec_t *tp)
+{
+	gethrestimef(tp);
+}
+
+#if defined(__amd64)
+/*
+ * Part of the implementation of hres_tick(); this routine is
+ * easier in C than assembler .. called with the hres_lock held.
+ *
+ * XX64	Many of these timekeeping variables need to be extern'ed in a header
+ */
+
+#include <sys/time.h>
+#include <sys/machlock.h>
+
+extern int one_sec;
+extern timestruc_t hrestime;
+extern int max_hres_adj;
+
+void
+__adj_hrestime(void)
+{
+	long long adj;
+
+	if (hrestime_adj == 0)
+		adj = 0;
+	else if (hrestime_adj > 0) {
+		if (hrestime_adj < max_hres_adj)
+			adj = hrestime_adj;
+		else
+			adj = max_hres_adj;
+	} else {
+		if (hrestime_adj < -max_hres_adj)
+			adj = -max_hres_adj;
+		else
+			adj = hrestime_adj;
+	}
+
+	timedelta -= adj;
+	hrestime_adj = timedelta;
+	hrestime.tv_nsec += adj;
+
+	while (hrestime.tv_nsec >= NANOSEC) {
+		one_sec++;
+		hrestime.tv_sec++;
+		hrestime.tv_nsec -= NANOSEC;
+	}
+}
+#endif
+
+/*
+ * Wrapper functions to maintain backwards compability
+ */
+int
+xcopyin(const void *uaddr, void *kaddr, size_t count)
+{
+	return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
+}
+
+int
+xcopyout(const void *kaddr, void *uaddr, size_t count)
+{
+	return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
+}