changeset 4919:b6b235c6e23b

6535620 e1000g needs to support ICH9 devices 6572330 e1000g: integrate the latest Intel refactored shared code 6573381 e1000g receiving VLAN tagged frames does not do hardware checksumming
author xy150489
date Tue, 21 Aug 2007 00:30:10 -0700
parents a136642dd161
children 8b23b71806fa
files deleted_files/usr/src/uts/common/io/e1000g/e1000_hw.c usr/src/pkgdefs/SUNWintgige/postinstall usr/src/uts/common/Makefile.files usr/src/uts/common/io/e1000g/README usr/src/uts/common/io/e1000g/e1000_80003es2lan.c usr/src/uts/common/io/e1000g/e1000_80003es2lan.h usr/src/uts/common/io/e1000g/e1000_82540.c usr/src/uts/common/io/e1000g/e1000_82541.c usr/src/uts/common/io/e1000g/e1000_82541.h usr/src/uts/common/io/e1000g/e1000_82542.c usr/src/uts/common/io/e1000g/e1000_82543.c usr/src/uts/common/io/e1000g/e1000_82543.h usr/src/uts/common/io/e1000g/e1000_82571.c usr/src/uts/common/io/e1000g/e1000_82571.h usr/src/uts/common/io/e1000g/e1000_api.c usr/src/uts/common/io/e1000g/e1000_api.h usr/src/uts/common/io/e1000g/e1000_defines.h usr/src/uts/common/io/e1000g/e1000_hw.c usr/src/uts/common/io/e1000g/e1000_hw.h usr/src/uts/common/io/e1000g/e1000_ich8lan.c usr/src/uts/common/io/e1000g/e1000_ich8lan.h usr/src/uts/common/io/e1000g/e1000_mac.c usr/src/uts/common/io/e1000g/e1000_mac.h usr/src/uts/common/io/e1000g/e1000_manage.c usr/src/uts/common/io/e1000g/e1000_manage.h usr/src/uts/common/io/e1000g/e1000_nvm.c usr/src/uts/common/io/e1000g/e1000_nvm.h usr/src/uts/common/io/e1000g/e1000_osdep.c usr/src/uts/common/io/e1000g/e1000_osdep.h usr/src/uts/common/io/e1000g/e1000_phy.c usr/src/uts/common/io/e1000g/e1000_phy.h usr/src/uts/common/io/e1000g/e1000_regs.h usr/src/uts/common/io/e1000g/e1000g_alloc.c usr/src/uts/common/io/e1000g/e1000g_debug.c usr/src/uts/common/io/e1000g/e1000g_debug.h usr/src/uts/common/io/e1000g/e1000g_main.c usr/src/uts/common/io/e1000g/e1000g_ndd.c usr/src/uts/common/io/e1000g/e1000g_rx.c usr/src/uts/common/io/e1000g/e1000g_stat.c usr/src/uts/common/io/e1000g/e1000g_sw.h usr/src/uts/common/io/e1000g/e1000g_tx.c
diffstat 41 files changed, 32749 insertions(+), 16400 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/deleted_files/usr/src/uts/common/io/e1000g/e1000_hw.c	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,9309 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+/*
+ * e1000_hw.c
+ * Shared functions for accessing and configuring the MAC
+ * IntelVersion: 1.428.2.1
+ */
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#include "e1000_hw.h"
+
+#define STATIC static
+
+static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
+static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
+static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data);
+static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data);
+static int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
+static void e1000_release_software_semaphore(struct e1000_hw *hw);
+
+static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
+static int32_t e1000_check_downshift(struct e1000_hw *hw);
+static int32_t e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity *polarity);
+static void e1000_clear_vfta(struct e1000_hw *hw);
+static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
+static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up);
+static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
+static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
+static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank);
+static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
+static int32_t e1000_get_cable_length(struct e1000_hw *hw, uint16_t *min_length, uint16_t *max_length);
+static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
+static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
+static int32_t e1000_get_software_flag(struct e1000_hw *hw);
+static int32_t e1000_ich8_cycle_init(struct e1000_hw *hw);
+static int32_t e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout);
+static int32_t e1000_id_led_init(struct e1000_hw *hw);
+static int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
+static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
+static void e1000_init_rx_addrs(struct e1000_hw *hw);
+static void e1000_initialize_hardware_bits(struct e1000_hw *hw);
+static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
+static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
+static int32_t e1000_mng_enable_host_if(struct e1000_hw *hw);
+static int32_t e1000_mng_host_if_write(struct e1000_hw *hw, uint8_t *buffer, uint16_t length, uint16_t offset, uint8_t *sum);
+static int32_t e1000_mng_write_cmd_header(struct e1000_hw* hw, struct e1000_host_mng_command_header* hdr);
+static int32_t e1000_mng_write_commit(struct e1000_hw *hw);
+static int32_t e1000_phy_ife_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
+static int32_t e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
+static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
+static int32_t e1000_write_eeprom_eewr(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
+static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
+static int32_t e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
+static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
+static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t *data);
+static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
+static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
+static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data);
+static int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t *data);
+static int32_t e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t data);
+static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
+static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
+static void e1000_release_software_flag(struct e1000_hw *hw);
+static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
+static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
+static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop);
+static void e1000_set_pci_express_master_disable(struct e1000_hw *hw);
+static int32_t e1000_wait_autoneg(struct e1000_hw *hw);
+static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value);
+static int32_t e1000_set_phy_type(struct e1000_hw *hw);
+static void e1000_phy_init_script(struct e1000_hw *hw);
+static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
+static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
+static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
+static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
+static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
+static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
+static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
+                                     uint16_t count);
+static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
+static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
+static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
+                                      uint16_t words, uint16_t *data);
+static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
+                                            uint16_t offset, uint16_t words,
+                                            uint16_t *data);
+static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
+static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
+static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
+static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
+                                    uint16_t count);
+static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
+                                      uint16_t phy_data);
+static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
+                                     uint16_t *phy_data);
+static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
+static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
+static void e1000_release_eeprom(struct e1000_hw *hw);
+static void e1000_standby_eeprom(struct e1000_hw *hw);
+static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
+static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
+static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
+static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
+static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
+static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
+                                               uint16_t duplex);
+static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
+
+/* IGP cable length table */
+static const
+uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
+    { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+      5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
+      25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
+      40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
+      60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
+      90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+      100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
+      110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
+
+static const
+uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
+    { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
+      0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
+      6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
+      21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
+      40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
+      60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
+      83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
+      104, 109, 114, 118, 121, 124};
+
+/******************************************************************************
+ * Set the phy type member in the hw struct.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+STATIC int32_t
+e1000_set_phy_type(struct e1000_hw *hw)
+{
+    DEBUGFUNC("e1000_set_phy_type");
+
+    if (hw->mac_type == e1000_undefined)
+        return -E1000_ERR_PHY_TYPE;
+
+    switch (hw->phy_id) {
+    case M88E1000_E_PHY_ID:
+    case M88E1000_I_PHY_ID:
+    case M88E1011_I_PHY_ID:
+    case M88E1111_I_PHY_ID:
+        hw->phy_type = e1000_phy_m88;
+        break;
+    case IGP01E1000_I_PHY_ID:
+        if (hw->mac_type == e1000_82541 ||
+            hw->mac_type == e1000_82541_rev_2 ||
+            hw->mac_type == e1000_82547 ||
+            hw->mac_type == e1000_82547_rev_2) {
+            hw->phy_type = e1000_phy_igp;
+            break;
+        }
+    case IGP03E1000_E_PHY_ID:
+        hw->phy_type = e1000_phy_igp_3;
+        break;
+    case IFE_E_PHY_ID:
+    case IFE_PLUS_E_PHY_ID:
+    case IFE_C_E_PHY_ID:
+        hw->phy_type = e1000_phy_ife;
+        break;
+    case GG82563_E_PHY_ID:
+        if (hw->mac_type == e1000_80003es2lan) {
+            hw->phy_type = e1000_phy_gg82563;
+            break;
+        }
+        /* Fall Through */
+    default:
+        /* Should never have loaded on this device */
+        hw->phy_type = e1000_phy_undefined;
+        return -E1000_ERR_PHY_TYPE;
+    }
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * IGP phy init script - initializes the GbE PHY
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+e1000_phy_init_script(struct e1000_hw *hw)
+{
+    uint32_t ret_val;
+    uint16_t phy_saved_data;
+
+    DEBUGFUNC("e1000_phy_init_script");
+
+    if (hw->phy_init_script) {
+        msec_delay(20);
+
+        /* Save off the current value of register 0x2F5B to be restored at
+         * the end of this routine. */
+        ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+        /* Disabled the PHY transmitter */
+        e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+        msec_delay(20);
+
+        e1000_write_phy_reg(hw,0x0000,0x0140);
+
+        msec_delay(5);
+
+        switch (hw->mac_type) {
+        case e1000_82541:
+        case e1000_82547:
+            e1000_write_phy_reg(hw, 0x1F95, 0x0001);
+
+            e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
+
+            e1000_write_phy_reg(hw, 0x1F79, 0x0018);
+
+            e1000_write_phy_reg(hw, 0x1F30, 0x1600);
+
+            e1000_write_phy_reg(hw, 0x1F31, 0x0014);
+
+            e1000_write_phy_reg(hw, 0x1F32, 0x161C);
+
+            e1000_write_phy_reg(hw, 0x1F94, 0x0003);
+
+            e1000_write_phy_reg(hw, 0x1F96, 0x003F);
+
+            e1000_write_phy_reg(hw, 0x2010, 0x0008);
+            break;
+
+        case e1000_82541_rev_2:
+        case e1000_82547_rev_2:
+            e1000_write_phy_reg(hw, 0x1F73, 0x0099);
+            break;
+        default:
+            break;
+        }
+
+        e1000_write_phy_reg(hw, 0x0000, 0x3300);
+
+        msec_delay(20);
+
+        /* Now enable the transmitter */
+        e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+        if (hw->mac_type == e1000_82547) {
+            uint16_t fused, fine, coarse;
+
+            /* Move to analog registers page */
+            e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
+
+            if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+                e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
+
+                fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+                coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+                if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+                    coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
+                    fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+                } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+                    fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+                fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+                        (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+                        (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+                e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
+                e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
+                                    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+            }
+        }
+    }
+}
+
+/******************************************************************************
+ * Set the mac type member in the hw struct.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_set_mac_type(struct e1000_hw *hw)
+{
+    DEBUGFUNC("e1000_set_mac_type");
+
+    switch (hw->device_id) {
+    case E1000_DEV_ID_82542:
+        switch (hw->revision_id) {
+        case E1000_82542_2_0_REV_ID:
+            hw->mac_type = e1000_82542_rev2_0;
+            break;
+        case E1000_82542_2_1_REV_ID:
+            hw->mac_type = e1000_82542_rev2_1;
+            break;
+        default:
+            /* Invalid 82542 revision ID */
+            return -E1000_ERR_MAC_TYPE;
+        }
+        break;
+    case E1000_DEV_ID_82543GC_FIBER:
+    case E1000_DEV_ID_82543GC_COPPER:
+        hw->mac_type = e1000_82543;
+        break;
+    case E1000_DEV_ID_82544EI_COPPER:
+    case E1000_DEV_ID_82544EI_FIBER:
+    case E1000_DEV_ID_82544GC_COPPER:
+    case E1000_DEV_ID_82544GC_LOM:
+        hw->mac_type = e1000_82544;
+        break;
+    case E1000_DEV_ID_82540EM:
+    case E1000_DEV_ID_82540EM_LOM:
+    case E1000_DEV_ID_82540EP:
+    case E1000_DEV_ID_82540EP_LOM:
+    case E1000_DEV_ID_82540EP_LP:
+        hw->mac_type = e1000_82540;
+        break;
+    case E1000_DEV_ID_82545EM_COPPER:
+    case E1000_DEV_ID_82545EM_FIBER:
+        hw->mac_type = e1000_82545;
+        break;
+    case E1000_DEV_ID_82545GM_COPPER:
+    case E1000_DEV_ID_82545GM_FIBER:
+    case E1000_DEV_ID_82545GM_SERDES:
+        hw->mac_type = e1000_82545_rev_3;
+        break;
+    case E1000_DEV_ID_82546EB_COPPER:
+    case E1000_DEV_ID_82546EB_FIBER:
+    case E1000_DEV_ID_82546EB_QUAD_COPPER:
+        hw->mac_type = e1000_82546;
+        break;
+    case E1000_DEV_ID_82546GB_COPPER:
+    case E1000_DEV_ID_82546GB_FIBER:
+    case E1000_DEV_ID_82546GB_SERDES:
+    case E1000_DEV_ID_82546GB_PCIE:
+    case E1000_DEV_ID_82546GB_QUAD_COPPER:
+    case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+        hw->mac_type = e1000_82546_rev_3;
+        break;
+    case E1000_DEV_ID_82541EI:
+    case E1000_DEV_ID_82541EI_MOBILE:
+    case E1000_DEV_ID_82541ER_LOM:
+        hw->mac_type = e1000_82541;
+        break;
+    case E1000_DEV_ID_82541ER:
+    case E1000_DEV_ID_82541GI:
+    case E1000_DEV_ID_82541GI_LF:
+    case E1000_DEV_ID_82541GI_MOBILE:
+        hw->mac_type = e1000_82541_rev_2;
+        break;
+    case E1000_DEV_ID_82547EI:
+    case E1000_DEV_ID_82547EI_MOBILE:
+        hw->mac_type = e1000_82547;
+        break;
+    case E1000_DEV_ID_82547GI:
+        hw->mac_type = e1000_82547_rev_2;
+        break;
+    case E1000_DEV_ID_82571EB_COPPER:
+    case E1000_DEV_ID_82571EB_FIBER:
+    case E1000_DEV_ID_82571EB_SERDES:
+    case E1000_DEV_ID_82571EB_QUAD_COPPER:
+    case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
+    case E1000_DEV_ID_82571PT_QUAD_COPPER:
+            hw->mac_type = e1000_82571;
+        break;
+    case E1000_DEV_ID_82572EI_COPPER:
+    case E1000_DEV_ID_82572EI_FIBER:
+    case E1000_DEV_ID_82572EI_SERDES:
+    case E1000_DEV_ID_82572EI:
+        hw->mac_type = e1000_82572;
+        break;
+    case E1000_DEV_ID_82573E:
+    case E1000_DEV_ID_82573E_IAMT:
+    case E1000_DEV_ID_82573L:
+        hw->mac_type = e1000_82573;
+        break;
+    case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
+    case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
+    case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
+    case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+        hw->mac_type = e1000_80003es2lan;
+        break;
+    case E1000_DEV_ID_ICH8_IGP_M_AMT:
+    case E1000_DEV_ID_ICH8_IGP_AMT:
+    case E1000_DEV_ID_ICH8_IGP_C:
+    case E1000_DEV_ID_ICH8_IFE:
+    case E1000_DEV_ID_ICH8_IFE_GT:
+    case E1000_DEV_ID_ICH8_IFE_G:
+    case E1000_DEV_ID_ICH8_IGP_M:
+        hw->mac_type = e1000_ich8lan;
+        break;
+    default:
+        /* Should never have loaded on this device */
+        return -E1000_ERR_MAC_TYPE;
+    }
+
+    switch (hw->mac_type) {
+    case e1000_ich8lan:
+        hw->swfwhw_semaphore_present = TRUE;
+        hw->asf_firmware_present = TRUE;
+        break;
+    case e1000_80003es2lan:
+        hw->swfw_sync_present = TRUE;
+        /* fall through */
+    case e1000_82571:
+    case e1000_82572:
+    case e1000_82573:
+        hw->eeprom_semaphore_present = TRUE;
+        /* fall through */
+    case e1000_82541:
+    case e1000_82547:
+    case e1000_82541_rev_2:
+    case e1000_82547_rev_2:
+        hw->asf_firmware_present = TRUE;
+        break;
+    default:
+        break;
+    }
+
+    return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ * Set media type and TBI compatibility.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * **************************************************************************/
+void
+e1000_set_media_type(struct e1000_hw *hw)
+{
+    uint32_t status;
+
+    DEBUGFUNC("e1000_set_media_type");
+
+    if (hw->mac_type != e1000_82543) {
+        /* tbi_compatibility is only valid on 82543 */
+        hw->tbi_compatibility_en = FALSE;
+    }
+
+    switch (hw->device_id) {
+    case E1000_DEV_ID_82545GM_SERDES:
+    case E1000_DEV_ID_82546GB_SERDES:
+    case E1000_DEV_ID_82571EB_SERDES:
+    case E1000_DEV_ID_82572EI_SERDES:
+    case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+        hw->media_type = e1000_media_type_internal_serdes;
+        break;
+    default:
+        switch (hw->mac_type) {
+        case e1000_82542_rev2_0:
+        case e1000_82542_rev2_1:
+            hw->media_type = e1000_media_type_fiber;
+            break;
+        case e1000_ich8lan:
+        case e1000_82573:
+            /* The STATUS_TBIMODE bit is reserved or reused for the this
+             * device.
+             */
+            hw->media_type = e1000_media_type_copper;
+            break;
+        default:
+            status = E1000_READ_REG(hw, STATUS);
+            if (status & E1000_STATUS_TBIMODE) {
+                hw->media_type = e1000_media_type_fiber;
+                /* tbi_compatibility not valid on fiber */
+                hw->tbi_compatibility_en = FALSE;
+            } else {
+                hw->media_type = e1000_media_type_copper;
+            }
+            break;
+        }
+    }
+}
+
+/******************************************************************************
+ * Reset the transmit and receive units; mask and clear all interrupts.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_reset_hw(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+    uint32_t ctrl_ext;
+    uint32_t icr;
+    uint32_t manc;
+    uint32_t led_ctrl;
+    uint32_t timeout;
+    uint32_t extcnf_ctrl;
+    int32_t ret_val;
+
+    DEBUGFUNC("e1000_reset_hw");
+
+    /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
+    if (hw->mac_type == e1000_82542_rev2_0) {
+        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+        e1000_pci_clear_mwi(hw);
+    }
+
+    if (hw->bus_type == e1000_bus_type_pci_express) {
+        /* Prevent the PCI-E bus from sticking if there is no TLP connection
+         * on the last TLP read/write transaction when MAC is reset.
+         */
+        if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
+            DEBUGOUT("PCI-E Master disable polling has failed.\n");
+        }
+    }
+
+    /* Clear interrupt mask to stop board from generating interrupts */
+    DEBUGOUT("Masking off all interrupts\n");
+    E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+    /* Disable the Transmit and Receive units.  Then delay to allow
+     * any pending transactions to complete before we hit the MAC with
+     * the global reset.
+     */
+    E1000_WRITE_REG(hw, RCTL, 0);
+    E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
+    E1000_WRITE_FLUSH(hw);
+#ifndef FIFO_WORKAROUND
+    hw->tx_fifo_head = 0;
+#endif
+
+    /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
+    hw->tbi_compatibility_on = FALSE;
+
+    /* Delay to allow any outstanding PCI transactions to complete before
+     * resetting the device
+     */
+    msec_delay(10);
+
+    ctrl = E1000_READ_REG(hw, CTRL);
+
+    /* Must reset the PHY before resetting the MAC */
+    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+        E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
+        msec_delay(5);
+    }
+
+    /* Must acquire the MDIO ownership before MAC reset.
+     * Ownership defaults to firmware after a reset. */
+    if (hw->mac_type == e1000_82573) {
+        timeout = 10;
+
+        extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
+        extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+        do {
+            E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
+            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
+
+            if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
+                break;
+            else
+                extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+            msec_delay(2);
+            timeout--;
+        } while (timeout);
+    }
+
+    /* Workaround for ICH8 bit corruption issue in FIFO memory */
+    if (hw->mac_type == e1000_ich8lan) {
+        /* Set Tx and Rx buffer allocation to 8k apiece. */
+        E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
+        /* Set Packet Buffer Size to 16k. */
+        E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
+    }
+
+    /* Issue a global reset to the MAC.  This will reset the chip's
+     * transmit, receive, DMA, and link units.  It will not effect
+     * the current PCI configuration.  The global reset bit is self-
+     * clearing, and should clear within a microsecond.
+     */
+    DEBUGOUT("Issuing a global reset to MAC\n");
+
+    switch (hw->mac_type) {
+        case e1000_82544:
+        case e1000_82540:
+        case e1000_82545:
+        case e1000_82546:
+        case e1000_82541:
+        case e1000_82541_rev_2:
+            /* These controllers can't ack the 64-bit write when issuing the
+             * reset, so use IO-mapping as a workaround to issue the reset */
+            E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
+            break;
+        case e1000_82545_rev_3:
+        case e1000_82546_rev_3:
+            /* Reset is performed on a shadow of the control register */
+            E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
+            break;
+        case e1000_ich8lan:
+            if (!hw->phy_reset_disable &&
+                e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
+                /* e1000_ich8lan PHY HW reset requires MAC CORE reset
+                 * at the same time to make sure the interface between
+                 * MAC and the external PHY is reset.
+                 */
+                ctrl |= E1000_CTRL_PHY_RST;
+            }
+
+            e1000_get_software_flag(hw);
+            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+            msec_delay(5);
+            break;
+        default:
+            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+            break;
+    }
+
+    /* After MAC reset, force reload of EEPROM to restore power-on settings to
+     * device.  Later controllers reload the EEPROM automatically, so just wait
+     * for reload to complete.
+     */
+    switch (hw->mac_type) {
+        case e1000_82542_rev2_0:
+        case e1000_82542_rev2_1:
+        case e1000_82543:
+        case e1000_82544:
+            /* Wait for reset to complete */
+            usec_delay(10);
+            ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+            ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+            E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+            E1000_WRITE_FLUSH(hw);
+            /* Wait for EEPROM reload */
+            msec_delay(2);
+            break;
+        case e1000_82541:
+        case e1000_82541_rev_2:
+        case e1000_82547:
+        case e1000_82547_rev_2:
+            /* Wait for EEPROM reload */
+            msec_delay(20);
+            break;
+        case e1000_82573:
+            if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
+                usec_delay(10);
+                ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+                ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+                E1000_WRITE_FLUSH(hw);
+            }
+            /* fall through */
+        default:
+            /* Auto read done will delay 5ms or poll based on mac type */
+            ret_val = e1000_get_auto_rd_done(hw);
+            if (ret_val)
+                return ret_val;
+            break;
+    }
+
+    /* Disable HW ARPs on ASF enabled adapters */
+    if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
+        manc = E1000_READ_REG(hw, MANC);
+        manc &= ~(E1000_MANC_ARP_EN);
+        E1000_WRITE_REG(hw, MANC, manc);
+    }
+
+    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+        e1000_phy_init_script(hw);
+
+        /* Configure activity LED after PHY reset */
+        led_ctrl = E1000_READ_REG(hw, LEDCTL);
+        led_ctrl &= IGP_ACTIVITY_LED_MASK;
+        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+    }
+
+    /* Clear interrupt mask to stop board from generating interrupts */
+    DEBUGOUT("Masking off all interrupts\n");
+    E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+    /* Clear any pending interrupt events. */
+    icr = E1000_READ_REG(hw, ICR);
+
+    /* If MWI was previously enabled, reenable it. */
+    if (hw->mac_type == e1000_82542_rev2_0) {
+        if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+            e1000_pci_set_mwi(hw);
+    }
+
+    if (hw->mac_type == e1000_ich8lan) {
+        uint32_t kab = E1000_READ_REG(hw, KABGTXD);
+        kab |= E1000_KABGTXD_BGSQLBIAS;
+        E1000_WRITE_REG(hw, KABGTXD, kab);
+    }
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ *
+ * Initialize a number of hardware-dependent bits
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ *****************************************************************************/
+STATIC void
+e1000_initialize_hardware_bits(struct e1000_hw *hw)
+{
+    if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) {
+        /* Settings common to all silicon */
+        uint32_t reg_ctrl, reg_ctrl_ext;
+        uint32_t reg_tarc0, reg_tarc1;
+        uint32_t reg_tctl;
+        uint32_t reg_txdctl, reg_txdctl1;
+
+        reg_tarc0 = E1000_READ_REG(hw, TARC0);
+        reg_tarc0 &= ~0x78000000;           /* Clear bits 30, 29, 28, and 27 */
+
+        reg_txdctl = E1000_READ_REG(hw, TXDCTL);
+        reg_txdctl |= E1000_TXDCTL_COUNT_DESC;       /* Set bit 22 */
+        E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
+
+        reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
+        reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;      /* Set bit 22 */
+        E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
+
+        switch (hw->mac_type) {
+            case e1000_82571:
+            case e1000_82572:
+                reg_tarc1 = E1000_READ_REG(hw, TARC1);
+                reg_tctl = E1000_READ_REG(hw, TCTL);
+
+                /* Set the phy Tx compatible mode bits */
+                reg_tarc1 &= ~0x60000000;   /* Clear bits 30 and 29 */
+
+                reg_tarc0 |= 0x07800000;    /* Set TARC0 bits 23-26 */
+                reg_tarc1 |= 0x07000000;    /* Set TARC1 bits 24-26 */
+
+                if (reg_tctl & E1000_TCTL_MULR)
+                    reg_tarc1 &= ~0x10000000;   /* Clear bit 28 if MULR is 1b */
+                else
+                    reg_tarc1 |= 0x10000000;    /* Set bit 28 if MULR is 0b */
+
+                E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+                break;
+            case e1000_82573:
+                reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+                reg_ctrl = E1000_READ_REG(hw, CTRL);
+
+                reg_ctrl_ext &= ~0x00800000;    /* Clear bit 23 */
+                reg_ctrl_ext |= 0x00400000;     /* Set bit 22 */
+                reg_ctrl &= ~0x20000000;        /* Clear bit 29 */
+
+                E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
+                E1000_WRITE_REG(hw, CTRL, reg_ctrl);
+                break;
+            case e1000_80003es2lan:
+                if ((hw->media_type == e1000_media_type_fiber) ||
+                    (hw->media_type == e1000_media_type_internal_serdes)) {
+                    reg_tarc0 &= ~0x00100000;   /* Clear bit 20 */
+                }
+
+                reg_tctl = E1000_READ_REG(hw, TCTL);
+                reg_tarc1 = E1000_READ_REG(hw, TARC1);
+                if (reg_tctl & E1000_TCTL_MULR)
+                    reg_tarc1 &= ~0x10000000;   /* Clear bit 28 if MULR is 1b */
+                else
+                    reg_tarc1 |= 0x10000000;    /* Set bit 28 if MULR is 0b */
+
+                E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+                break;
+            case e1000_ich8lan:
+                if ((hw->revision_id < 3) ||
+                    ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
+                     (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
+                    reg_tarc0 |= 0x30000000;    /* Set TARC0 bits 29 and 28 */
+                reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+                reg_ctrl_ext |= 0x00400000;     /* Set bit 22 */
+                E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
+
+                reg_tarc0 |= 0x0d800000;    /* Set TARC0 bits 23, 24, 26, 27 */
+
+                reg_tarc1 = E1000_READ_REG(hw, TARC1);
+                reg_tctl = E1000_READ_REG(hw, TCTL);
+
+                if (reg_tctl & E1000_TCTL_MULR)
+                    reg_tarc1 &= ~0x10000000;   /* Clear bit 28 if MULR is 1b */
+                else
+                    reg_tarc1 |= 0x10000000;    /* Set bit 28 if MULR is 0b */
+
+                reg_tarc1 |= 0x45000000;        /* Set bit 24, 26 and 30 */
+
+                E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+                break;
+            default:
+                break;
+        }
+
+        E1000_WRITE_REG(hw, TARC0, reg_tarc0);
+    }
+}
+
+/******************************************************************************
+ * Performs basic configuration of the adapter.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Assumes that the controller has previously been reset and is in a
+ * post-reset uninitialized state. Initializes the receive address registers,
+ * multicast table, and VLAN filter table. Calls routines to setup link
+ * configuration and flow control settings. Clears all on-chip counters. Leaves
+ * the transmit and receive units disabled and uninitialized.
+ *****************************************************************************/
+int32_t
+e1000_init_hw(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+    uint32_t i;
+    int32_t ret_val;
+    uint16_t pcix_cmd_word;
+    uint16_t pcix_stat_hi_word;
+    uint16_t cmd_mmrbc;
+    uint16_t stat_mmrbc;
+    uint32_t mta_size;
+#ifndef FIFO_WORKAROUND
+    uint32_t pba_reg;
+#endif
+    uint32_t reg_data;
+    uint32_t ctrl_ext;
+
+    DEBUGFUNC("e1000_init_hw");
+
+    /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
+    if ((hw->mac_type == e1000_ich8lan) &&
+        ((hw->revision_id < 3) ||
+         ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
+          (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
+            reg_data = E1000_READ_REG(hw, STATUS);
+            reg_data &= ~0x80000000;
+            E1000_WRITE_REG(hw, STATUS, reg_data);
+    }
+
+    /* Initialize Identification LED */
+    ret_val = e1000_id_led_init(hw);
+    if (ret_val) {
+        DEBUGOUT("Error Initializing Identification LED\n");
+        return ret_val;
+    }
+
+    /* Set the media type and TBI compatibility */
+    e1000_set_media_type(hw);
+
+#ifndef FIFO_WORKAROUND
+    pba_reg = E1000_READ_REG(hw, PBA);
+    hw->tx_fifo_start = (pba_reg & 0x0000FFFF) * E1000_FIFO_MULTIPLIER;
+    hw->tx_fifo_size = (pba_reg & 0xFFFF0000) >> 6;
+
+#endif
+    /* Disabling VLAN filtering. */
+    DEBUGOUT("Initializing the IEEE VLAN\n");
+    /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
+    if (hw->mac_type != e1000_ich8lan) {
+        if (hw->mac_type < e1000_82545_rev_3)
+            E1000_WRITE_REG(hw, VET, 0);
+        e1000_clear_vfta(hw);
+    }
+
+    /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+    if (hw->mac_type == e1000_82542_rev2_0) {
+        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+        e1000_pci_clear_mwi(hw);
+        E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
+        E1000_WRITE_FLUSH(hw);
+        msec_delay(5);
+    }
+
+    /* Setup the receive address. This involves initializing all of the Receive
+     * Address Registers (RARs 0 - 15).
+     */
+    e1000_init_rx_addrs(hw);
+
+    /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+    if (hw->mac_type == e1000_82542_rev2_0) {
+        E1000_WRITE_REG(hw, RCTL, 0);
+        E1000_WRITE_FLUSH(hw);
+        msec_delay(1);
+        if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+            e1000_pci_set_mwi(hw);
+    }
+
+    /* Zero out the Multicast HASH table */
+    DEBUGOUT("Zeroing the MTA\n");
+    mta_size = E1000_MC_TBL_SIZE;
+    if (hw->mac_type == e1000_ich8lan)
+        mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
+    for (i = 0; i < mta_size; i++) {
+        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+        /* use write flush to prevent Memory Write Block (MWB) from
+         * occuring when accessing our register space */
+        E1000_WRITE_FLUSH(hw);
+    }
+
+    /* Set the PCI priority bit correctly in the CTRL register.  This
+     * determines if the adapter gives priority to receives, or if it
+     * gives equal priority to transmits and receives.  Valid only on
+     * 82542 and 82543 silicon.
+     */
+    if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
+        ctrl = E1000_READ_REG(hw, CTRL);
+        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
+    }
+
+    switch (hw->mac_type) {
+    case e1000_82545_rev_3:
+    case e1000_82546_rev_3:
+        break;
+    default:
+        /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
+        if (hw->bus_type == e1000_bus_type_pcix) {
+            e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
+            e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
+                &pcix_stat_hi_word);
+            cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
+                PCIX_COMMAND_MMRBC_SHIFT;
+            stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+                PCIX_STATUS_HI_MMRBC_SHIFT;
+            if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+                stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
+            if (cmd_mmrbc > stat_mmrbc) {
+                pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
+                pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+                e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
+                    &pcix_cmd_word);
+            }
+        }
+        break;
+    }
+
+    /* More time needed for PHY to initialize */
+    if (hw->mac_type == e1000_ich8lan)
+        msec_delay(15);
+
+    /* Call a subroutine to configure the link and setup flow control. */
+    ret_val = e1000_setup_link(hw);
+
+    /* Set the transmit descriptor write-back policy */
+    if (hw->mac_type > e1000_82544) {
+        ctrl = E1000_READ_REG(hw, TXDCTL);
+        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
+        E1000_WRITE_REG(hw, TXDCTL, ctrl);
+    }
+
+    if (hw->mac_type == e1000_82573) {
+        e1000_enable_tx_pkt_filtering(hw);
+    }
+
+    switch (hw->mac_type) {
+    default:
+        break;
+    case e1000_80003es2lan:
+        /* Enable retransmit on late collisions */
+        reg_data = E1000_READ_REG(hw, TCTL);
+        reg_data |= E1000_TCTL_RTLC;
+        E1000_WRITE_REG(hw, TCTL, reg_data);
+
+        /* Configure Gigabit Carry Extend Padding */
+        reg_data = E1000_READ_REG(hw, TCTL_EXT);
+        reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
+        reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
+        E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
+
+        /* Configure Transmit Inter-Packet Gap */
+        reg_data = E1000_READ_REG(hw, TIPG);
+        reg_data &= ~E1000_TIPG_IPGT_MASK;
+        reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
+        E1000_WRITE_REG(hw, TIPG, reg_data);
+
+        reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
+        reg_data &= ~0x00100000;
+        E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
+        /* Fall through */
+    case e1000_82571:
+    case e1000_82572:
+    case e1000_ich8lan:
+        ctrl = E1000_READ_REG(hw, TXDCTL1);
+        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
+        E1000_WRITE_REG(hw, TXDCTL1, ctrl);
+        break;
+    }
+
+
+    if (hw->mac_type == e1000_82573) {
+        uint32_t gcr = E1000_READ_REG(hw, GCR);
+        gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
+        E1000_WRITE_REG(hw, GCR, gcr);
+    }
+
+    /* Clear all of the statistics registers (clear on read).  It is
+     * important that we do this after we have tried to establish link
+     * because the symbol error count will increment wildly if there
+     * is no link.
+     */
+    e1000_clear_hw_cntrs(hw);
+
+    /* ICH8 No-snoop bits are opposite polarity.
+     * Set to snoop by default after reset. */
+    if (hw->mac_type == e1000_ich8lan)
+        e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
+
+    if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
+        hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
+        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+        /* Relaxed ordering must be disabled to avoid a parity
+         * error crash in a PCI slot. */
+        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+    }
+
+    /* Must be called after e1000_set_media_type because media_type is used */
+    e1000_initialize_hardware_bits(hw);
+
+    return ret_val;
+}
+
+/******************************************************************************
+ * Adjust SERDES output amplitude based on EEPROM setting.
+ *
+ * hw - Struct containing variables accessed by shared code.
+ *****************************************************************************/
+static int32_t
+e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
+{
+    uint16_t eeprom_data;
+    int32_t  ret_val;
+
+    DEBUGFUNC("e1000_adjust_serdes_amplitude");
+
+    if (hw->media_type != e1000_media_type_internal_serdes)
+        return E1000_SUCCESS;
+
+    switch (hw->mac_type) {
+    case e1000_82545_rev_3:
+    case e1000_82546_rev_3:
+        break;
+    default:
+        return E1000_SUCCESS;
+    }
+
+    ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
+    if (ret_val) {
+        return ret_val;
+    }
+
+    if (eeprom_data != EEPROM_RESERVED_WORD) {
+        /* Adjust SERDES output amplitude only. */
+        eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
+        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
+        if (ret_val)
+            return ret_val;
+    }
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Configures flow control and link settings.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Determines which flow control settings to use. Calls the apropriate media-
+ * specific link configuration function. Configures the flow control settings.
+ * Assuming the adapter has a valid link partner, a valid link should be
+ * established. Assumes the hardware has previously been reset and the
+ * transmitter and receiver are not enabled.
+ *****************************************************************************/
+int32_t
+e1000_setup_link(struct e1000_hw *hw)
+{
+    uint32_t ctrl_ext;
+    int32_t ret_val;
+    uint16_t eeprom_data;
+
+    DEBUGFUNC("e1000_setup_link");
+
+    /* In the case of the phy reset being blocked, we already have a link.
+     * We do not have to set it up again. */
+    if (e1000_check_phy_reset_block(hw))
+        return E1000_SUCCESS;
+
+    /* Read and store word 0x0F of the EEPROM. This word contains bits
+     * that determine the hardware's default PAUSE (flow control) mode,
+     * a bit that determines whether the HW defaults to enabling or
+     * disabling auto-negotiation, and the direction of the
+     * SW defined pins. If there is no SW over-ride of the flow
+     * control setting, then the variable hw->fc will
+     * be initialized based on a value in the EEPROM.
+     */
+    if (hw->fc == E1000_FC_DEFAULT) {
+        switch (hw->mac_type) {
+        case e1000_ich8lan:
+        case e1000_82573:
+            hw->fc = E1000_FC_FULL;
+            break;
+        default:
+            ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+                                        1, &eeprom_data);
+            if (ret_val) {
+                DEBUGOUT("EEPROM Read Error\n");
+                return -E1000_ERR_EEPROM;
+            }
+            if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+                hw->fc = E1000_FC_NONE;
+            else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
+                    EEPROM_WORD0F_ASM_DIR)
+                hw->fc = E1000_FC_TX_PAUSE;
+            else
+                hw->fc = E1000_FC_FULL;
+            break;
+        }
+    }
+
+    /* We want to save off the original Flow Control configuration just
+     * in case we get disconnected and then reconnected into a different
+     * hub or switch with different Flow Control capabilities.
+     */
+    if (hw->mac_type == e1000_82542_rev2_0)
+        hw->fc &= (~E1000_FC_TX_PAUSE);
+
+    if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
+        hw->fc &= (~E1000_FC_RX_PAUSE);
+
+    hw->original_fc = hw->fc;
+
+    DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
+
+    /* Take the 4 bits from EEPROM word 0x0F that determine the initial
+     * polarity value for the SW controlled pins, and setup the
+     * Extended Device Control reg with that info.
+     * This is needed because one of the SW controlled pins is used for
+     * signal detection.  So this should be done before e1000_setup_pcs_link()
+     * or e1000_phy_setup() is called.
+     */
+    if (hw->mac_type == e1000_82543) {
+        ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+                                    1, &eeprom_data);
+        if (ret_val) {
+            DEBUGOUT("EEPROM Read Error\n");
+            return -E1000_ERR_EEPROM;
+        }
+        ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
+                    SWDPIO__EXT_SHIFT);
+        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+    }
+
+    /* Call the necessary subroutine to configure the link. */
+    ret_val = (hw->media_type == e1000_media_type_copper) ?
+              e1000_setup_copper_link(hw) :
+              e1000_setup_fiber_serdes_link(hw);
+
+    /* Initialize the flow control address, type, and PAUSE timer
+     * registers to their default values.  This is done even if flow
+     * control is disabled, because it does not hurt anything to
+     * initialize these registers.
+     */
+    DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
+
+    /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
+    if (hw->mac_type != e1000_ich8lan) {
+        E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
+        E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+        E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
+    }
+
+    E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
+
+    /* Set the flow control receive threshold registers.  Normally,
+     * these registers will be set to a default threshold that may be
+     * adjusted later by the driver's runtime code.  However, if the
+     * ability to transmit pause frames in not enabled, then these
+     * registers will be set to 0.
+     */
+    if (!(hw->fc & E1000_FC_TX_PAUSE)) {
+        E1000_WRITE_REG(hw, FCRTL, 0);
+        E1000_WRITE_REG(hw, FCRTH, 0);
+    } else {
+        /* We need to set up the Receive Threshold high and low water marks
+         * as well as (optionally) enabling the transmission of XON frames.
+         */
+        if (hw->fc_send_xon) {
+            E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
+            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+        } else {
+            E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
+            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+        }
+    }
+    return ret_val;
+}
+
+/******************************************************************************
+ * Sets up link for a fiber based or serdes based adapter
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Manipulates Physical Coding Sublayer functions in order to configure
+ * link. Assumes the hardware has been previously reset and the transmitter
+ * and receiver are not enabled.
+ *****************************************************************************/
+static int32_t
+e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+    uint32_t status;
+    uint32_t txcw = 0;
+    uint32_t i;
+    uint32_t signal = 0;
+    int32_t ret_val;
+
+    DEBUGFUNC("e1000_setup_fiber_serdes_link");
+
+    /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
+     * until explicitly turned off or a power cycle is performed.  A read to
+     * the register does not indicate its status.  Therefore, we ensure
+     * loopback mode is disabled during initialization.
+     */
+    if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
+        E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
+
+    /* On adapters with a MAC newer than 82544, SWDP 1 will be
+     * set when the optics detect a signal. On older adapters, it will be
+     * cleared when there is a signal.  This applies to fiber media only.
+     * If we're on serdes media, adjust the output amplitude to value
+     * set in the EEPROM.
+     */
+    ctrl = E1000_READ_REG(hw, CTRL);
+    if (hw->media_type == e1000_media_type_fiber)
+        signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
+
+    ret_val = e1000_adjust_serdes_amplitude(hw);
+    if (ret_val)
+        return ret_val;
+
+    /* Take the link out of reset */
+    ctrl &= ~(E1000_CTRL_LRST);
+
+    /* Adjust VCO speed to improve BER performance */
+    ret_val = e1000_set_vco_speed(hw);
+    if (ret_val)
+        return ret_val;
+
+    e1000_config_collision_dist(hw);
+
+    /* Check for a software override of the flow control settings, and setup
+     * the device accordingly.  If auto-negotiation is enabled, then software
+     * will have to set the "PAUSE" bits to the correct value in the Tranmsit
+     * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
+     * auto-negotiation is disabled, then software will have to manually
+     * configure the two flow control enable bits in the CTRL register.
+     *
+     * The possible values of the "fc" parameter are:
+     *      0:  Flow control is completely disabled
+     *      1:  Rx flow control is enabled (we can receive pause frames, but
+     *          not send pause frames).
+     *      2:  Tx flow control is enabled (we can send pause frames but we do
+     *          not support receiving pause frames).
+     *      3:  Both Rx and TX flow control (symmetric) are enabled.
+     */
+    switch (hw->fc) {
+    case E1000_FC_NONE:
+        /* Flow control is completely disabled by a software over-ride. */
+        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+        break;
+    case E1000_FC_RX_PAUSE:
+        /* RX Flow control is enabled and TX Flow control is disabled by a
+         * software over-ride. Since there really isn't a way to advertise
+         * that we are capable of RX Pause ONLY, we will advertise that we
+         * support both symmetric and asymmetric RX PAUSE. Later, we will
+         *  disable the adapter's ability to send PAUSE frames.
+         */
+        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+        break;
+    case E1000_FC_TX_PAUSE:
+        /* TX Flow control is enabled, and RX Flow control is disabled, by a
+         * software over-ride.
+         */
+        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+        break;
+    case E1000_FC_FULL:
+        /* Flow control (both RX and TX) is enabled by a software over-ride. */
+        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+        break;
+    default:
+        DEBUGOUT("Flow control param set incorrectly\n");
+        return -E1000_ERR_CONFIG;
+    }
+
+    /* Since auto-negotiation is enabled, take the link out of reset (the link
+     * will be in reset, because we previously reset the chip). This will
+     * restart auto-negotiation.  If auto-neogtiation is successful then the
+     * link-up status bit will be set and the flow control enable bits (RFCE
+     * and TFCE) will be set according to their negotiated value.
+     */
+    DEBUGOUT("Auto-negotiation enabled\n");
+
+    E1000_WRITE_REG(hw, TXCW, txcw);
+    E1000_WRITE_REG(hw, CTRL, ctrl);
+    E1000_WRITE_FLUSH(hw);
+
+    hw->txcw = txcw;
+    msec_delay(1);
+
+    /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
+     * indication in the Device Status Register.  Time-out if a link isn't
+     * seen in 500 milliseconds seconds (Auto-negotiation should complete in
+     * less than 500 milliseconds even if the other end is doing it in SW).
+     * For internal serdes, we just assume a signal is present, then poll.
+     */
+    if (hw->media_type == e1000_media_type_internal_serdes ||
+       (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+        DEBUGOUT("Looking for Link\n");
+        for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+            msec_delay(10);
+            status = E1000_READ_REG(hw, STATUS);
+            if (status & E1000_STATUS_LU) break;
+        }
+        if (i == (LINK_UP_TIMEOUT / 10)) {
+            DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+            hw->autoneg_failed = 1;
+            /* AutoNeg failed to achieve a link, so we'll call
+             * e1000_check_for_link. This routine will force the link up if
+             * we detect a signal. This will allow us to communicate with
+             * non-autonegotiating link partners.
+             */
+            ret_val = e1000_check_for_link(hw);
+            if (ret_val) {
+                DEBUGOUT("Error while checking for link\n");
+                return ret_val;
+            }
+            hw->autoneg_failed = 0;
+        } else {
+            hw->autoneg_failed = 0;
+            DEBUGOUT("Valid Link Found\n");
+        }
+    } else {
+        DEBUGOUT("No Signal Detected\n");
+    }
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Make sure we have a valid PHY and change PHY mode before link setup.
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_copper_link_preconfig(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+    int32_t ret_val;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_copper_link_preconfig");
+
+    ctrl = E1000_READ_REG(hw, CTRL);
+    /* With 82543, we need to force speed and duplex on the MAC equal to what
+     * the PHY speed and duplex configuration is. In addition, we need to
+     * perform a hardware reset on the PHY to take it out of reset.
+     */
+    if (hw->mac_type > e1000_82543) {
+        ctrl |= E1000_CTRL_SLU;
+        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+        E1000_WRITE_REG(hw, CTRL, ctrl);
+    } else {
+        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
+        E1000_WRITE_REG(hw, CTRL, ctrl);
+        ret_val = e1000_phy_hw_reset(hw);
+        if (ret_val)
+            return ret_val;
+    }
+
+    /* Make sure we have a valid PHY */
+    ret_val = e1000_detect_gig_phy(hw);
+    if (ret_val) {
+        DEBUGOUT("Error, did not detect valid phy.\n");
+        return ret_val;
+    }
+    DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
+
+    /* Set PHY to class A mode (if necessary) */
+    ret_val = e1000_set_phy_mode(hw);
+    if (ret_val)
+        return ret_val;
+
+    if ((hw->mac_type == e1000_82545_rev_3) ||
+       (hw->mac_type == e1000_82546_rev_3)) {
+        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+        phy_data |= 0x00000008;
+        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+    }
+
+    if (hw->mac_type <= e1000_82543 ||
+        hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
+        hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
+        hw->phy_reset_disable = FALSE;
+
+   return E1000_SUCCESS;
+}
+
+
+/********************************************************************
+* Copper link setup for e1000_phy_igp series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t
+e1000_copper_link_igp_setup(struct e1000_hw *hw)
+{
+    uint32_t led_ctrl;
+    int32_t ret_val;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_copper_link_igp_setup");
+
+    if (hw->phy_reset_disable)
+        return E1000_SUCCESS;
+
+    ret_val = e1000_phy_reset(hw);
+    if (ret_val) {
+        DEBUGOUT("Error Resetting the PHY\n");
+        return ret_val;
+    }
+
+    /* Wait 15ms for MAC to configure PHY from eeprom settings */
+    msec_delay(15);
+    if (hw->mac_type != e1000_ich8lan) {
+    /* Configure activity LED after PHY reset */
+    led_ctrl = E1000_READ_REG(hw, LEDCTL);
+    led_ctrl &= IGP_ACTIVITY_LED_MASK;
+    led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+    E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+    }
+
+    /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
+    if (hw->phy_type == e1000_phy_igp) {
+        /* disable lplu d3 during driver init */
+        ret_val = e1000_set_d3_lplu_state(hw, FALSE);
+        if (ret_val) {
+            DEBUGOUT("Error Disabling LPLU D3\n");
+            return ret_val;
+        }
+    }
+
+    /* disable lplu d0 during driver init */
+    ret_val = e1000_set_d0_lplu_state(hw, FALSE);
+    if (ret_val) {
+        DEBUGOUT("Error Disabling LPLU D0\n");
+        return ret_val;
+    }
+    /* Configure mdi-mdix settings */
+    ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+    if (ret_val)
+        return ret_val;
+
+    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+        hw->dsp_config_state = e1000_dsp_config_disabled;
+        /* Force MDI for earlier revs of the IGP PHY */
+        phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
+        hw->mdix = 1;
+
+    } else {
+        hw->dsp_config_state = e1000_dsp_config_enabled;
+        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+        switch (hw->mdix) {
+        case 1:
+            phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+            break;
+        case 2:
+            phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+            break;
+        case 0:
+        default:
+            phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
+            break;
+        }
+    }
+    ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+    if (ret_val)
+        return ret_val;
+
+    /* set auto-master slave resolution settings */
+    if (hw->autoneg) {
+        e1000_ms_type phy_ms_setting = hw->master_slave;
+
+        if (hw->ffe_config_state == e1000_ffe_config_active)
+            hw->ffe_config_state = e1000_ffe_config_enabled;
+
+        if (hw->dsp_config_state == e1000_dsp_config_activated)
+            hw->dsp_config_state = e1000_dsp_config_enabled;
+
+        /* when autonegotiation advertisment is only 1000Mbps then we
+          * should disable SmartSpeed and enable Auto MasterSlave
+          * resolution as hardware default. */
+        if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+            /* Disable SmartSpeed */
+            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+                                         &phy_data);
+            if (ret_val)
+                return ret_val;
+            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+                                          phy_data);
+            if (ret_val)
+                return ret_val;
+            /* Set auto Master/Slave resolution process */
+            ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+            if (ret_val)
+                return ret_val;
+            phy_data &= ~CR_1000T_MS_ENABLE;
+            ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+            if (ret_val)
+                return ret_val;
+        }
+
+        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        /* load defaults for future use */
+        hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
+                                        ((phy_data & CR_1000T_MS_VALUE) ?
+                                         e1000_ms_force_master :
+                                         e1000_ms_force_slave) :
+                                         e1000_ms_auto;
+
+        switch (phy_ms_setting) {
+        case e1000_ms_force_master:
+            phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+            break;
+        case e1000_ms_force_slave:
+            phy_data |= CR_1000T_MS_ENABLE;
+            phy_data &= ~(CR_1000T_MS_VALUE);
+            break;
+        case e1000_ms_auto:
+            phy_data &= ~CR_1000T_MS_ENABLE;
+            default:
+            break;
+        }
+        ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+        if (ret_val)
+            return ret_val;
+    }
+
+    return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Copper link setup for e1000_phy_gg82563 series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t
+e1000_copper_link_ggp_setup(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    uint16_t phy_data;
+    uint32_t reg_data;
+
+    DEBUGFUNC("e1000_copper_link_ggp_setup");
+
+    if (!hw->phy_reset_disable) {
+
+        /* Enable CRS on TX for half-duplex operation. */
+        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+                                     &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+        /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
+        phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
+
+        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+                                      phy_data);
+        if (ret_val)
+            return ret_val;
+
+        /* Options:
+         *   MDI/MDI-X = 0 (default)
+         *   0 - Auto for all speeds
+         *   1 - MDI mode
+         *   2 - MDI-X mode
+         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+         */
+        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
+
+        switch (hw->mdix) {
+        case 1:
+            phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
+            break;
+        case 2:
+            phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
+            break;
+        case 0:
+        default:
+            phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
+            break;
+        }
+
+        /* Options:
+         *   disable_polarity_correction = 0 (default)
+         *       Automatic Correction for Reversed Cable Polarity
+         *   0 - Disabled
+         *   1 - Enabled
+         */
+        phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+        if (hw->disable_polarity_correction == 1)
+            phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
+
+        if (ret_val)
+            return ret_val;
+
+        /* SW Reset the PHY so all changes take effect */
+        ret_val = e1000_phy_reset(hw);
+        if (ret_val) {
+            DEBUGOUT("Error Resetting the PHY\n");
+            return ret_val;
+        }
+    } /* phy_reset_disable */
+
+    if (hw->mac_type == e1000_80003es2lan) {
+        /* Bypass RX and TX FIFO's */
+        ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
+                                       E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
+                                       E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
+        if (ret_val)
+            return ret_val;
+
+        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
+        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
+
+        if (ret_val)
+            return ret_val;
+
+        reg_data = E1000_READ_REG(hw, CTRL_EXT);
+        reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
+        E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
+
+        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
+                                          &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        /* Do not init these registers when the HW is in IAMT mode, since the
+         * firmware will have already initialized them.  We only initialize
+         * them if the HW is not in IAMT mode.
+         */
+        if (e1000_check_mng_mode(hw) == FALSE) {
+            /* Enable Electrical Idle on the PHY */
+            phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+            ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
+                                          phy_data);
+            if (ret_val)
+                return ret_val;
+
+            ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+                                         &phy_data);
+            if (ret_val)
+                return ret_val;
+
+            phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+            ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+                                          phy_data);
+
+            if (ret_val)
+                return ret_val;
+        }
+
+        /* Workaround: Disable padding in Kumeran interface in the MAC
+         * and in the PHY to avoid CRC errors.
+         */
+        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
+                                     &phy_data);
+        if (ret_val)
+            return ret_val;
+        phy_data |= GG82563_ICR_DIS_PADDING;
+        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
+                                      phy_data);
+        if (ret_val)
+            return ret_val;
+    }
+
+    return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Copper link setup for e1000_phy_m88 series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t
+e1000_copper_link_mgp_setup(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_copper_link_mgp_setup");
+
+    if (hw->phy_reset_disable)
+        return E1000_SUCCESS;
+
+    /* Enable CRS on TX. This must be set for half-duplex operation. */
+    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+    if (ret_val)
+        return ret_val;
+
+    phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+    /* Options:
+     *   MDI/MDI-X = 0 (default)
+     *   0 - Auto for all speeds
+     *   1 - MDI mode
+     *   2 - MDI-X mode
+     *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+     */
+    phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+    switch (hw->mdix) {
+    case 1:
+        phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+        break;
+    case 2:
+        phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+        break;
+    case 3:
+        phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+        break;
+    case 0:
+    default:
+        phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+        break;
+    }
+
+    /* Options:
+     *   disable_polarity_correction = 0 (default)
+     *       Automatic Correction for Reversed Cable Polarity
+     *   0 - Disabled
+     *   1 - Enabled
+     */
+    phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+    if (hw->disable_polarity_correction == 1)
+        phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+    if (ret_val)
+        return ret_val;
+
+    if (hw->phy_revision < M88E1011_I_REV_4) {
+        /* Force TX_CLK in the Extended PHY Specific Control Register
+         * to 25MHz clock.
+         */
+        ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+        if ((hw->phy_revision == E1000_REVISION_2) &&
+            (hw->phy_id == M88E1111_I_PHY_ID)) {
+            /* Vidalia Phy, set the downshift counter to 5x */
+            phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
+            phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+            ret_val = e1000_write_phy_reg(hw,
+                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+            if (ret_val)
+                return ret_val;
+        } else {
+            /* Configure Master and Slave downshift values */
+            phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+                              M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+            phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+                             M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+            ret_val = e1000_write_phy_reg(hw,
+                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+            if (ret_val)
+               return ret_val;
+        }
+    }
+
+    /* SW Reset the PHY so all changes take effect */
+    ret_val = e1000_phy_reset(hw);
+    if (ret_val) {
+        DEBUGOUT("Error Resetting the PHY\n");
+        return ret_val;
+    }
+
+   return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Setup auto-negotiation and flow control advertisements,
+* and then perform auto-negotiation.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t
+e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_copper_link_autoneg");
+
+    /* Perform some bounds checking on the hw->autoneg_advertised
+     * parameter.  If this variable is zero, then set it to the default.
+     */
+    hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+    /* If autoneg_advertised is zero, we assume it was not defaulted
+     * by the calling code so we set to advertise full capability.
+     */
+    if (hw->autoneg_advertised == 0)
+        hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+    /* IFE phy only supports 10/100 */
+    if (hw->phy_type == e1000_phy_ife)
+        hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
+
+    DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+    ret_val = e1000_phy_setup_autoneg(hw);
+    if (ret_val) {
+        DEBUGOUT("Error Setting up Auto-Negotiation\n");
+        return ret_val;
+    }
+    DEBUGOUT("Restarting Auto-Neg\n");
+
+    /* Restart auto-negotiation by setting the Auto Neg Enable bit and
+     * the Auto Neg Restart bit in the PHY control register.
+     */
+    ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+    if (ret_val)
+        return ret_val;
+
+    phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+    ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+    if (ret_val)
+        return ret_val;
+
+    /* Does the user want to wait for Auto-Neg to complete here, or
+     * check at a later time (for example, callback routine).
+     */
+    if (hw->wait_autoneg_complete) {
+        ret_val = e1000_wait_autoneg(hw);
+        if (ret_val) {
+            DEBUGOUT("Error while waiting for autoneg to complete\n");
+            return ret_val;
+        }
+    }
+
+    hw->get_link_status = TRUE;
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Config the MAC and the PHY after link is up.
+*   1) Set up the MAC to the current PHY speed/duplex
+*      if we are on 82543.  If we
+*      are on newer silicon, we only need to configure
+*      collision distance in the Transmit Control Register.
+*   2) Set up flow control on the MAC to that established with
+*      the link partner.
+*   3) Config DSP to improve Gigabit link quality for some PHY revisions.
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_copper_link_postconfig(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    DEBUGFUNC("e1000_copper_link_postconfig");
+
+    if (hw->mac_type >= e1000_82544) {
+        e1000_config_collision_dist(hw);
+    } else {
+        ret_val = e1000_config_mac_to_phy(hw);
+        if (ret_val) {
+            DEBUGOUT("Error configuring MAC to PHY settings\n");
+            return ret_val;
+        }
+    }
+    ret_val = e1000_config_fc_after_link_up(hw);
+    if (ret_val) {
+        DEBUGOUT("Error Configuring Flow Control\n");
+        return ret_val;
+    }
+
+    /* Config DSP to improve Giga link quality */
+    if (hw->phy_type == e1000_phy_igp) {
+        ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
+        if (ret_val) {
+            DEBUGOUT("Error Configuring DSP after link up\n");
+            return ret_val;
+        }
+    }
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Detects which PHY is present and setup the speed and duplex
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_setup_copper_link(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    uint16_t i;
+    uint16_t phy_data;
+    uint16_t reg_data;
+
+    DEBUGFUNC("e1000_setup_copper_link");
+
+    switch (hw->mac_type) {
+    case e1000_80003es2lan:
+    case e1000_ich8lan:
+        /* Set the mac to wait the maximum time between each
+         * iteration and increase the max iterations when
+         * polling the phy; this fixes erroneous timeouts at 10Mbps. */
+        ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
+        if (ret_val)
+            return ret_val;
+        ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
+        if (ret_val)
+            return ret_val;
+        reg_data |= 0x3F;
+        ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
+        if (ret_val)
+            return ret_val;
+    default:
+        break;
+    }
+
+    /* Check if it is a valid PHY and set PHY mode if necessary. */
+    ret_val = e1000_copper_link_preconfig(hw);
+    if (ret_val)
+        return ret_val;
+
+    switch (hw->mac_type) {
+    case e1000_80003es2lan:
+        /* Kumeran registers are written-only */
+        reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
+        reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
+        ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
+                                       reg_data);
+        if (ret_val)
+            return ret_val;
+        break;
+    default:
+        break;
+    }
+
+    if (hw->phy_type == e1000_phy_igp ||
+        hw->phy_type == e1000_phy_igp_3 ||
+        hw->phy_type == e1000_phy_igp_2) {
+        ret_val = e1000_copper_link_igp_setup(hw);
+        if (ret_val)
+            return ret_val;
+    } else if (hw->phy_type == e1000_phy_m88) {
+        ret_val = e1000_copper_link_mgp_setup(hw);
+        if (ret_val)
+            return ret_val;
+    } else if (hw->phy_type == e1000_phy_gg82563) {
+        ret_val = e1000_copper_link_ggp_setup(hw);
+        if (ret_val)
+            return ret_val;
+    }
+
+    if (hw->autoneg) {
+        /* Setup autoneg and flow control advertisement
+          * and perform autonegotiation */
+        ret_val = e1000_copper_link_autoneg(hw);
+        if (ret_val)
+            return ret_val;
+    } else {
+        /* PHY will be set to 10H, 10F, 100H,or 100F
+          * depending on value from forced_speed_duplex. */
+        DEBUGOUT("Forcing speed and duplex\n");
+        ret_val = e1000_phy_force_speed_duplex(hw);
+        if (ret_val) {
+            DEBUGOUT("Error Forcing Speed and Duplex\n");
+            return ret_val;
+        }
+    }
+
+    /* Check link status. Wait up to 100 microseconds for link to become
+     * valid.
+     */
+    for (i = 0; i < 10; i++) {
+        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+        if (ret_val)
+            return ret_val;
+        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        if (phy_data & MII_SR_LINK_STATUS) {
+            /* Config the MAC and PHY after link is up */
+            ret_val = e1000_copper_link_postconfig(hw);
+            if (ret_val)
+                return ret_val;
+
+            DEBUGOUT("Valid link established!!!\n");
+            return E1000_SUCCESS;
+        }
+        usec_delay(10);
+    }
+
+    DEBUGOUT("Unable to establish link!!!\n");
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Configure the MAC-to-PHY interface for 10/100Mbps
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
+{
+    int32_t ret_val = E1000_SUCCESS;
+    uint32_t tipg;
+    uint16_t reg_data;
+
+    DEBUGFUNC("e1000_configure_kmrn_for_10_100");
+
+    reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
+    ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
+                                   reg_data);
+    if (ret_val)
+        return ret_val;
+
+    /* Configure Transmit Inter-Packet Gap */
+    tipg = E1000_READ_REG(hw, TIPG);
+    tipg &= ~E1000_TIPG_IPGT_MASK;
+    tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
+    E1000_WRITE_REG(hw, TIPG, tipg);
+
+    ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+
+    if (ret_val)
+        return ret_val;
+
+    if (duplex == HALF_DUPLEX)
+        reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+    else
+        reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
+    ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+    return ret_val;
+}
+
+static int32_t
+e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
+{
+    int32_t ret_val = E1000_SUCCESS;
+    uint16_t reg_data;
+    uint32_t tipg;
+
+    DEBUGFUNC("e1000_configure_kmrn_for_1000");
+
+    reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
+    ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
+                                   reg_data);
+    if (ret_val)
+        return ret_val;
+
+    /* Configure Transmit Inter-Packet Gap */
+    tipg = E1000_READ_REG(hw, TIPG);
+    tipg &= ~E1000_TIPG_IPGT_MASK;
+    tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
+    E1000_WRITE_REG(hw, TIPG, tipg);
+
+    ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+
+    if (ret_val)
+        return ret_val;
+
+    reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+    ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+    return ret_val;
+}
+
+/******************************************************************************
+* Configures PHY autoneg and flow control advertisement settings
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    uint16_t mii_autoneg_adv_reg;
+    uint16_t mii_1000t_ctrl_reg;
+
+    DEBUGFUNC("e1000_phy_setup_autoneg");
+
+    /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+    ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+    if (ret_val)
+        return ret_val;
+
+    if (hw->phy_type != e1000_phy_ife) {
+        /* Read the MII 1000Base-T Control Register (Address 9). */
+        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
+        if (ret_val)
+            return ret_val;
+    } else
+        mii_1000t_ctrl_reg=0;
+
+    /* Need to parse both autoneg_advertised and fc and set up
+     * the appropriate PHY registers.  First we will parse for
+     * autoneg_advertised software override.  Since we can advertise
+     * a plethora of combinations, we need to check each bit
+     * individually.
+     */
+
+    /* First we clear all the 10/100 mb speed bits in the Auto-Neg
+     * Advertisement Register (Address 4) and the 1000 mb speed bits in
+     * the  1000Base-T Control Register (Address 9).
+     */
+    mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+    mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
+
+    DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
+
+    /* Do we want to advertise 10 Mb Half Duplex? */
+    if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
+        DEBUGOUT("Advertise 10mb Half duplex\n");
+        mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+    }
+
+    /* Do we want to advertise 10 Mb Full Duplex? */
+    if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
+        DEBUGOUT("Advertise 10mb Full duplex\n");
+        mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+    }
+
+    /* Do we want to advertise 100 Mb Half Duplex? */
+    if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
+        DEBUGOUT("Advertise 100mb Half duplex\n");
+        mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+    }
+
+    /* Do we want to advertise 100 Mb Full Duplex? */
+    if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
+        DEBUGOUT("Advertise 100mb Full duplex\n");
+        mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+    }
+
+    /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+    if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+        DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
+    }
+
+    /* Do we want to advertise 1000 Mb Full Duplex? */
+    if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+        DEBUGOUT("Advertise 1000mb Full duplex\n");
+        mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+        if (hw->phy_type == e1000_phy_ife) {
+            DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
+        }
+    }
+
+    /* Check for a software override of the flow control settings, and
+     * setup the PHY advertisement registers accordingly.  If
+     * auto-negotiation is enabled, then software will have to set the
+     * "PAUSE" bits to the correct value in the Auto-Negotiation
+     * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
+     *
+     * The possible values of the "fc" parameter are:
+     *      0:  Flow control is completely disabled
+     *      1:  Rx flow control is enabled (we can receive pause frames
+     *          but not send pause frames).
+     *      2:  Tx flow control is enabled (we can send pause frames
+     *          but we do not support receiving pause frames).
+     *      3:  Both Rx and TX flow control (symmetric) are enabled.
+     *  other:  No software override.  The flow control configuration
+     *          in the EEPROM is used.
+     */
+    switch (hw->fc) {
+    case E1000_FC_NONE: /* 0 */
+        /* Flow control (RX & TX) is completely disabled by a
+         * software over-ride.
+         */
+        mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+        break;
+    case E1000_FC_RX_PAUSE: /* 1 */
+        /* RX Flow control is enabled, and TX Flow control is
+         * disabled, by a software over-ride.
+         */
+        /* Since there really isn't a way to advertise that we are
+         * capable of RX Pause ONLY, we will advertise that we
+         * support both symmetric and asymmetric RX PAUSE.  Later
+         * (in e1000_config_fc_after_link_up) we will disable the
+         *hw's ability to send PAUSE frames.
+         */
+        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+        break;
+    case E1000_FC_TX_PAUSE: /* 2 */
+        /* TX Flow control is enabled, and RX Flow control is
+         * disabled, by a software over-ride.
+         */
+        mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+        mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+        break;
+    case E1000_FC_FULL: /* 3 */
+        /* Flow control (both RX and TX) is enabled by a software
+         * over-ride.
+         */
+        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+        break;
+    default:
+        DEBUGOUT("Flow control param set incorrectly\n");
+        return -E1000_ERR_CONFIG;
+    }
+
+    ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+    if (ret_val)
+        return ret_val;
+
+    DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+    if (hw->phy_type != e1000_phy_ife) {
+        ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+        if (ret_val)
+            return ret_val;
+    }
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Force PHY speed and duplex settings to hw->forced_speed_duplex
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_phy_force_speed_duplex(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+    int32_t ret_val;
+    uint16_t mii_ctrl_reg;
+    uint16_t mii_status_reg;
+    uint16_t phy_data;
+    uint16_t i;
+
+    DEBUGFUNC("e1000_phy_force_speed_duplex");
+
+    /* Turn off Flow control if we are forcing speed and duplex. */
+    hw->fc = E1000_FC_NONE;
+
+    DEBUGOUT1("hw->fc = %d\n", hw->fc);
+
+    /* Read the Device Control Register. */
+    ctrl = E1000_READ_REG(hw, CTRL);
+
+    /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
+    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+    ctrl &= ~(DEVICE_SPEED_MASK);
+
+    /* Clear the Auto Speed Detect Enable bit. */
+    ctrl &= ~E1000_CTRL_ASDE;
+
+    /* Read the MII Control Register. */
+    ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
+    if (ret_val)
+        return ret_val;
+
+    /* We need to disable autoneg in order to force link and duplex. */
+
+    mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
+
+    /* Are we forcing Full or Half Duplex? */
+    if (hw->forced_speed_duplex == e1000_100_full ||
+        hw->forced_speed_duplex == e1000_10_full) {
+        /* We want to force full duplex so we SET the full duplex bits in the
+         * Device and MII Control Registers.
+         */
+        ctrl |= E1000_CTRL_FD;
+        mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
+        DEBUGOUT("Full Duplex\n");
+    } else {
+        /* We want to force half duplex so we CLEAR the full duplex bits in
+         * the Device and MII Control Registers.
+         */
+        ctrl &= ~E1000_CTRL_FD;
+        mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
+        DEBUGOUT("Half Duplex\n");
+    }
+
+    /* Are we forcing 100Mbps??? */
+    if (hw->forced_speed_duplex == e1000_100_full ||
+       hw->forced_speed_duplex == e1000_100_half) {
+        /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
+        ctrl |= E1000_CTRL_SPD_100;
+        mii_ctrl_reg |= MII_CR_SPEED_100;
+        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+        DEBUGOUT("Forcing 100mb ");
+    } else {
+        /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
+        ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+        mii_ctrl_reg |= MII_CR_SPEED_10;
+        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+        DEBUGOUT("Forcing 10mb ");
+    }
+
+    e1000_config_collision_dist(hw);
+
+    /* Write the configured values back to the Device Control Reg. */
+    E1000_WRITE_REG(hw, CTRL, ctrl);
+
+    if ((hw->phy_type == e1000_phy_m88) ||
+        (hw->phy_type == e1000_phy_gg82563)) {
+        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+         * forced whenever speed are duplex are forced.
+         */
+        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+        if (ret_val)
+            return ret_val;
+
+        DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
+
+        /* Need to reset the PHY or these changes will be ignored */
+        mii_ctrl_reg |= MII_CR_RESET;
+
+    /* Disable MDI-X support for 10/100 */
+    } else if (hw->phy_type == e1000_phy_ife) {
+        ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_data &= ~IFE_PMC_AUTO_MDIX;
+        phy_data &= ~IFE_PMC_FORCE_MDIX;
+
+        ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
+        if (ret_val)
+            return ret_val;
+
+    } else {
+        /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
+         * forced whenever speed or duplex are forced.
+         */
+        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+        if (ret_val)
+            return ret_val;
+    }
+
+    /* Write back the modified PHY MII control register. */
+    ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
+    if (ret_val)
+        return ret_val;
+
+    usec_delay(1);
+
+    /* The wait_autoneg_complete flag may be a little misleading here.
+     * Since we are forcing speed and duplex, Auto-Neg is not enabled.
+     * But we do want to delay for a period while forcing only so we
+     * don't generate false No Link messages.  So we will wait here
+     * only if the user has set wait_autoneg_complete to 1, which is
+     * the default.
+     */
+    if (hw->wait_autoneg_complete) {
+        /* We will wait for autoneg to complete. */
+        DEBUGOUT("Waiting for forced speed/duplex link.\n");
+        mii_status_reg = 0;
+
+        /* We will wait for autoneg to complete or 4.5 seconds to expire. */
+        for (i = PHY_FORCE_TIME; i > 0; i--) {
+            /* Read the MII Status Register and wait for Auto-Neg Complete bit
+             * to be set.
+             */
+            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+            if (ret_val)
+                return ret_val;
+
+            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+            if (ret_val)
+                return ret_val;
+
+            if (mii_status_reg & MII_SR_LINK_STATUS) break;
+            msec_delay(100);
+        }
+        if ((i == 0) &&
+           ((hw->phy_type == e1000_phy_m88) ||
+            (hw->phy_type == e1000_phy_gg82563))) {
+            /* We didn't get link.  Reset the DSP and wait again for link. */
+            ret_val = e1000_phy_reset_dsp(hw);
+            if (ret_val) {
+                DEBUGOUT("Error Resetting PHY DSP\n");
+                return ret_val;
+            }
+        }
+        /* This loop will early-out if the link condition has been met.  */
+        for (i = PHY_FORCE_TIME; i > 0; i--) {
+            if (mii_status_reg & MII_SR_LINK_STATUS) break;
+            msec_delay(100);
+            /* Read the MII Status Register and wait for Auto-Neg Complete bit
+             * to be set.
+             */
+            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+            if (ret_val)
+                return ret_val;
+
+            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+            if (ret_val)
+                return ret_val;
+        }
+    }
+
+    if (hw->phy_type == e1000_phy_m88) {
+        /* Because we reset the PHY above, we need to re-force TX_CLK in the
+         * Extended PHY Specific Control Register to 25MHz clock.  This value
+         * defaults back to a 2.5MHz clock when the PHY is reset.
+         */
+        ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_data |= M88E1000_EPSCR_TX_CLK_25;
+        ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+        if (ret_val)
+            return ret_val;
+
+        /* In addition, because of the s/w reset above, we need to enable CRS on
+         * TX.  This must be set for both full and half duplex operation.
+         */
+        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+        if (ret_val)
+            return ret_val;
+
+        if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
+            (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
+             hw->forced_speed_duplex == e1000_10_half)) {
+            ret_val = e1000_polarity_reversal_workaround(hw);
+            if (ret_val)
+                return ret_val;
+        }
+    } else if (hw->phy_type == e1000_phy_gg82563) {
+        /* The TX_CLK of the Extended PHY Specific Control Register defaults
+         * to 2.5MHz on a reset.  We need to re-force it back to 25MHz, if
+         * we're not in a forced 10/duplex configuration. */
+        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
+        if ((hw->forced_speed_duplex == e1000_10_full) ||
+            (hw->forced_speed_duplex == e1000_10_half))
+            phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
+        else
+            phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
+
+        /* Also due to the reset, we need to enable CRS on Tx. */
+        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+
+        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
+        if (ret_val)
+            return ret_val;
+    }
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Sets the collision distance in the Transmit Control register
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Link should have been established previously. Reads the speed and duplex
+* information from the Device Status register.
+******************************************************************************/
+void
+e1000_config_collision_dist(struct e1000_hw *hw)
+{
+    uint32_t tctl, coll_dist;
+
+    DEBUGFUNC("e1000_config_collision_dist");
+
+    if (hw->mac_type < e1000_82543)
+        coll_dist = E1000_COLLISION_DISTANCE_82542;
+    else
+        coll_dist = E1000_COLLISION_DISTANCE;
+
+    tctl = E1000_READ_REG(hw, TCTL);
+
+    tctl &= ~E1000_TCTL_COLD;
+    tctl |= coll_dist << E1000_COLD_SHIFT;
+
+    E1000_WRITE_REG(hw, TCTL, tctl);
+    E1000_WRITE_FLUSH(hw);
+}
+
+/******************************************************************************
+* Sets MAC speed and duplex settings to reflect the those in the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* mii_reg - data to write to the MII control register
+*
+* The contents of the PHY register containing the needed information need to
+* be passed in.
+******************************************************************************/
+static int32_t
+e1000_config_mac_to_phy(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+    int32_t ret_val;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_config_mac_to_phy");
+
+    /* 82544 or newer MAC, Auto Speed Detection takes care of
+    * MAC speed/duplex configuration.*/
+    if (hw->mac_type >= e1000_82544)
+        return E1000_SUCCESS;
+
+    /* Read the Device Control Register and set the bits to Force Speed
+     * and Duplex.
+     */
+    ctrl = E1000_READ_REG(hw, CTRL);
+    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+    ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+    /* Set up duplex in the Device Control and Transmit Control
+     * registers depending on negotiated values.
+     */
+    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+    if (ret_val)
+        return ret_val;
+
+    if (phy_data & M88E1000_PSSR_DPLX)
+        ctrl |= E1000_CTRL_FD;
+    else
+        ctrl &= ~E1000_CTRL_FD;
+
+    e1000_config_collision_dist(hw);
+
+    /* Set up speed in the Device Control register depending on
+     * negotiated values.
+     */
+    if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+        ctrl |= E1000_CTRL_SPD_1000;
+    else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+        ctrl |= E1000_CTRL_SPD_100;
+
+    /* Write the configured values back to the Device Control Reg. */
+    E1000_WRITE_REG(hw, CTRL, ctrl);
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Forces the MAC's flow control settings.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Sets the TFCE and RFCE bits in the device control register to reflect
+ * the adapter settings. TFCE and RFCE need to be explicitly set by
+ * software when a Copper PHY is used because autonegotiation is managed
+ * by the PHY rather than the MAC. Software must also configure these
+ * bits when link is forced on a fiber connection.
+ *****************************************************************************/
+int32_t
+e1000_force_mac_fc(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+
+    DEBUGFUNC("e1000_force_mac_fc");
+
+    /* Get the current configuration of the Device Control Register */
+    ctrl = E1000_READ_REG(hw, CTRL);
+
+    /* Because we didn't get link via the internal auto-negotiation
+     * mechanism (we either forced link or we got link via PHY
+     * auto-neg), we have to manually enable/disable transmit an
+     * receive flow control.
+     *
+     * The "Case" statement below enables/disable flow control
+     * according to the "hw->fc" parameter.
+     *
+     * The possible values of the "fc" parameter are:
+     *      0:  Flow control is completely disabled
+     *      1:  Rx flow control is enabled (we can receive pause
+     *          frames but not send pause frames).
+     *      2:  Tx flow control is enabled (we can send pause frames
+     *          frames but we do not receive pause frames).
+     *      3:  Both Rx and TX flow control (symmetric) is enabled.
+     *  other:  No other values should be possible at this point.
+     */
+
+    switch (hw->fc) {
+    case E1000_FC_NONE:
+        ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+        break;
+    case E1000_FC_RX_PAUSE:
+        ctrl &= (~E1000_CTRL_TFCE);
+        ctrl |= E1000_CTRL_RFCE;
+        break;
+    case E1000_FC_TX_PAUSE:
+        ctrl &= (~E1000_CTRL_RFCE);
+        ctrl |= E1000_CTRL_TFCE;
+        break;
+    case E1000_FC_FULL:
+        ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+        break;
+    default:
+        DEBUGOUT("Flow control param set incorrectly\n");
+        return -E1000_ERR_CONFIG;
+    }
+
+    /* Disable TX Flow Control for 82542 (rev 2.0) */
+    if (hw->mac_type == e1000_82542_rev2_0)
+        ctrl &= (~E1000_CTRL_TFCE);
+
+    E1000_WRITE_REG(hw, CTRL, ctrl);
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Configures flow control settings after link is established
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Should be called immediately after a valid link has been established.
+ * Forces MAC flow control settings if link was forced. When in MII/GMII mode
+ * and autonegotiation is enabled, the MAC flow control settings will be set
+ * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
+ * and RFCE bits will be automaticaly set to the negotiated flow control mode.
+ *****************************************************************************/
+STATIC int32_t
+e1000_config_fc_after_link_up(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    uint16_t mii_status_reg;
+    uint16_t mii_nway_adv_reg;
+    uint16_t mii_nway_lp_ability_reg;
+    uint16_t speed;
+    uint16_t duplex;
+
+    DEBUGFUNC("e1000_config_fc_after_link_up");
+
+    /* Check for the case where we have fiber media and auto-neg failed
+     * so we had to force link.  In this case, we need to force the
+     * configuration of the MAC to match the "fc" parameter.
+     */
+    if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
+        ((hw->media_type == e1000_media_type_internal_serdes) &&
+         (hw->autoneg_failed)) ||
+        ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
+        ret_val = e1000_force_mac_fc(hw);
+        if (ret_val) {
+            DEBUGOUT("Error forcing flow control settings\n");
+            return ret_val;
+        }
+    }
+
+    /* Check for the case where we have copper media and auto-neg is
+     * enabled.  In this case, we need to check and see if Auto-Neg
+     * has completed, and if so, how the PHY and link partner has
+     * flow control configured.
+     */
+    if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
+        /* Read the MII Status Register and check to see if AutoNeg
+         * has completed.  We read this twice because this reg has
+         * some "sticky" (latched) bits.
+         */
+        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+        if (ret_val)
+            return ret_val;
+        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+        if (ret_val)
+            return ret_val;
+
+        if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+            /* The AutoNeg process has completed, so we now need to
+             * read both the Auto Negotiation Advertisement Register
+             * (Address 4) and the Auto_Negotiation Base Page Ability
+             * Register (Address 5) to determine how flow control was
+             * negotiated.
+             */
+            ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
+                                         &mii_nway_adv_reg);
+            if (ret_val)
+                return ret_val;
+            ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
+                                         &mii_nway_lp_ability_reg);
+            if (ret_val)
+                return ret_val;
+
+            /* Two bits in the Auto Negotiation Advertisement Register
+             * (Address 4) and two bits in the Auto Negotiation Base
+             * Page Ability Register (Address 5) determine flow control
+             * for both the PHY and the link partner.  The following
+             * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+             * 1999, describes these PAUSE resolution bits and how flow
+             * control is determined based upon these settings.
+             * NOTE:  DC = Don't Care
+             *
+             *   LOCAL DEVICE  |   LINK PARTNER
+             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+             *-------|---------|-------|---------|--------------------
+             *   0   |    0    |  DC   |   DC    | e1000_fc_none
+             *   0   |    1    |   0   |   DC    | e1000_fc_none
+             *   0   |    1    |   1   |    0    | e1000_fc_none
+             *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+             *   1   |    0    |   0   |   DC    | e1000_fc_none
+             *   1   |   DC    |   1   |   DC    | e1000_fc_full
+             *   1   |    1    |   0   |    0    | e1000_fc_none
+             *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+             *
+             */
+            /* Are both PAUSE bits set to 1?  If so, this implies
+             * Symmetric Flow Control is enabled at both ends.  The
+             * ASM_DIR bits are irrelevant per the spec.
+             *
+             * For Symmetric Flow Control:
+             *
+             *   LOCAL DEVICE  |   LINK PARTNER
+             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+             *-------|---------|-------|---------|--------------------
+             *   1   |   DC    |   1   |   DC    | e1000_fc_full
+             *
+             */
+            if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+                (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+                /* Now we need to check if the user selected RX ONLY
+                 * of pause frames.  In this case, we had to advertise
+                 * FULL flow control because we could not advertise RX
+                 * ONLY. Hence, we must now check to see if we need to
+                 * turn OFF  the TRANSMISSION of PAUSE frames.
+                 */
+                if (hw->original_fc == E1000_FC_FULL) {
+                    hw->fc = E1000_FC_FULL;
+                    DEBUGOUT("Flow Control = FULL.\n");
+                } else {
+                    hw->fc = E1000_FC_RX_PAUSE;
+                    DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
+                }
+            }
+            /* For receiving PAUSE frames ONLY.
+             *
+             *   LOCAL DEVICE  |   LINK PARTNER
+             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+             *-------|---------|-------|---------|--------------------
+             *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+             *
+             */
+            else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+                     (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+                     (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+                     (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+                hw->fc = E1000_FC_TX_PAUSE;
+                DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
+            }
+            /* For transmitting PAUSE frames ONLY.
+             *
+             *   LOCAL DEVICE  |   LINK PARTNER
+             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+             *-------|---------|-------|---------|--------------------
+             *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+             *
+             */
+            else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+                     (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+                     !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+                     (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+                hw->fc = E1000_FC_RX_PAUSE;
+                DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
+            }
+            /* Per the IEEE spec, at this point flow control should be
+             * disabled.  However, we want to consider that we could
+             * be connected to a legacy switch that doesn't advertise
+             * desired flow control, but can be forced on the link
+             * partner.  So if we advertised no flow control, that is
+             * what we will resolve to.  If we advertised some kind of
+             * receive capability (Rx Pause Only or Full Flow Control)
+             * and the link partner advertised none, we will configure
+             * ourselves to enable Rx Flow Control only.  We can do
+             * this safely for two reasons:  If the link partner really
+             * didn't want flow control enabled, and we enable Rx, no
+             * harm done since we won't be receiving any PAUSE frames
+             * anyway.  If the intent on the link partner was to have
+             * flow control enabled, then by us enabling RX only, we
+             * can at least receive pause frames and process them.
+             * This is a good idea because in most cases, since we are
+             * predominantly a server NIC, more times than not we will
+             * be asked to delay transmission of packets than asking
+             * our link partner to pause transmission of frames.
+             */
+            else if ((hw->original_fc == E1000_FC_NONE||
+                      hw->original_fc == E1000_FC_TX_PAUSE) ||
+                      hw->fc_strict_ieee) {
+                hw->fc = E1000_FC_NONE;
+                DEBUGOUT("Flow Control = NONE.\n");
+            } else {
+                hw->fc = E1000_FC_RX_PAUSE;
+                DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
+            }
+
+            /* Now we need to do one last check...  If we auto-
+             * negotiated to HALF DUPLEX, flow control should not be
+             * enabled per IEEE 802.3 spec.
+             */
+            ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+            if (ret_val) {
+                DEBUGOUT("Error getting link speed and duplex\n");
+                return ret_val;
+            }
+
+            if (duplex == HALF_DUPLEX)
+                hw->fc = E1000_FC_NONE;
+
+            /* Now we call a subroutine to actually force the MAC
+             * controller to use the correct flow control settings.
+             */
+            ret_val = e1000_force_mac_fc(hw);
+            if (ret_val) {
+                DEBUGOUT("Error forcing flow control settings\n");
+                return ret_val;
+            }
+        } else {
+            DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
+        }
+    }
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Checks to see if the link status of the hardware has changed.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Called by any function that needs to check the link status of the adapter.
+ *****************************************************************************/
+int32_t
+e1000_check_for_link(struct e1000_hw *hw)
+{
+    uint32_t rxcw = 0;
+    uint32_t ctrl;
+    uint32_t status;
+    uint32_t rctl;
+    uint32_t icr;
+    uint32_t signal = 0;
+    int32_t ret_val;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_check_for_link");
+
+    ctrl = E1000_READ_REG(hw, CTRL);
+    status = E1000_READ_REG(hw, STATUS);
+
+    /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
+     * set when the optics detect a signal. On older adapters, it will be
+     * cleared when there is a signal.  This applies to fiber media only.
+     */
+    if ((hw->media_type == e1000_media_type_fiber) ||
+        (hw->media_type == e1000_media_type_internal_serdes)) {
+        rxcw = E1000_READ_REG(hw, RXCW);
+
+        if (hw->media_type == e1000_media_type_fiber) {
+            signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
+            if (status & E1000_STATUS_LU)
+                hw->get_link_status = FALSE;
+        }
+    }
+
+    /* If we have a copper PHY then we only want to go out to the PHY
+     * registers to see if Auto-Neg has completed and/or if our link
+     * status has changed.  The get_link_status flag will be set if we
+     * receive a Link Status Change interrupt or we have Rx Sequence
+     * Errors.
+     */
+    if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
+        /* First we want to see if the MII Status Register reports
+         * link.  If so, then we want to get the current speed/duplex
+         * of the PHY.
+         * Read the register twice since the link bit is sticky.
+         */
+        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+        if (ret_val)
+            return ret_val;
+        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        if (phy_data & MII_SR_LINK_STATUS) {
+            hw->get_link_status = FALSE;
+            /* Check if there was DownShift, must be checked immediately after
+             * link-up */
+            e1000_check_downshift(hw);
+
+            /* If we are on 82544 or 82543 silicon and speed/duplex
+             * are forced to 10H or 10F, then we will implement the polarity
+             * reversal workaround.  We disable interrupts first, and upon
+             * returning, place the devices interrupt state to its previous
+             * value except for the link status change interrupt which will
+             * happen due to the execution of this workaround.
+             */
+
+            if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
+                (!hw->autoneg) &&
+                (hw->forced_speed_duplex == e1000_10_full ||
+                 hw->forced_speed_duplex == e1000_10_half)) {
+                E1000_WRITE_REG(hw, IMC, 0xffffffff);
+                ret_val = e1000_polarity_reversal_workaround(hw);
+                icr = E1000_READ_REG(hw, ICR);
+                E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
+                E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
+            }
+
+        } else {
+            /* No link detected */
+            e1000_config_dsp_after_link_change(hw, FALSE);
+            return 0;
+        }
+
+        /* If we are forcing speed/duplex, then we simply return since
+         * we have already determined whether we have link or not.
+         */
+        if (!hw->autoneg) return -E1000_ERR_CONFIG;
+
+        /* optimize the dsp settings for the igp phy */
+        e1000_config_dsp_after_link_change(hw, TRUE);
+
+        /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
+         * have Si on board that is 82544 or newer, Auto
+         * Speed Detection takes care of MAC speed/duplex
+         * configuration.  So we only need to configure Collision
+         * Distance in the MAC.  Otherwise, we need to force
+         * speed/duplex on the MAC to the current PHY speed/duplex
+         * settings.
+         */
+        if (hw->mac_type >= e1000_82544)
+            e1000_config_collision_dist(hw);
+        else {
+            ret_val = e1000_config_mac_to_phy(hw);
+            if (ret_val) {
+                DEBUGOUT("Error configuring MAC to PHY settings\n");
+                return ret_val;
+            }
+        }
+
+        /* Configure Flow Control now that Auto-Neg has completed. First, we
+         * need to restore the desired flow control settings because we may
+         * have had to re-autoneg with a different link partner.
+         */
+        ret_val = e1000_config_fc_after_link_up(hw);
+        if (ret_val) {
+            DEBUGOUT("Error configuring flow control\n");
+            return ret_val;
+        }
+
+        /* At this point we know that we are on copper and we have
+         * auto-negotiated link.  These are conditions for checking the link
+         * partner capability register.  We use the link speed to determine if
+         * TBI compatibility needs to be turned on or off.  If the link is not
+         * at gigabit speed, then TBI compatibility is not needed.  If we are
+         * at gigabit speed, we turn on TBI compatibility.
+         */
+        if (hw->tbi_compatibility_en) {
+            uint16_t speed, duplex;
+            ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+            if (ret_val) {
+                DEBUGOUT("Error getting link speed and duplex\n");
+                return ret_val;
+            }
+            if (speed != SPEED_1000) {
+                /* If link speed is not set to gigabit speed, we do not need
+                 * to enable TBI compatibility.
+                 */
+                if (hw->tbi_compatibility_on) {
+                    /* If we previously were in the mode, turn it off. */
+                    rctl = E1000_READ_REG(hw, RCTL);
+                    rctl &= ~E1000_RCTL_SBP;
+                    E1000_WRITE_REG(hw, RCTL, rctl);
+                    hw->tbi_compatibility_on = FALSE;
+                }
+            } else {
+                /* If TBI compatibility is was previously off, turn it on. For
+                 * compatibility with a TBI link partner, we will store bad
+                 * packets. Some frames have an additional byte on the end and
+                 * will look like CRC errors to to the hardware.
+                 */
+                if (!hw->tbi_compatibility_on) {
+                    hw->tbi_compatibility_on = TRUE;
+                    rctl = E1000_READ_REG(hw, RCTL);
+                    rctl |= E1000_RCTL_SBP;
+                    E1000_WRITE_REG(hw, RCTL, rctl);
+                }
+            }
+        }
+    }
+    /* If we don't have link (auto-negotiation failed or link partner cannot
+     * auto-negotiate), the cable is plugged in (we have signal), and our
+     * link partner is not trying to auto-negotiate with us (we are receiving
+     * idles or data), we need to force link up. We also need to give
+     * auto-negotiation time to complete, in case the cable was just plugged
+     * in. The autoneg_failed flag does this.
+     */
+    else if ((((hw->media_type == e1000_media_type_fiber) &&
+              ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
+              (hw->media_type == e1000_media_type_internal_serdes)) &&
+              (!(status & E1000_STATUS_LU)) &&
+              (!(rxcw & E1000_RXCW_C))) {
+        if (hw->autoneg_failed == 0) {
+            hw->autoneg_failed = 1;
+            return 0;
+        }
+        DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+        /* Disable auto-negotiation in the TXCW register */
+        E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
+
+        /* Force link-up and also force full-duplex. */
+        ctrl = E1000_READ_REG(hw, CTRL);
+        ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+        E1000_WRITE_REG(hw, CTRL, ctrl);
+
+        /* Configure Flow Control after forcing link up. */
+        ret_val = e1000_config_fc_after_link_up(hw);
+        if (ret_val) {
+            DEBUGOUT("Error configuring flow control\n");
+            return ret_val;
+        }
+    }
+    /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
+     * auto-negotiation in the TXCW register and disable forced link in the
+     * Device Control register in an attempt to auto-negotiate with our link
+     * partner.
+     */
+    else if (((hw->media_type == e1000_media_type_fiber) ||
+              (hw->media_type == e1000_media_type_internal_serdes)) &&
+              (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+        DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+        E1000_WRITE_REG(hw, TXCW, hw->txcw);
+        E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+        hw->serdes_link_down = FALSE;
+    }
+    /* If we force link for non-auto-negotiation switch, check link status
+     * based on MAC synchronization for internal serdes media type.
+     */
+    else if ((hw->media_type == e1000_media_type_internal_serdes) &&
+             !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
+        /* SYNCH bit and IV bit are sticky. */
+        usec_delay(10);
+        if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
+            if (!(rxcw & E1000_RXCW_IV)) {
+                hw->serdes_link_down = FALSE;
+                DEBUGOUT("SERDES: Link is up.\n");
+            }
+        } else {
+            hw->serdes_link_down = TRUE;
+            DEBUGOUT("SERDES: Link is down.\n");
+        }
+    }
+    if ((hw->media_type == e1000_media_type_internal_serdes) &&
+        (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
+        hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
+    }
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Detects the current speed and duplex settings of the hardware.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * speed - Speed of the connection
+ * duplex - Duplex setting of the connection
+ *****************************************************************************/
+int32_t
+e1000_get_speed_and_duplex(struct e1000_hw *hw,
+                           uint16_t *speed,
+                           uint16_t *duplex)
+{
+    uint32_t status;
+    int32_t ret_val;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_get_speed_and_duplex");
+
+    if (hw->mac_type >= e1000_82543) {
+        status = E1000_READ_REG(hw, STATUS);
+        if (status & E1000_STATUS_SPEED_1000) {
+            *speed = SPEED_1000;
+            DEBUGOUT("1000 Mbs, ");
+        } else if (status & E1000_STATUS_SPEED_100) {
+            *speed = SPEED_100;
+            DEBUGOUT("100 Mbs, ");
+        } else {
+            *speed = SPEED_10;
+            DEBUGOUT("10 Mbs, ");
+        }
+
+        if (status & E1000_STATUS_FD) {
+            *duplex = FULL_DUPLEX;
+            DEBUGOUT("Full Duplex\n");
+        } else {
+            *duplex = HALF_DUPLEX;
+            DEBUGOUT(" Half Duplex\n");
+        }
+    } else {
+        DEBUGOUT("1000 Mbs, Full Duplex\n");
+        *speed = SPEED_1000;
+        *duplex = FULL_DUPLEX;
+    }
+
+    /* IGP01 PHY may advertise full duplex operation after speed downgrade even
+     * if it is operating at half duplex.  Here we set the duplex settings to
+     * match the duplex in the link partner's capabilities.
+     */
+    if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
+        ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
+            *duplex = HALF_DUPLEX;
+        else {
+            ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
+            if (ret_val)
+                return ret_val;
+            if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
+               (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
+                *duplex = HALF_DUPLEX;
+        }
+    }
+
+    if ((hw->mac_type == e1000_80003es2lan) &&
+        (hw->media_type == e1000_media_type_copper)) {
+        if (*speed == SPEED_1000)
+            ret_val = e1000_configure_kmrn_for_1000(hw);
+        else
+            ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
+        if (ret_val)
+            return ret_val;
+    }
+
+    if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
+        ret_val = e1000_kumeran_lock_loss_workaround(hw);
+        if (ret_val)
+            return ret_val;
+    }
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Blocks until autoneg completes or times out (~4.5 seconds)
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+STATIC int32_t
+e1000_wait_autoneg(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    uint16_t i;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_wait_autoneg");
+    DEBUGOUT("Waiting for Auto-Neg to complete.\n");
+
+    /* We will wait for autoneg to complete or 4.5 seconds to expire. */
+    for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+        /* Read the MII Status Register and wait for Auto-Neg
+         * Complete bit to be set.
+         */
+        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+        if (ret_val)
+            return ret_val;
+        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+        if (ret_val)
+            return ret_val;
+        if (phy_data & MII_SR_AUTONEG_COMPLETE) {
+            return E1000_SUCCESS;
+        }
+        msec_delay(100);
+    }
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Raises the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void
+e1000_raise_mdi_clk(struct e1000_hw *hw,
+                    uint32_t *ctrl)
+{
+    /* Raise the clock input to the Management Data Clock (by setting the MDC
+     * bit), and then delay 10 microseconds.
+     */
+    E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
+    E1000_WRITE_FLUSH(hw);
+    usec_delay(10);
+}
+
+/******************************************************************************
+* Lowers the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void
+e1000_lower_mdi_clk(struct e1000_hw *hw,
+                    uint32_t *ctrl)
+{
+    /* Lower the clock input to the Management Data Clock (by clearing the MDC
+     * bit), and then delay 10 microseconds.
+     */
+    E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
+    E1000_WRITE_FLUSH(hw);
+    usec_delay(10);
+}
+
+/******************************************************************************
+* Shifts data bits out to the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* data - Data to send out to the PHY
+* count - Number of bits to shift out
+*
+* Bits are shifted out in MSB to LSB order.
+******************************************************************************/
+static void
+e1000_shift_out_mdi_bits(struct e1000_hw *hw,
+                         uint32_t data,
+                         uint16_t count)
+{
+    uint32_t ctrl;
+    uint32_t mask;
+
+    /* We need to shift "count" number of bits out to the PHY. So, the value
+     * in the "data" parameter will be shifted out to the PHY one bit at a
+     * time. In order to do this, "data" must be broken down into bits.
+     */
+    mask = 0x01;
+    mask <<= (count - 1);
+
+    ctrl = E1000_READ_REG(hw, CTRL);
+
+    /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+    ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+    while (mask) {
+        /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
+         * then raising and lowering the Management Data Clock. A "0" is
+         * shifted out to the PHY by setting the MDIO bit to "0" and then
+         * raising and lowering the clock.
+         */
+        if (data & mask)
+            ctrl |= E1000_CTRL_MDIO;
+        else
+            ctrl &= ~E1000_CTRL_MDIO;
+
+        E1000_WRITE_REG(hw, CTRL, ctrl);
+        E1000_WRITE_FLUSH(hw);
+
+        usec_delay(10);
+
+        e1000_raise_mdi_clk(hw, &ctrl);
+        e1000_lower_mdi_clk(hw, &ctrl);
+
+        mask = mask >> 1;
+    }
+}
+
+/******************************************************************************
+* Shifts data bits in from the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Bits are shifted in in MSB to LSB order.
+******************************************************************************/
+static uint16_t
+e1000_shift_in_mdi_bits(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+    uint16_t data = 0;
+    uint8_t i;
+
+    /* In order to read a register from the PHY, we need to shift in a total
+     * of 18 bits from the PHY. The first two bit (turnaround) times are used
+     * to avoid contention on the MDIO pin when a read operation is performed.
+     * These two bits are ignored by us and thrown away. Bits are "shifted in"
+     * by raising the input to the Management Data Clock (setting the MDC bit),
+     * and then reading the value of the MDIO bit.
+     */
+    ctrl = E1000_READ_REG(hw, CTRL);
+
+    /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
+    ctrl &= ~E1000_CTRL_MDIO_DIR;
+    ctrl &= ~E1000_CTRL_MDIO;
+
+    E1000_WRITE_REG(hw, CTRL, ctrl);
+    E1000_WRITE_FLUSH(hw);
+
+    /* Raise and Lower the clock before reading in the data. This accounts for
+     * the turnaround bits. The first clock occurred when we clocked out the
+     * last bit of the Register Address.
+     */
+    e1000_raise_mdi_clk(hw, &ctrl);
+    e1000_lower_mdi_clk(hw, &ctrl);
+
+    for (data = 0, i = 0; i < 16; i++) {
+        data = data << 1;
+        e1000_raise_mdi_clk(hw, &ctrl);
+        ctrl = E1000_READ_REG(hw, CTRL);
+        /* Check to see if we shifted in a "1". */
+        if (ctrl & E1000_CTRL_MDIO)
+            data |= 1;
+        e1000_lower_mdi_clk(hw, &ctrl);
+    }
+
+    e1000_raise_mdi_clk(hw, &ctrl);
+    e1000_lower_mdi_clk(hw, &ctrl);
+
+    return data;
+}
+
+STATIC int32_t
+e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
+{
+    uint32_t swfw_sync = 0;
+    uint32_t swmask = mask;
+    uint32_t fwmask = mask << 16;
+    int32_t timeout = 200;
+
+    DEBUGFUNC("e1000_swfw_sync_acquire");
+
+    if (hw->swfwhw_semaphore_present)
+        return e1000_get_software_flag(hw);
+
+    if (!hw->swfw_sync_present)
+        return e1000_get_hw_eeprom_semaphore(hw);
+
+    while (timeout) {
+            if (e1000_get_hw_eeprom_semaphore(hw))
+                return -E1000_ERR_SWFW_SYNC;
+
+            swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
+            if (!(swfw_sync & (fwmask | swmask))) {
+                break;
+            }
+
+            /* firmware currently using resource (fwmask) */
+            /* or other software thread currently using resource (swmask) */
+            e1000_put_hw_eeprom_semaphore(hw);
+            msec_delay_irq(5);
+            timeout--;
+    }
+
+    if (!timeout) {
+        DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+        return -E1000_ERR_SWFW_SYNC;
+    }
+
+    swfw_sync |= swmask;
+    E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
+
+    e1000_put_hw_eeprom_semaphore(hw);
+    return E1000_SUCCESS;
+}
+
+STATIC void
+e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
+{
+    uint32_t swfw_sync;
+    uint32_t swmask = mask;
+
+    DEBUGFUNC("e1000_swfw_sync_release");
+
+    if (hw->swfwhw_semaphore_present) {
+        e1000_release_software_flag(hw);
+        return;
+    }
+
+    if (!hw->swfw_sync_present) {
+        e1000_put_hw_eeprom_semaphore(hw);
+        return;
+    }
+
+    /* if (e1000_get_hw_eeprom_semaphore(hw))
+     *    return -E1000_ERR_SWFW_SYNC; */
+    while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
+        /* empty */
+
+    swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
+    swfw_sync &= ~swmask;
+    E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
+
+    e1000_put_hw_eeprom_semaphore(hw);
+}
+
+/*****************************************************************************
+* Reads the value from a PHY register, if the value is on a specific non zero
+* page, sets the page first.
+* hw - Struct containing variables accessed by shared code
+* reg_addr - address of the PHY register to read
+******************************************************************************/
+int32_t
+e1000_read_phy_reg(struct e1000_hw *hw,
+                   uint32_t reg_addr,
+                   uint16_t *phy_data)
+{
+    uint32_t ret_val;
+    uint16_t swfw;
+
+    DEBUGFUNC("e1000_read_phy_reg");
+
+    if ((hw->mac_type == e1000_80003es2lan) &&
+        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
+        swfw = E1000_SWFW_PHY1_SM;
+    } else {
+        swfw = E1000_SWFW_PHY0_SM;
+    }
+    if (e1000_swfw_sync_acquire(hw, swfw))
+        return -E1000_ERR_SWFW_SYNC;
+
+    if ((hw->phy_type == e1000_phy_igp ||
+        hw->phy_type == e1000_phy_igp_3 ||
+        hw->phy_type == e1000_phy_igp_2) &&
+       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+        ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+                                         (uint16_t)reg_addr);
+        if (ret_val) {
+            e1000_swfw_sync_release(hw, swfw);
+            return ret_val;
+        }
+    } else if (hw->phy_type == e1000_phy_gg82563) {
+        if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
+            (hw->mac_type == e1000_80003es2lan)) {
+            /* Select Configuration Page */
+            if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+                ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
+                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
+            } else {
+                /* Use Alternative Page Select register to access
+                 * registers 30 and 31
+                 */
+                ret_val = e1000_write_phy_reg_ex(hw,
+                                                 GG82563_PHY_PAGE_SELECT_ALT,
+                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
+            }
+
+            if (ret_val) {
+                e1000_swfw_sync_release(hw, swfw);
+                return ret_val;
+            }
+        }
+    }
+
+    ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+                                    phy_data);
+
+    e1000_swfw_sync_release(hw, swfw);
+    return ret_val;
+}
+
+STATIC int32_t
+e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
+                      uint16_t *phy_data)
+{
+    uint32_t i;
+    uint32_t mdic = 0;
+    const uint32_t phy_addr = 1;
+
+    DEBUGFUNC("e1000_read_phy_reg_ex");
+
+    if (reg_addr > MAX_PHY_REG_ADDRESS) {
+        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+        return -E1000_ERR_PARAM;
+    }
+
+    if (hw->mac_type > e1000_82543) {
+        /* Set up Op-code, Phy Address, and register address in the MDI
+         * Control register.  The MAC will take care of interfacing with the
+         * PHY to retrieve the desired data.
+         */
+        mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
+                (phy_addr << E1000_MDIC_PHY_SHIFT) |
+                (E1000_MDIC_OP_READ));
+
+        E1000_WRITE_REG(hw, MDIC, mdic);
+
+        /* Poll the ready bit to see if the MDI read completed */
+        for (i = 0; i < 64; i++) {
+            usec_delay(50);
+            mdic = E1000_READ_REG(hw, MDIC);
+            if (mdic & E1000_MDIC_READY) break;
+        }
+        if (!(mdic & E1000_MDIC_READY)) {
+            DEBUGOUT("MDI Read did not complete\n");
+            return -E1000_ERR_PHY;
+        }
+        if (mdic & E1000_MDIC_ERROR) {
+            DEBUGOUT("MDI Error\n");
+            return -E1000_ERR_PHY;
+        }
+        *phy_data = (uint16_t) mdic;
+    } else {
+        /* We must first send a preamble through the MDIO pin to signal the
+         * beginning of an MII instruction.  This is done by sending 32
+         * consecutive "1" bits.
+         */
+        e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+        /* Now combine the next few fields that are required for a read
+         * operation.  We use this method instead of calling the
+         * e1000_shift_out_mdi_bits routine five different times. The format of
+         * a MII read instruction consists of a shift out of 14 bits and is
+         * defined as follows:
+         *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
+         * followed by a shift in of 18 bits.  This first two bits shifted in
+         * are TurnAround bits used to avoid contention on the MDIO pin when a
+         * READ operation is performed.  These two bits are thrown away
+         * followed by a shift in of 16 bits which contains the desired data.
+         */
+        mdic = ((reg_addr) | (phy_addr << 5) |
+                (PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+        e1000_shift_out_mdi_bits(hw, mdic, 14);
+
+        /* Now that we've shifted out the read command to the MII, we need to
+         * "shift in" the 16-bit value (18 total bits) of the requested PHY
+         * register address.
+         */
+        *phy_data = e1000_shift_in_mdi_bits(hw);
+    }
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Writes a value to a PHY register
+*
+* hw - Struct containing variables accessed by shared code
+* reg_addr - address of the PHY register to write
+* data - data to write to the PHY
+******************************************************************************/
+int32_t
+e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
+                    uint16_t phy_data)
+{
+    uint32_t ret_val;
+    uint16_t swfw;
+
+    DEBUGFUNC("e1000_write_phy_reg");
+
+    if ((hw->mac_type == e1000_80003es2lan) &&
+        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
+        swfw = E1000_SWFW_PHY1_SM;
+    } else {
+        swfw = E1000_SWFW_PHY0_SM;
+    }
+    if (e1000_swfw_sync_acquire(hw, swfw))
+        return -E1000_ERR_SWFW_SYNC;
+
+    if ((hw->phy_type == e1000_phy_igp ||
+        hw->phy_type == e1000_phy_igp_3 ||
+        hw->phy_type == e1000_phy_igp_2) &&
+       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+        ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+                                         (uint16_t)reg_addr);
+        if (ret_val) {
+            e1000_swfw_sync_release(hw, swfw);
+            return ret_val;
+        }
+    } else if (hw->phy_type == e1000_phy_gg82563) {
+        if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
+            (hw->mac_type == e1000_80003es2lan)) {
+            /* Select Configuration Page */
+            if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+                ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
+                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
+            } else {
+                /* Use Alternative Page Select register to access
+                 * registers 30 and 31
+                 */
+                ret_val = e1000_write_phy_reg_ex(hw,
+                                                 GG82563_PHY_PAGE_SELECT_ALT,
+                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
+            }
+
+            if (ret_val) {
+                e1000_swfw_sync_release(hw, swfw);
+                return ret_val;
+            }
+        }
+    }
+
+    ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+                                     phy_data);
+
+    e1000_swfw_sync_release(hw, swfw);
+    return ret_val;
+}
+
+STATIC int32_t
+e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
+                       uint16_t phy_data)
+{
+    uint32_t i;
+    uint32_t mdic = 0;
+    const uint32_t phy_addr = 1;
+
+    DEBUGFUNC("e1000_write_phy_reg_ex");
+
+    if (reg_addr > MAX_PHY_REG_ADDRESS) {
+        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+        return -E1000_ERR_PARAM;
+    }
+
+    if (hw->mac_type > e1000_82543) {
+        /* Set up Op-code, Phy Address, register address, and data intended
+         * for the PHY register in the MDI Control register.  The MAC will take
+         * care of interfacing with the PHY to send the desired data.
+         */
+        mdic = (((uint32_t) phy_data) |
+                (reg_addr << E1000_MDIC_REG_SHIFT) |
+                (phy_addr << E1000_MDIC_PHY_SHIFT) |
+                (E1000_MDIC_OP_WRITE));
+
+        E1000_WRITE_REG(hw, MDIC, mdic);
+
+        /* Poll the ready bit to see if the MDI read completed */
+        for (i = 0; i < 641; i++) {
+            usec_delay(5);
+            mdic = E1000_READ_REG(hw, MDIC);
+            if (mdic & E1000_MDIC_READY) break;
+        }
+        if (!(mdic & E1000_MDIC_READY)) {
+            DEBUGOUT("MDI Write did not complete\n");
+            return -E1000_ERR_PHY;
+        }
+    } else {
+        /* We'll need to use the SW defined pins to shift the write command
+         * out to the PHY. We first send a preamble to the PHY to signal the
+         * beginning of the MII instruction.  This is done by sending 32
+         * consecutive "1" bits.
+         */
+        e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+        /* Now combine the remaining required fields that will indicate a
+         * write operation. We use this method instead of calling the
+         * e1000_shift_out_mdi_bits routine for each field in the command. The
+         * format of a MII write instruction is as follows:
+         * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+         */
+        mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
+                (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+        mdic <<= 16;
+        mdic |= (uint32_t) phy_data;
+
+        e1000_shift_out_mdi_bits(hw, mdic, 32);
+    }
+
+    return E1000_SUCCESS;
+}
+
+STATIC int32_t
+e1000_read_kmrn_reg(struct e1000_hw *hw,
+                    uint32_t reg_addr,
+                    uint16_t *data)
+{
+    uint32_t reg_val;
+    uint16_t swfw;
+    DEBUGFUNC("e1000_read_kmrn_reg");
+
+    if ((hw->mac_type == e1000_80003es2lan) &&
+        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
+        swfw = E1000_SWFW_PHY1_SM;
+    } else {
+        swfw = E1000_SWFW_PHY0_SM;
+    }
+    if (e1000_swfw_sync_acquire(hw, swfw))
+        return -E1000_ERR_SWFW_SYNC;
+
+    /* Write register address */
+    reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
+              E1000_KUMCTRLSTA_OFFSET) |
+              E1000_KUMCTRLSTA_REN;
+    E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
+    usec_delay(2);
+
+    /* Read the data returned */
+    reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
+    *data = (uint16_t)reg_val;
+
+    e1000_swfw_sync_release(hw, swfw);
+    return E1000_SUCCESS;
+}
+
+STATIC int32_t
+e1000_write_kmrn_reg(struct e1000_hw *hw,
+                     uint32_t reg_addr,
+                     uint16_t data)
+{
+    uint32_t reg_val;
+    uint16_t swfw;
+    DEBUGFUNC("e1000_write_kmrn_reg");
+
+    if ((hw->mac_type == e1000_80003es2lan) &&
+        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
+        swfw = E1000_SWFW_PHY1_SM;
+    } else {
+        swfw = E1000_SWFW_PHY0_SM;
+    }
+    if (e1000_swfw_sync_acquire(hw, swfw))
+        return -E1000_ERR_SWFW_SYNC;
+
+    reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
+              E1000_KUMCTRLSTA_OFFSET) | data;
+    E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
+    usec_delay(2);
+
+    e1000_swfw_sync_release(hw, swfw);
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Returns the PHY to the power-on reset state
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+    uint32_t ctrl, ctrl_ext;
+    uint32_t led_ctrl;
+    int32_t ret_val;
+    uint16_t swfw;
+
+    DEBUGFUNC("e1000_phy_hw_reset");
+
+    /* In the case of the phy reset being blocked, it's not an error, we
+     * simply return success without performing the reset. */
+    ret_val = e1000_check_phy_reset_block(hw);
+    if (ret_val)
+        return E1000_SUCCESS;
+
+    DEBUGOUT("Resetting Phy...\n");
+
+    if (hw->mac_type > e1000_82543) {
+        if ((hw->mac_type == e1000_80003es2lan) &&
+            (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
+            swfw = E1000_SWFW_PHY1_SM;
+        } else {
+            swfw = E1000_SWFW_PHY0_SM;
+        }
+        if (e1000_swfw_sync_acquire(hw, swfw)) {
+            DEBUGOUT("Unable to acquire swfw sync\n");
+            return -E1000_ERR_SWFW_SYNC;
+        }
+        /* Read the device control register and assert the E1000_CTRL_PHY_RST
+         * bit. Then, take it out of reset.
+         * For pre-e1000_82571 hardware, we delay for 10ms between the assert
+         * and deassert.  For e1000_82571 hardware and later, we instead delay
+         * for 50us between and 10ms after the deassertion.
+         */
+        ctrl = E1000_READ_REG(hw, CTRL);
+        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
+        E1000_WRITE_FLUSH(hw);
+
+        if (hw->mac_type < e1000_82571)
+            msec_delay(10);
+        else
+            usec_delay(100);
+
+        E1000_WRITE_REG(hw, CTRL, ctrl);
+        E1000_WRITE_FLUSH(hw);
+
+        if (hw->mac_type >= e1000_82571)
+            msec_delay_irq(10);
+
+        e1000_swfw_sync_release(hw, swfw);
+    } else {
+        /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
+         * bit to put the PHY into reset. Then, take it out of reset.
+         */
+        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+        ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+        ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+        E1000_WRITE_FLUSH(hw);
+        msec_delay(10);
+        ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+        E1000_WRITE_FLUSH(hw);
+    }
+    usec_delay(150);
+
+    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+        /* Configure activity LED after PHY reset */
+        led_ctrl = E1000_READ_REG(hw, LEDCTL);
+        led_ctrl &= IGP_ACTIVITY_LED_MASK;
+        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+    }
+
+    /* Wait for FW to finish PHY configuration. */
+    ret_val = e1000_get_phy_cfg_done(hw);
+    if (ret_val != E1000_SUCCESS)
+        return ret_val;
+    e1000_release_software_semaphore(hw);
+
+    if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
+        ret_val = e1000_init_lcd_from_nvm(hw);
+
+    return ret_val;
+}
+
+/******************************************************************************
+* Resets the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Sets bit 15 of the MII Control regiser
+******************************************************************************/
+int32_t
+e1000_phy_reset(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_phy_reset");
+
+    /* In the case of the phy reset being blocked, it's not an error, we
+     * simply return success without performing the reset. */
+    ret_val = e1000_check_phy_reset_block(hw);
+    if (ret_val)
+        return E1000_SUCCESS;
+
+    switch (hw->phy_type) {
+    case e1000_phy_igp:
+    case e1000_phy_igp_2:
+    case e1000_phy_igp_3:
+    case e1000_phy_ife:
+        ret_val = e1000_phy_hw_reset(hw);
+        if (ret_val)
+            return ret_val;
+        break;
+    default:
+        ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_data |= MII_CR_RESET;
+        ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+        if (ret_val)
+            return ret_val;
+
+        usec_delay(1);
+        break;
+    }
+
+    if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
+        e1000_phy_init_script(hw);
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Work-around for 82566 power-down: on D3 entry-
+* 1) disable gigabit link
+* 2) write VR power-down enable
+* 3) read it back
+* if successful continue, else issue LCD reset and repeat
+*
+* hw - struct containing variables accessed by shared code
+******************************************************************************/
+void
+e1000_phy_powerdown_workaround(struct e1000_hw *hw)
+{
+    int32_t reg;
+    uint16_t phy_data;
+    int32_t retry = 0;
+
+    DEBUGFUNC("e1000_phy_powerdown_workaround");
+
+    if (hw->phy_type != e1000_phy_igp_3)
+        return;
+
+    do {
+        /* Disable link */
+        reg = E1000_READ_REG(hw, PHY_CTRL);
+        E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
+                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+
+        /* Write VR power-down enable - bits 9:8 should be 10b */
+        e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
+        phy_data |= (1 << 9);
+        phy_data &= ~(1 << 8);
+        e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data);
+
+        /* Read it back and test */
+        e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
+        if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry)
+            break;
+
+        /* Issue PHY reset and repeat at most one more time */
+        reg = E1000_READ_REG(hw, CTRL);
+        E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
+        retry++;
+    } while (retry);
+
+    return;
+
+}
+
+/******************************************************************************
+* Work-around for 82566 Kumeran PCS lock loss:
+* On link status change (i.e. PCI reset, speed change) and link is up and
+* speed is gigabit-
+* 0) if workaround is optionally disabled do nothing
+* 1) wait 1ms for Kumeran link to come up
+* 2) check Kumeran Diagnostic register PCS lock loss bit
+* 3) if not set the link is locked (all is good), otherwise...
+* 4) reset the PHY
+* 5) repeat up to 10 times
+* Note: this is only called for IGP3 copper when speed is 1gb.
+*
+* hw - struct containing variables accessed by shared code
+******************************************************************************/
+STATIC int32_t
+e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    int32_t reg;
+    int32_t cnt;
+    uint16_t phy_data;
+
+    if (hw->kmrn_lock_loss_workaround_disabled)
+        return E1000_SUCCESS;
+
+    /* Make sure link is up before proceeding.  If not just return.
+     * Attempting this while link is negotiating fouled up link
+     * stability */
+    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+
+    if (phy_data & MII_SR_LINK_STATUS) {
+        for (cnt = 0; cnt < 10; cnt++) {
+            /* read once to clear */
+            ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
+            if (ret_val)
+                return ret_val;
+            /* and again to get new status */
+            ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
+            if (ret_val)
+                return ret_val;
+
+            /* check for PCS lock */
+            if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
+                return E1000_SUCCESS;
+
+            /* Issue PHY reset */
+            e1000_phy_hw_reset(hw);
+            msec_delay_irq(5);
+        }
+        /* Disable GigE link negotiation */
+        reg = E1000_READ_REG(hw, PHY_CTRL);
+        E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
+                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+
+        /* unable to acquire PCS lock */
+        return E1000_ERR_PHY;
+    }
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Probes the expected PHY address for known PHY IDs
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+STATIC int32_t
+e1000_detect_gig_phy(struct e1000_hw *hw)
+{
+    int32_t phy_init_status, ret_val;
+    uint16_t phy_id_high, phy_id_low;
+    boolean_t match = FALSE;
+
+    DEBUGFUNC("e1000_detect_gig_phy");
+
+    if (hw->phy_id != 0)
+        return E1000_SUCCESS;
+
+    /* The 82571 firmware may still be configuring the PHY.  In this
+     * case, we cannot access the PHY until the configuration is done.  So
+     * we explicitly set the PHY values. */
+    if (hw->mac_type == e1000_82571 ||
+        hw->mac_type == e1000_82572) {
+        hw->phy_id = IGP01E1000_I_PHY_ID;
+        hw->phy_type = e1000_phy_igp_2;
+        return E1000_SUCCESS;
+    }
+
+    /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
+     * around that forces PHY page 0 to be set or the reads fail.  The rest of
+     * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
+     * So for ESB-2 we need to have this set so our reads won't fail.  If the
+     * attached PHY is not a e1000_phy_gg82563, the routines below will figure
+     * this out as well. */
+    if (hw->mac_type == e1000_80003es2lan)
+        hw->phy_type = e1000_phy_gg82563;
+
+    /* Read the PHY ID Registers to identify which PHY is onboard. */
+    ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
+    if (ret_val)
+        return ret_val;
+
+    hw->phy_id = (uint32_t) (phy_id_high << 16);
+    usec_delay(20);
+    ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
+    if (ret_val)
+        return ret_val;
+
+    hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
+    hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
+
+    switch (hw->mac_type) {
+    case e1000_82543:
+        if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
+        break;
+    case e1000_82544:
+        if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
+        break;
+    case e1000_82540:
+    case e1000_82545:
+    case e1000_82545_rev_3:
+    case e1000_82546:
+    case e1000_82546_rev_3:
+        if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
+        break;
+    case e1000_82541:
+    case e1000_82541_rev_2:
+    case e1000_82547:
+    case e1000_82547_rev_2:
+        if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
+        break;
+    case e1000_82573:
+        if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
+        break;
+    case e1000_80003es2lan:
+        if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
+        break;
+    case e1000_ich8lan:
+        if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
+        if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
+        if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
+        if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
+        break;
+    default:
+        DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
+        return -E1000_ERR_CONFIG;
+    }
+    phy_init_status = e1000_set_phy_type(hw);
+
+    if ((match) && (phy_init_status == E1000_SUCCESS)) {
+        DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
+        return E1000_SUCCESS;
+    }
+    DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
+    return -E1000_ERR_PHY;
+}
+
+/******************************************************************************
+* Resets the PHY's DSP
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_phy_reset_dsp(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    DEBUGFUNC("e1000_phy_reset_dsp");
+
+    do {
+        if (hw->phy_type != e1000_phy_gg82563) {
+            ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
+            if (ret_val) break;
+        }
+        ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
+        if (ret_val) break;
+        ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
+        if (ret_val) break;
+        ret_val = E1000_SUCCESS;
+    } while (0);
+
+    return ret_val;
+}
+
+/******************************************************************************
+* Get PHY information from various PHY registers for igp PHY only.
+*
+* hw - Struct containing variables accessed by shared code
+* phy_info - PHY information structure
+******************************************************************************/
+STATIC int32_t
+e1000_phy_igp_get_info(struct e1000_hw *hw,
+                       struct e1000_phy_info *phy_info)
+{
+    int32_t ret_val;
+    uint16_t phy_data, min_length, max_length, average;
+    e1000_rev_polarity polarity;
+
+    DEBUGFUNC("e1000_phy_igp_get_info");
+
+    /* The downshift status is checked only once, after link is established,
+     * and it stored in the hw->speed_downgraded parameter. */
+    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
+
+    /* IGP01E1000 does not need to support it. */
+    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
+
+    /* IGP01E1000 always correct polarity reversal */
+    phy_info->polarity_correction = e1000_polarity_reversal_enabled;
+
+    /* Check polarity status */
+    ret_val = e1000_check_polarity(hw, &polarity);
+    if (ret_val)
+        return ret_val;
+
+    phy_info->cable_polarity = polarity;
+
+    ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
+    if (ret_val)
+        return ret_val;
+
+    phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
+                          IGP01E1000_PSSR_MDIX_SHIFT);
+
+    if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+       IGP01E1000_PSSR_SPEED_1000MBPS) {
+        /* Local/Remote Receiver Information are only valid at 1000 Mbps */
+        ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+                             SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+                             e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+        phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+                              SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+        /* Get cable length */
+        ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
+        if (ret_val)
+            return ret_val;
+
+        /* Translate to old method */
+        average = (max_length + min_length) / 2;
+
+        if (average <= e1000_igp_cable_length_50)
+            phy_info->cable_length = e1000_cable_length_50;
+        else if (average <= e1000_igp_cable_length_80)
+            phy_info->cable_length = e1000_cable_length_50_80;
+        else if (average <= e1000_igp_cable_length_110)
+            phy_info->cable_length = e1000_cable_length_80_110;
+        else if (average <= e1000_igp_cable_length_140)
+            phy_info->cable_length = e1000_cable_length_110_140;
+        else
+            phy_info->cable_length = e1000_cable_length_140;
+    }
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Get PHY information from various PHY registers for ife PHY only.
+*
+* hw - Struct containing variables accessed by shared code
+* phy_info - PHY information structure
+******************************************************************************/
+STATIC int32_t
+e1000_phy_ife_get_info(struct e1000_hw *hw,
+                       struct e1000_phy_info *phy_info)
+{
+    int32_t ret_val;
+    uint16_t phy_data;
+    e1000_rev_polarity polarity;
+
+    DEBUGFUNC("e1000_phy_ife_get_info");
+
+    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
+    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
+
+    ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
+    if (ret_val)
+        return ret_val;
+    phy_info->polarity_correction =
+                        ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
+                        IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ?
+                        e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
+
+    if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
+        ret_val = e1000_check_polarity(hw, &polarity);
+        if (ret_val)
+            return ret_val;
+    } else {
+        /* Polarity is forced. */
+        polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >>
+                     IFE_PSC_FORCE_POLARITY_SHIFT) ?
+                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
+    }
+    phy_info->cable_polarity = polarity;
+
+    ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
+    if (ret_val)
+        return ret_val;
+
+    phy_info->mdix_mode = (e1000_auto_x_mode)
+                     ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
+                     IFE_PMC_MDIX_MODE_SHIFT);
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Get PHY information from various PHY registers fot m88 PHY only.
+*
+* hw - Struct containing variables accessed by shared code
+* phy_info - PHY information structure
+******************************************************************************/
+STATIC int32_t
+e1000_phy_m88_get_info(struct e1000_hw *hw,
+                       struct e1000_phy_info *phy_info)
+{
+    int32_t ret_val;
+    uint16_t phy_data;
+    e1000_rev_polarity polarity;
+
+    DEBUGFUNC("e1000_phy_m88_get_info");
+
+    /* The downshift status is checked only once, after link is established,
+     * and it stored in the hw->speed_downgraded parameter. */
+    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
+
+    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+    if (ret_val)
+        return ret_val;
+
+    phy_info->extended_10bt_distance =
+        ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
+        M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
+        e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;
+
+    phy_info->polarity_correction =
+        ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
+        M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
+        e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
+
+    /* Check polarity status */
+    ret_val = e1000_check_polarity(hw, &polarity);
+    if (ret_val)
+        return ret_val;
+    phy_info->cable_polarity = polarity;
+
+    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+    if (ret_val)
+        return ret_val;
+
+    phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
+                          M88E1000_PSSR_MDIX_SHIFT);
+
+    if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+        /* Cable Length Estimation and Local/Remote Receiver Information
+         * are only valid at 1000 Mbps.
+         */
+        if (hw->phy_type != e1000_phy_gg82563) {
+            phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+                                      M88E1000_PSSR_CABLE_LENGTH_SHIFT);
+        } else {
+            ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
+                                         &phy_data);
+            if (ret_val)
+                return ret_val;
+
+            phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH);
+        }
+
+        ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+                             SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+                             e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+        phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+                              SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+    }
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Get PHY information from various PHY registers
+*
+* hw - Struct containing variables accessed by shared code
+* phy_info - PHY information structure
+******************************************************************************/
+int32_t
+e1000_phy_get_info(struct e1000_hw *hw,
+                   struct e1000_phy_info *phy_info)
+{
+    int32_t ret_val;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_phy_get_info");
+
+    phy_info->cable_length = e1000_cable_length_undefined;
+    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
+    phy_info->cable_polarity = e1000_rev_polarity_undefined;
+    phy_info->downshift = e1000_downshift_undefined;
+    phy_info->polarity_correction = e1000_polarity_reversal_undefined;
+    phy_info->mdix_mode = e1000_auto_x_mode_undefined;
+    phy_info->local_rx = e1000_1000t_rx_status_undefined;
+    phy_info->remote_rx = e1000_1000t_rx_status_undefined;
+
+    if (hw->media_type != e1000_media_type_copper) {
+        DEBUGOUT("PHY info is only valid for copper media\n");
+        return -E1000_ERR_CONFIG;
+    }
+
+    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+    if (ret_val)
+        return ret_val;
+
+    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+    if (ret_val)
+        return ret_val;
+
+    if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
+        DEBUGOUT("PHY info is only valid if link is up\n");
+        return -E1000_ERR_CONFIG;
+    }
+
+    if (hw->phy_type == e1000_phy_igp ||
+        hw->phy_type == e1000_phy_igp_3 ||
+        hw->phy_type == e1000_phy_igp_2)
+        return e1000_phy_igp_get_info(hw, phy_info);
+    else if (hw->phy_type == e1000_phy_ife)
+        return e1000_phy_ife_get_info(hw, phy_info);
+    else
+        return e1000_phy_m88_get_info(hw, phy_info);
+}
+
+int32_t
+e1000_validate_mdi_setting(struct e1000_hw *hw)
+{
+    DEBUGFUNC("e1000_validate_mdi_settings");
+
+    if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
+        DEBUGOUT("Invalid MDI setting detected\n");
+        hw->mdix = 1;
+        return -E1000_ERR_CONFIG;
+    }
+    return E1000_SUCCESS;
+}
+
+
+/******************************************************************************
+ * Sets up eeprom variables in the hw struct.  Must be called after mac_type
+ * is configured.  Additionally, if this is ICH8, the flash controller GbE
+ * registers must be mapped, or this will crash.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_init_eeprom_params(struct e1000_hw *hw)
+{
+    struct e1000_eeprom_info *eeprom = &hw->eeprom;
+    uint32_t eecd = E1000_READ_REG(hw, EECD);
+    int32_t ret_val = E1000_SUCCESS;
+    uint16_t eeprom_size;
+
+    DEBUGFUNC("e1000_init_eeprom_params");
+
+    switch (hw->mac_type) {
+    case e1000_82542_rev2_0:
+    case e1000_82542_rev2_1:
+    case e1000_82543:
+    case e1000_82544:
+        eeprom->type = e1000_eeprom_microwire;
+        eeprom->word_size = 64;
+        eeprom->opcode_bits = 3;
+        eeprom->address_bits = 6;
+        eeprom->delay_usec = 50;
+        eeprom->use_eerd = FALSE;
+        eeprom->use_eewr = FALSE;
+        break;
+    case e1000_82540:
+    case e1000_82545:
+    case e1000_82545_rev_3:
+    case e1000_82546:
+    case e1000_82546_rev_3:
+        eeprom->type = e1000_eeprom_microwire;
+        eeprom->opcode_bits = 3;
+        eeprom->delay_usec = 50;
+        if (eecd & E1000_EECD_SIZE) {
+            eeprom->word_size = 256;
+            eeprom->address_bits = 8;
+        } else {
+            eeprom->word_size = 64;
+            eeprom->address_bits = 6;
+        }
+        eeprom->use_eerd = FALSE;
+        eeprom->use_eewr = FALSE;
+        break;
+    case e1000_82541:
+    case e1000_82541_rev_2:
+    case e1000_82547:
+    case e1000_82547_rev_2:
+        if (eecd & E1000_EECD_TYPE) {
+            eeprom->type = e1000_eeprom_spi;
+            eeprom->opcode_bits = 8;
+            eeprom->delay_usec = 1;
+            if (eecd & E1000_EECD_ADDR_BITS) {
+                eeprom->page_size = 32;
+                eeprom->address_bits = 16;
+            } else {
+                eeprom->page_size = 8;
+                eeprom->address_bits = 8;
+            }
+        } else {
+            eeprom->type = e1000_eeprom_microwire;
+            eeprom->opcode_bits = 3;
+            eeprom->delay_usec = 50;
+            if (eecd & E1000_EECD_ADDR_BITS) {
+                eeprom->word_size = 256;
+                eeprom->address_bits = 8;
+            } else {
+                eeprom->word_size = 64;
+                eeprom->address_bits = 6;
+            }
+        }
+        eeprom->use_eerd = FALSE;
+        eeprom->use_eewr = FALSE;
+        break;
+    case e1000_82571:
+    case e1000_82572:
+        eeprom->type = e1000_eeprom_spi;
+        eeprom->opcode_bits = 8;
+        eeprom->delay_usec = 1;
+        if (eecd & E1000_EECD_ADDR_BITS) {
+            eeprom->page_size = 32;
+            eeprom->address_bits = 16;
+        } else {
+            eeprom->page_size = 8;
+            eeprom->address_bits = 8;
+        }
+        eeprom->use_eerd = FALSE;
+        eeprom->use_eewr = FALSE;
+        break;
+    case e1000_82573:
+        eeprom->type = e1000_eeprom_spi;
+        eeprom->opcode_bits = 8;
+        eeprom->delay_usec = 1;
+        if (eecd & E1000_EECD_ADDR_BITS) {
+            eeprom->page_size = 32;
+            eeprom->address_bits = 16;
+        } else {
+            eeprom->page_size = 8;
+            eeprom->address_bits = 8;
+        }
+        eeprom->use_eerd = TRUE;
+        eeprom->use_eewr = TRUE;
+        if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
+            eeprom->type = e1000_eeprom_flash;
+            eeprom->word_size = 2048;
+
+            /* Ensure that the Autonomous FLASH update bit is cleared due to
+             * Flash update issue on parts which use a FLASH for NVM. */
+            eecd &= ~E1000_EECD_AUPDEN;
+            E1000_WRITE_REG(hw, EECD, eecd);
+        }
+        break;
+    case e1000_80003es2lan:
+        eeprom->type = e1000_eeprom_spi;
+        eeprom->opcode_bits = 8;
+        eeprom->delay_usec = 1;
+        if (eecd & E1000_EECD_ADDR_BITS) {
+            eeprom->page_size = 32;
+            eeprom->address_bits = 16;
+        } else {
+            eeprom->page_size = 8;
+            eeprom->address_bits = 8;
+        }
+        eeprom->use_eerd = TRUE;
+        eeprom->use_eewr = FALSE;
+        break;
+    case e1000_ich8lan:
+        {
+        int32_t  i = 0;
+        uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG);
+
+        eeprom->type = e1000_eeprom_ich8;
+        eeprom->use_eerd = FALSE;
+        eeprom->use_eewr = FALSE;
+        eeprom->word_size = E1000_SHADOW_RAM_WORDS;
+
+        /* Zero the shadow RAM structure. But don't load it from NVM
+         * so as to save time for driver init */
+        if (hw->eeprom_shadow_ram != NULL) {
+            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+                hw->eeprom_shadow_ram[i].modified = FALSE;
+                hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
+            }
+        }
+
+        hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
+                              ICH_FLASH_SECTOR_SIZE;
+
+        hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
+        hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
+
+        hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
+
+        hw->flash_bank_size /= 2 * sizeof(uint16_t);
+
+        break;
+        }
+    default:
+        break;
+    }
+
+    if (eeprom->type == e1000_eeprom_spi) {
+        /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
+         * 32KB (incremented by powers of 2).
+         */
+        if (hw->mac_type <= e1000_82547_rev_2) {
+            /* Set to default value for initial eeprom read. */
+            eeprom->word_size = 64;
+            ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
+            if (ret_val)
+                return ret_val;
+            eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
+            /* 256B eeprom size was not supported in earlier hardware, so we
+             * bump eeprom_size up one to ensure that "1" (which maps to 256B)
+             * is never the result used in the shifting logic below. */
+            if (eeprom_size)
+                eeprom_size++;
+        } else {
+            eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+                          E1000_EECD_SIZE_EX_SHIFT);
+        }
+
+        eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
+    }
+    return ret_val;
+}
+
+/******************************************************************************
+ * Raises the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+static void
+e1000_raise_ee_clk(struct e1000_hw *hw,
+                   uint32_t *eecd)
+{
+    /* Raise the clock input to the EEPROM (by setting the SK bit), and then
+     * wait <delay> microseconds.
+     */
+    *eecd = *eecd | E1000_EECD_SK;
+    E1000_WRITE_REG(hw, EECD, *eecd);
+    E1000_WRITE_FLUSH(hw);
+    usec_delay(hw->eeprom.delay_usec);
+}
+
+/******************************************************************************
+ * Lowers the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+static void
+e1000_lower_ee_clk(struct e1000_hw *hw,
+                   uint32_t *eecd)
+{
+    /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
+     * wait 50 microseconds.
+     */
+    *eecd = *eecd & ~E1000_EECD_SK;
+    E1000_WRITE_REG(hw, EECD, *eecd);
+    E1000_WRITE_FLUSH(hw);
+    usec_delay(hw->eeprom.delay_usec);
+}
+
+/******************************************************************************
+ * Shift data bits out to the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * data - data to send to the EEPROM
+ * count - number of bits to shift out
+ *****************************************************************************/
+static void
+e1000_shift_out_ee_bits(struct e1000_hw *hw,
+                        uint16_t data,
+                        uint16_t count)
+{
+    struct e1000_eeprom_info *eeprom = &hw->eeprom;
+    uint32_t eecd;
+    uint32_t mask;
+
+    /* We need to shift "count" bits out to the EEPROM. So, value in the
+     * "data" parameter will be shifted out to the EEPROM one bit at a time.
+     * In order to do this, "data" must be broken down into bits.
+     */
+    mask = 0x01 << (count - 1);
+    eecd = E1000_READ_REG(hw, EECD);
+    if (eeprom->type == e1000_eeprom_microwire) {
+        eecd &= ~E1000_EECD_DO;
+    } else if (eeprom->type == e1000_eeprom_spi) {
+        eecd |= E1000_EECD_DO;
+    }
+    do {
+        /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
+         * and then raising and then lowering the clock (the SK bit controls
+         * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
+         * by setting "DI" to "0" and then raising and then lowering the clock.
+         */
+        eecd &= ~E1000_EECD_DI;
+
+        if (data & mask)
+            eecd |= E1000_EECD_DI;
+
+        E1000_WRITE_REG(hw, EECD, eecd);
+        E1000_WRITE_FLUSH(hw);
+
+        usec_delay(eeprom->delay_usec);
+
+        e1000_raise_ee_clk(hw, &eecd);
+        e1000_lower_ee_clk(hw, &eecd);
+
+        mask = mask >> 1;
+
+    } while (mask);
+
+    /* We leave the "DI" bit set to "0" when we leave this routine. */
+    eecd &= ~E1000_EECD_DI;
+    E1000_WRITE_REG(hw, EECD, eecd);
+}
+
+/******************************************************************************
+ * Shift data bits in from the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static uint16_t
+e1000_shift_in_ee_bits(struct e1000_hw *hw,
+                       uint16_t count)
+{
+    uint32_t eecd;
+    uint32_t i;
+    uint16_t data;
+
+    /* In order to read a register from the EEPROM, we need to shift 'count'
+     * bits in from the EEPROM. Bits are "shifted in" by raising the clock
+     * input to the EEPROM (setting the SK bit), and then reading the value of
+     * the "DO" bit.  During this "shifting in" process the "DI" bit should
+     * always be clear.
+     */
+
+    eecd = E1000_READ_REG(hw, EECD);
+
+    eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+    data = 0;
+
+    for (i = 0; i < count; i++) {
+        data = data << 1;
+        e1000_raise_ee_clk(hw, &eecd);
+
+        eecd = E1000_READ_REG(hw, EECD);
+
+        eecd &= ~(E1000_EECD_DI);
+        if (eecd & E1000_EECD_DO)
+            data |= 1;
+
+        e1000_lower_ee_clk(hw, &eecd);
+    }
+
+    return data;
+}
+
+/******************************************************************************
+ * Prepares EEPROM for access
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
+ * function should be called before issuing a command to the EEPROM.
+ *****************************************************************************/
+static int32_t
+e1000_acquire_eeprom(struct e1000_hw *hw)
+{
+    struct e1000_eeprom_info *eeprom = &hw->eeprom;
+    uint32_t eecd, i=0;
+
+    DEBUGFUNC("e1000_acquire_eeprom");
+
+    if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
+        return -E1000_ERR_SWFW_SYNC;
+    eecd = E1000_READ_REG(hw, EECD);
+
+    if (hw->mac_type != e1000_82573) {
+        /* Request EEPROM Access */
+        if (hw->mac_type > e1000_82544) {
+            eecd |= E1000_EECD_REQ;
+            E1000_WRITE_REG(hw, EECD, eecd);
+            eecd = E1000_READ_REG(hw, EECD);
+            while ((!(eecd & E1000_EECD_GNT)) &&
+                  (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
+                i++;
+                usec_delay(5);
+                eecd = E1000_READ_REG(hw, EECD);
+            }
+            if (!(eecd & E1000_EECD_GNT)) {
+                eecd &= ~E1000_EECD_REQ;
+                E1000_WRITE_REG(hw, EECD, eecd);
+                DEBUGOUT("Could not acquire EEPROM grant\n");
+                e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
+                return -E1000_ERR_EEPROM;
+            }
+        }
+    }
+
+    /* Setup EEPROM for Read/Write */
+
+    if (eeprom->type == e1000_eeprom_microwire) {
+        /* Clear SK and DI */
+        eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+        E1000_WRITE_REG(hw, EECD, eecd);
+
+        /* Set CS */
+        eecd |= E1000_EECD_CS;
+        E1000_WRITE_REG(hw, EECD, eecd);
+    } else if (eeprom->type == e1000_eeprom_spi) {
+        /* Clear SK and CS */
+        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+        E1000_WRITE_REG(hw, EECD, eecd);
+        usec_delay(1);
+    }
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Returns EEPROM to a "standby" state
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+e1000_standby_eeprom(struct e1000_hw *hw)
+{
+    struct e1000_eeprom_info *eeprom = &hw->eeprom;
+    uint32_t eecd;
+
+    eecd = E1000_READ_REG(hw, EECD);
+
+    if (eeprom->type == e1000_eeprom_microwire) {
+        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+        E1000_WRITE_REG(hw, EECD, eecd);
+        E1000_WRITE_FLUSH(hw);
+        usec_delay(eeprom->delay_usec);
+
+        /* Clock high */
+        eecd |= E1000_EECD_SK;
+        E1000_WRITE_REG(hw, EECD, eecd);
+        E1000_WRITE_FLUSH(hw);
+        usec_delay(eeprom->delay_usec);
+
+        /* Select EEPROM */
+        eecd |= E1000_EECD_CS;
+        E1000_WRITE_REG(hw, EECD, eecd);
+        E1000_WRITE_FLUSH(hw);
+        usec_delay(eeprom->delay_usec);
+
+        /* Clock low */
+        eecd &= ~E1000_EECD_SK;
+        E1000_WRITE_REG(hw, EECD, eecd);
+        E1000_WRITE_FLUSH(hw);
+        usec_delay(eeprom->delay_usec);
+    } else if (eeprom->type == e1000_eeprom_spi) {
+        /* Toggle CS to flush commands */
+        eecd |= E1000_EECD_CS;
+        E1000_WRITE_REG(hw, EECD, eecd);
+        E1000_WRITE_FLUSH(hw);
+        usec_delay(eeprom->delay_usec);
+        eecd &= ~E1000_EECD_CS;
+        E1000_WRITE_REG(hw, EECD, eecd);
+        E1000_WRITE_FLUSH(hw);
+        usec_delay(eeprom->delay_usec);
+    }
+}
+
+/******************************************************************************
+ * Terminates a command by inverting the EEPROM's chip select pin
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+e1000_release_eeprom(struct e1000_hw *hw)
+{
+    uint32_t eecd;
+
+    DEBUGFUNC("e1000_release_eeprom");
+
+    eecd = E1000_READ_REG(hw, EECD);
+
+    if (hw->eeprom.type == e1000_eeprom_spi) {
+        eecd |= E1000_EECD_CS;  /* Pull CS high */
+        eecd &= ~E1000_EECD_SK; /* Lower SCK */
+
+        E1000_WRITE_REG(hw, EECD, eecd);
+
+        usec_delay(hw->eeprom.delay_usec);
+    } else if (hw->eeprom.type == e1000_eeprom_microwire) {
+        /* cleanup eeprom */
+
+        /* CS on Microwire is active-high */
+        eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+
+        E1000_WRITE_REG(hw, EECD, eecd);
+
+        /* Rising edge of clock */
+        eecd |= E1000_EECD_SK;
+        E1000_WRITE_REG(hw, EECD, eecd);
+        E1000_WRITE_FLUSH(hw);
+        usec_delay(hw->eeprom.delay_usec);
+
+        /* Falling edge of clock */
+        eecd &= ~E1000_EECD_SK;
+        E1000_WRITE_REG(hw, EECD, eecd);
+        E1000_WRITE_FLUSH(hw);
+        usec_delay(hw->eeprom.delay_usec);
+    }
+
+    /* Stop requesting EEPROM access */
+    if (hw->mac_type > e1000_82544) {
+        eecd &= ~E1000_EECD_REQ;
+        E1000_WRITE_REG(hw, EECD, eecd);
+    }
+
+    e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
+}
+
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+STATIC int32_t
+e1000_spi_eeprom_ready(struct e1000_hw *hw)
+{
+    uint16_t retry_count = 0;
+    uint8_t spi_stat_reg;
+
+    DEBUGFUNC("e1000_spi_eeprom_ready");
+
+    /* Read "Status Register" repeatedly until the LSB is cleared.  The
+     * EEPROM will signal that the command has been completed by clearing
+     * bit 0 of the internal status register.  If it's not cleared within
+     * 5 milliseconds, then error out.
+     */
+    retry_count = 0;
+    do {
+        e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
+                                hw->eeprom.opcode_bits);
+        spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
+        if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
+            break;
+
+        usec_delay(5);
+        retry_count += 5;
+
+        e1000_standby_eeprom(hw);
+    } while (retry_count < EEPROM_MAX_RETRY_SPI);
+
+    /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
+     * only 0-5mSec on 5V devices)
+     */
+    if (retry_count >= EEPROM_MAX_RETRY_SPI) {
+        DEBUGOUT("SPI EEPROM Status error\n");
+        return -E1000_ERR_EEPROM;
+    }
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of  word in the EEPROM to read
+ * data - word read from the EEPROM
+ * words - number of words to read
+ *****************************************************************************/
+int32_t
+e1000_read_eeprom(struct e1000_hw *hw,
+                  uint16_t offset,
+                  uint16_t words,
+                  uint16_t *data)
+{
+    struct e1000_eeprom_info *eeprom = &hw->eeprom;
+    uint32_t i = 0;
+
+    DEBUGFUNC("e1000_read_eeprom");
+
+    /* If eeprom is not yet detected, do so now */
+    if (eeprom->word_size == 0)
+        e1000_init_eeprom_params(hw);
+
+    /* A check for invalid values:  offset too large, too many words, and not
+     * enough words.
+     */
+    if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
+       (words == 0)) {
+        DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
+        return -E1000_ERR_EEPROM;
+    }
+
+    /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
+     * directly. In this case, we need to acquire the EEPROM so that
+     * FW or other port software does not interrupt.
+     */
+    if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
+        hw->eeprom.use_eerd == FALSE) {
+        /* Prepare the EEPROM for bit-bang reading */
+        if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+            return -E1000_ERR_EEPROM;
+    }
+
+    /* Eerd register EEPROM access requires no eeprom aquire/release */
+    if (eeprom->use_eerd == TRUE)
+        return e1000_read_eeprom_eerd(hw, offset, words, data);
+
+    /* ICH EEPROM access is done via the ICH flash controller */
+    if (eeprom->type == e1000_eeprom_ich8)
+        return e1000_read_eeprom_ich8(hw, offset, words, data);
+
+    /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
+     * acquired the EEPROM at this point, so any returns should relase it */
+    if (eeprom->type == e1000_eeprom_spi) {
+        uint16_t word_in;
+        uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
+
+        if (e1000_spi_eeprom_ready(hw)) {
+            e1000_release_eeprom(hw);
+            return -E1000_ERR_EEPROM;
+        }
+
+        e1000_standby_eeprom(hw);
+
+        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
+        if ((eeprom->address_bits == 8) && (offset >= 128))
+            read_opcode |= EEPROM_A8_OPCODE_SPI;
+
+        /* Send the READ command (opcode + addr)  */
+        e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
+        e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
+
+        /* Read the data.  The address of the eeprom internally increments with
+         * each byte (spi) being read, saving on the overhead of eeprom setup
+         * and tear-down.  The address counter will roll over if reading beyond
+         * the size of the eeprom, thus allowing the entire memory to be read
+         * starting from any offset. */
+        for (i = 0; i < words; i++) {
+            word_in = e1000_shift_in_ee_bits(hw, 16);
+            data[i] = (word_in >> 8) | (word_in << 8);
+        }
+    } else if (eeprom->type == e1000_eeprom_microwire) {
+        for (i = 0; i < words; i++) {
+            /* Send the READ command (opcode + addr)  */
+            e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
+                                    eeprom->opcode_bits);
+            e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
+                                    eeprom->address_bits);
+
+            /* Read the data.  For microwire, each word requires the overhead
+             * of eeprom setup and tear-down. */
+            data[i] = e1000_shift_in_ee_bits(hw, 16);
+            e1000_standby_eeprom(hw);
+        }
+    }
+
+    /* End this read operation */
+    e1000_release_eeprom(hw);
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM using the EERD register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of  word in the EEPROM to read
+ * data - word read from the EEPROM
+ * words - number of words to read
+ *****************************************************************************/
+STATIC int32_t
+e1000_read_eeprom_eerd(struct e1000_hw *hw,
+                  uint16_t offset,
+                  uint16_t words,
+                  uint16_t *data)
+{
+    uint32_t i, eerd = 0;
+    int32_t error = 0;
+
+    for (i = 0; i < words; i++) {
+        eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
+                         E1000_EEPROM_RW_REG_START;
+
+        E1000_WRITE_REG(hw, EERD, eerd);
+        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
+
+        if (error) {
+            break;
+        }
+        data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
+
+    }
+
+    return error;
+}
+
+/******************************************************************************
+ * Writes a 16 bit word from the EEPROM using the EEWR register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of  word in the EEPROM to read
+ * data - word read from the EEPROM
+ * words - number of words to read
+ *****************************************************************************/
+STATIC int32_t
+e1000_write_eeprom_eewr(struct e1000_hw *hw,
+                   uint16_t offset,
+                   uint16_t words,
+                   uint16_t *data)
+{
+    uint32_t    register_value = 0;
+    uint32_t    i              = 0;
+    int32_t     error          = 0;
+
+    if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
+        return -E1000_ERR_SWFW_SYNC;
+
+    for (i = 0; i < words; i++) {
+        register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
+                         ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
+                         E1000_EEPROM_RW_REG_START;
+
+        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
+        if (error) {
+            break;
+        }
+
+        E1000_WRITE_REG(hw, EEWR, register_value);
+
+        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
+
+        if (error) {
+            break;
+        }
+    }
+
+    e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
+    return error;
+}
+
+/******************************************************************************
+ * Polls the status bit (bit 1) of the EERD to determine when the read is done.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+STATIC int32_t
+e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
+{
+    uint32_t attempts = 100000;
+    uint32_t i, reg = 0;
+    int32_t done = E1000_ERR_EEPROM;
+
+    for (i = 0; i < attempts; i++) {
+        if (eerd == E1000_EEPROM_POLL_READ)
+            reg = E1000_READ_REG(hw, EERD);
+        else
+            reg = E1000_READ_REG(hw, EEWR);
+
+        if (reg & E1000_EEPROM_RW_REG_DONE) {
+            done = E1000_SUCCESS;
+            break;
+        }
+        usec_delay(5);
+    }
+
+    return done;
+}
+
+/***************************************************************************
+* Description:     Determines if the onboard NVM is FLASH or EEPROM.
+*
+* hw - Struct containing variables accessed by shared code
+****************************************************************************/
+STATIC boolean_t
+e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
+{
+    uint32_t eecd = 0;
+
+    DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
+
+    if (hw->mac_type == e1000_ich8lan)
+        return FALSE;
+
+    if (hw->mac_type == e1000_82573) {
+        eecd = E1000_READ_REG(hw, EECD);
+
+        /* Isolate bits 15 & 16 */
+        eecd = ((eecd >> 15) & 0x03);
+
+        /* If both bits are set, device is Flash type */
+        if (eecd == 0x03) {
+            return FALSE;
+        }
+    }
+    return TRUE;
+}
+
+/******************************************************************************
+ * Verifies that the EEPROM has a valid checksum
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Reads the first 64 16 bit words of the EEPROM and sums the values read.
+ * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
+ * valid.
+ *****************************************************************************/
+int32_t
+e1000_validate_eeprom_checksum(struct e1000_hw *hw)
+{
+    uint16_t checksum = 0;
+    uint16_t i, eeprom_data;
+
+    DEBUGFUNC("e1000_validate_eeprom_checksum");
+
+    if ((hw->mac_type == e1000_82573) &&
+        (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
+        /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
+         * 10h-12h.  Checksum may need to be fixed. */
+        e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
+        if ((eeprom_data & 0x10) == 0) {
+            /* Read 0x23 and check bit 15.  This bit is a 1 when the checksum
+             * has already been fixed.  If the checksum is still wrong and this
+             * bit is a 1, we need to return bad checksum.  Otherwise, we need
+             * to set this bit to a 1 and update the checksum. */
+            e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
+            if ((eeprom_data & 0x8000) == 0) {
+                eeprom_data |= 0x8000;
+                e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
+                e1000_update_eeprom_checksum(hw);
+            }
+        }
+    }
+
+    if (hw->mac_type == e1000_ich8lan) {
+        /* Drivers must allocate the shadow ram structure for the
+         * EEPROM checksum to be updated.  Otherwise, this bit as well
+         * as the checksum must both be set correctly for this
+         * validation to pass.
+         */
+        e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
+        if ((eeprom_data & 0x40) == 0) {
+            eeprom_data |= 0x40;
+            e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
+            e1000_update_eeprom_checksum(hw);
+        }
+    }
+
+    for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+        if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+            DEBUGOUT("EEPROM Read Error\n");
+            return -E1000_ERR_EEPROM;
+        }
+        checksum += eeprom_data;
+    }
+
+    if (checksum == (uint16_t) EEPROM_SUM)
+        return E1000_SUCCESS;
+    else {
+        DEBUGOUT("EEPROM Checksum Invalid\n");
+        return -E1000_ERR_EEPROM;
+    }
+}
+
+/******************************************************************************
+ * Calculates the EEPROM checksum and writes it to the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
+ * Writes the difference to word offset 63 of the EEPROM.
+ *****************************************************************************/
+int32_t
+e1000_update_eeprom_checksum(struct e1000_hw *hw)
+{
+    uint32_t ctrl_ext;
+    uint16_t checksum = 0;
+    uint16_t i, eeprom_data;
+
+    DEBUGFUNC("e1000_update_eeprom_checksum");
+
+    for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
+        if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+            DEBUGOUT("EEPROM Read Error\n");
+            return -E1000_ERR_EEPROM;
+        }
+        checksum += eeprom_data;
+    }
+    checksum = (uint16_t) EEPROM_SUM - checksum;
+    if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
+        DEBUGOUT("EEPROM Write Error\n");
+        return -E1000_ERR_EEPROM;
+    } else if (hw->eeprom.type == e1000_eeprom_flash) {
+        e1000_commit_shadow_ram(hw);
+    } else if (hw->eeprom.type == e1000_eeprom_ich8) {
+        e1000_commit_shadow_ram(hw);
+        /* Reload the EEPROM, or else modifications will not appear
+         * until after next adapter reset. */
+        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+        ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+        msec_delay(10);
+    }
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Parent function for writing words to the different EEPROM types.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset within the EEPROM to be written to
+ * words - number of words to write
+ * data - 16 bit word to be written to the EEPROM
+ *
+ * If e1000_update_eeprom_checksum is not called after this function, the
+ * EEPROM will most likely contain an invalid checksum.
+ *****************************************************************************/
+int32_t
+e1000_write_eeprom(struct e1000_hw *hw,
+                   uint16_t offset,
+                   uint16_t words,
+                   uint16_t *data)
+{
+    struct e1000_eeprom_info *eeprom = &hw->eeprom;
+    int32_t status = 0;
+
+    DEBUGFUNC("e1000_write_eeprom");
+
+    /* If eeprom is not yet detected, do so now */
+    if (eeprom->word_size == 0)
+        e1000_init_eeprom_params(hw);
+
+    /* A check for invalid values:  offset too large, too many words, and not
+     * enough words.
+     */
+    if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
+       (words == 0)) {
+        DEBUGOUT("\"words\" parameter out of bounds\n");
+        return -E1000_ERR_EEPROM;
+    }
+
+    /* 82573 writes only through eewr */
+    if (eeprom->use_eewr == TRUE)
+        return e1000_write_eeprom_eewr(hw, offset, words, data);
+
+    if (eeprom->type == e1000_eeprom_ich8)
+        return e1000_write_eeprom_ich8(hw, offset, words, data);
+
+    /* Prepare the EEPROM for writing  */
+    if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+        return -E1000_ERR_EEPROM;
+
+    if (eeprom->type == e1000_eeprom_microwire) {
+        status = e1000_write_eeprom_microwire(hw, offset, words, data);
+    } else {
+        status = e1000_write_eeprom_spi(hw, offset, words, data);
+        msec_delay(10);
+    }
+
+    /* Done with writing */
+    e1000_release_eeprom(hw);
+
+    return status;
+}
+
+/******************************************************************************
+ * Writes a 16 bit word to a given offset in an SPI EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset within the EEPROM to be written to
+ * words - number of words to write
+ * data - pointer to array of 8 bit words to be written to the EEPROM
+ *
+ *****************************************************************************/
+STATIC int32_t
+e1000_write_eeprom_spi(struct e1000_hw *hw,
+                       uint16_t offset,
+                       uint16_t words,
+                       uint16_t *data)
+{
+    struct e1000_eeprom_info *eeprom = &hw->eeprom;
+    uint16_t widx = 0;
+
+    DEBUGFUNC("e1000_write_eeprom_spi");
+
+    while (widx < words) {
+        uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
+
+        if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
+
+        e1000_standby_eeprom(hw);
+
+        /*  Send the WRITE ENABLE command (8 bit opcode )  */
+        e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
+                                    eeprom->opcode_bits);
+
+        e1000_standby_eeprom(hw);
+
+        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
+        if ((eeprom->address_bits == 8) && (offset >= 128))
+            write_opcode |= EEPROM_A8_OPCODE_SPI;
+
+        /* Send the Write command (8-bit opcode + addr) */
+        e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
+
+        e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
+                                eeprom->address_bits);
+
+        /* Send the data */
+
+        /* Loop to allow for up to whole page write (32 bytes) of eeprom */
+        while (widx < words) {
+            uint16_t word_out = data[widx];
+            word_out = (word_out >> 8) | (word_out << 8);
+            e1000_shift_out_ee_bits(hw, word_out, 16);
+            widx++;
+
+            /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
+             * operation, while the smaller eeproms are capable of an 8-byte
+             * PAGE WRITE operation.  Break the inner loop to pass new address
+             */
+            if ((((offset + widx)*2) % eeprom->page_size) == 0) {
+                e1000_standby_eeprom(hw);
+                break;
+            }
+        }
+    }
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Writes a 16 bit word to a given offset in a Microwire EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset within the EEPROM to be written to
+ * words - number of words to write
+ * data - pointer to array of 16 bit words to be written to the EEPROM
+ *
+ *****************************************************************************/
+STATIC int32_t
+e1000_write_eeprom_microwire(struct e1000_hw *hw,
+                             uint16_t offset,
+                             uint16_t words,
+                             uint16_t *data)
+{
+    struct e1000_eeprom_info *eeprom = &hw->eeprom;
+    uint32_t eecd;
+    uint16_t words_written = 0;
+    uint16_t i = 0;
+
+    DEBUGFUNC("e1000_write_eeprom_microwire");
+
+    /* Send the write enable command to the EEPROM (3-bit opcode plus
+     * 6/8-bit dummy address beginning with 11).  It's less work to include
+     * the 11 of the dummy address as part of the opcode than it is to shift
+     * it over the correct number of bits for the address.  This puts the
+     * EEPROM into write/erase mode.
+     */
+    e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
+                            (uint16_t)(eeprom->opcode_bits + 2));
+
+    e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
+
+    /* Prepare the EEPROM */
+    e1000_standby_eeprom(hw);
+
+    while (words_written < words) {
+        /* Send the Write command (3-bit opcode + addr) */
+        e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
+                                eeprom->opcode_bits);
+
+        e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
+                                eeprom->address_bits);
+
+        /* Send the data */
+        e1000_shift_out_ee_bits(hw, data[words_written], 16);
+
+        /* Toggle the CS line.  This in effect tells the EEPROM to execute
+         * the previous command.
+         */
+        e1000_standby_eeprom(hw);
+
+        /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
+         * signal that the command has been completed by raising the DO signal.
+         * If DO does not go high in 10 milliseconds, then error out.
+         */
+        for (i = 0; i < 200; i++) {
+            eecd = E1000_READ_REG(hw, EECD);
+            if (eecd & E1000_EECD_DO) break;
+            usec_delay(50);
+        }
+        if (i == 200) {
+            DEBUGOUT("EEPROM Write did not complete\n");
+            return -E1000_ERR_EEPROM;
+        }
+
+        /* Recover from write */
+        e1000_standby_eeprom(hw);
+
+        words_written++;
+    }
+
+    /* Send the write disable command to the EEPROM (3-bit opcode plus
+     * 6/8-bit dummy address beginning with 10).  It's less work to include
+     * the 10 of the dummy address as part of the opcode than it is to shift
+     * it over the correct number of bits for the address.  This takes the
+     * EEPROM out of write/erase mode.
+     */
+    e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
+                            (uint16_t)(eeprom->opcode_bits + 2));
+
+    e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Flushes the cached eeprom to NVM. This is done by saving the modified values
+ * in the eeprom cache and the non modified values in the currently active bank
+ * to the new bank.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of  word in the EEPROM to read
+ * data - word read from the EEPROM
+ * words - number of words to read
+ *****************************************************************************/
+STATIC int32_t
+e1000_commit_shadow_ram(struct e1000_hw *hw)
+{
+    uint32_t attempts = 100000;
+    uint32_t eecd = 0;
+    uint32_t flop = 0;
+    uint32_t i = 0;
+    int32_t error = E1000_SUCCESS;
+    uint32_t old_bank_offset = 0;
+    uint32_t new_bank_offset = 0;
+    uint8_t low_byte = 0;
+    uint8_t high_byte = 0;
+    boolean_t sector_write_failed = FALSE;
+
+    if (hw->mac_type == e1000_82573) {
+        /* The flop register will be used to determine if flash type is STM */
+        flop = E1000_READ_REG(hw, FLOP);
+        for (i=0; i < attempts; i++) {
+            eecd = E1000_READ_REG(hw, EECD);
+            if ((eecd & E1000_EECD_FLUPD) == 0) {
+                break;
+            }
+            usec_delay(5);
+        }
+
+        if (i == attempts) {
+            return -E1000_ERR_EEPROM;
+        }
+
+        /* If STM opcode located in bits 15:8 of flop, reset firmware */
+        if ((flop & 0xFF00) == E1000_STM_OPCODE) {
+            E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
+        }
+
+        /* Perform the flash update */
+        E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
+
+        for (i=0; i < attempts; i++) {
+            eecd = E1000_READ_REG(hw, EECD);
+            if ((eecd & E1000_EECD_FLUPD) == 0) {
+                break;
+            }
+            usec_delay(5);
+        }
+
+        if (i == attempts) {
+            return -E1000_ERR_EEPROM;
+        }
+    }
+
+    if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
+        /* We're writing to the opposite bank so if we're on bank 1,
+         * write to bank 0 etc.  We also need to erase the segment that
+         * is going to be written */
+        if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
+            new_bank_offset = hw->flash_bank_size * 2;
+            old_bank_offset = 0;
+            e1000_erase_ich8_4k_segment(hw, 1);
+        } else {
+            old_bank_offset = hw->flash_bank_size * 2;
+            new_bank_offset = 0;
+            e1000_erase_ich8_4k_segment(hw, 0);
+        }
+
+        sector_write_failed = FALSE;
+        /* Loop for every byte in the shadow RAM,
+         * which is in units of words. */
+        for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+            /* Determine whether to write the value stored
+             * in the other NVM bank or a modified value stored
+             * in the shadow RAM */
+            if (hw->eeprom_shadow_ram[i].modified == TRUE) {
+                low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
+                usec_delay(100);
+                error = e1000_verify_write_ich8_byte(hw,
+                            (i << 1) + new_bank_offset, low_byte);
+
+                if (error != E1000_SUCCESS)
+                    sector_write_failed = TRUE;
+                else {
+                    high_byte =
+                        (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
+                    usec_delay(100);
+                }
+            } else {
+                e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
+                                     &low_byte);
+                usec_delay(100);
+                error = e1000_verify_write_ich8_byte(hw,
+                            (i << 1) + new_bank_offset, low_byte);
+
+                if (error != E1000_SUCCESS)
+                    sector_write_failed = TRUE;
+                else {
+                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
+                                         &high_byte);
+                    usec_delay(100);
+                }
+            }
+
+            /* If the write of the low byte was successful, go ahread and
+             * write the high byte while checking to make sure that if it
+             * is the signature byte, then it is handled properly */
+            if (sector_write_failed == FALSE) {
+                /* If the word is 0x13, then make sure the signature bits
+                 * (15:14) are 11b until the commit has completed.
+                 * This will allow us to write 10b which indicates the
+                 * signature is valid.  We want to do this after the write
+                 * has completed so that we don't mark the segment valid
+                 * while the write is still in progress */
+                if (i == E1000_ICH_NVM_SIG_WORD)
+                    high_byte = E1000_ICH_NVM_SIG_MASK | high_byte;
+
+                error = e1000_verify_write_ich8_byte(hw,
+                            (i << 1) + new_bank_offset + 1, high_byte);
+                if (error != E1000_SUCCESS)
+                    sector_write_failed = TRUE;
+
+            } else {
+                /* If the write failed then break from the loop and
+                 * return an error */
+                break;
+            }
+        }
+
+        /* Don't bother writing the segment valid bits if sector
+         * programming failed. */
+        if (sector_write_failed == FALSE) {
+            /* Finally validate the new segment by setting bit 15:14
+             * to 10b in word 0x13 , this can be done without an
+             * erase as well since these bits are 11 to start with
+             * and we need to change bit 14 to 0b */
+            e1000_read_ich8_byte(hw,
+                                 E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
+                                 &high_byte);
+            high_byte &= 0xBF;
+            error = e1000_verify_write_ich8_byte(hw,
+                        E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte);
+            /* And invalidate the previously valid segment by setting
+             * its signature word (0x13) high_byte to 0b. This can be
+             * done without an erase because flash erase sets all bits
+             * to 1's. We can write 1's to 0's without an erase */
+            if (error == E1000_SUCCESS) {
+                error = e1000_verify_write_ich8_byte(hw,
+                            E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0);
+            }
+
+            /* Clear the now not used entry in the cache */
+            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+                hw->eeprom_shadow_ram[i].modified = FALSE;
+                hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
+            }
+        }
+    }
+
+    return error;
+}
+
+/******************************************************************************
+ * Reads the adapter's part number from the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ * part_num - Adapter's part number
+ *****************************************************************************/
+int32_t
+e1000_read_part_num(struct e1000_hw *hw,
+                    uint32_t *part_num)
+{
+    uint16_t offset = EEPROM_PBA_BYTE_1;
+    uint16_t eeprom_data;
+
+    DEBUGFUNC("e1000_read_part_num");
+
+    /* Get word 0 from EEPROM */
+    if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+        DEBUGOUT("EEPROM Read Error\n");
+        return -E1000_ERR_EEPROM;
+    }
+    /* Save word 0 in upper half of part_num */
+    *part_num = (uint32_t) (eeprom_data << 16);
+
+    /* Get word 1 from EEPROM */
+    if (e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
+        DEBUGOUT("EEPROM Read Error\n");
+        return -E1000_ERR_EEPROM;
+    }
+    /* Save word 1 in lower half of part_num */
+    *part_num |= eeprom_data;
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
+ * second function of dual function devices
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_read_mac_addr(struct e1000_hw * hw)
+{
+    uint16_t offset;
+    uint16_t eeprom_data, i;
+
+    DEBUGFUNC("e1000_read_mac_addr");
+
+    for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+        offset = i >> 1;
+        if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+            DEBUGOUT("EEPROM Read Error\n");
+            return -E1000_ERR_EEPROM;
+        }
+        hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
+        hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
+    }
+
+    switch (hw->mac_type) {
+    default:
+        break;
+    case e1000_82546:
+    case e1000_82546_rev_3:
+    case e1000_82571:
+    case e1000_80003es2lan:
+        if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
+            hw->perm_mac_addr[5] ^= 0x01;
+        break;
+    }
+
+    for (i = 0; i < NODE_ADDRESS_SIZE; i++)
+        hw->mac_addr[i] = hw->perm_mac_addr[i];
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Initializes receive address filters.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Places the MAC address in receive address register 0 and clears the rest
+ * of the receive addresss registers. Clears the multicast table. Assumes
+ * the receiver is in reset when the routine is called.
+ *****************************************************************************/
+STATIC void
+e1000_init_rx_addrs(struct e1000_hw *hw)
+{
+    uint32_t i;
+    uint32_t rar_num;
+
+    DEBUGFUNC("e1000_init_rx_addrs");
+
+    /* Setup the receive address. */
+    DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+    e1000_rar_set(hw, hw->mac_addr, 0);
+
+    rar_num = E1000_RAR_ENTRIES;
+
+    /* Reserve a spot for the Locally Administered Address to work around
+     * an 82571 issue in which a reset on one port will reload the MAC on
+     * the other port. */
+    if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
+        rar_num -= 1;
+    if (hw->mac_type == e1000_ich8lan)
+        rar_num = E1000_RAR_ENTRIES_ICH8LAN;
+
+    /* Zero out the other 15 receive addresses. */
+    DEBUGOUT("Clearing RAR[1-15]\n");
+    for (i = 1; i < rar_num; i++) {
+        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+        E1000_WRITE_FLUSH(hw);
+        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+        E1000_WRITE_FLUSH(hw);
+    }
+}
+
+/******************************************************************************
+ * Updates the MAC's list of multicast addresses.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * mc_addr_list - the list of new multicast addresses
+ * mc_addr_count - number of addresses
+ * pad - number of bytes between addresses in the list
+ * rar_used_count - offset where to start adding mc addresses into the RAR's
+ *
+ * The given list replaces any existing list. Clears the last 15 receive
+ * address registers and the multicast table. Uses receive address registers
+ * for the first 15 multicast addresses, and hashes the rest into the
+ * multicast table.
+ *****************************************************************************/
+void
+e1000_mc_addr_list_update(struct e1000_hw *hw,
+                          uint8_t *mc_addr_list,
+                          uint32_t mc_addr_count,
+                          uint32_t pad,
+                          uint32_t rar_used_count)
+{
+    uint32_t hash_value;
+    uint32_t i;
+    uint32_t num_rar_entry;
+    uint32_t num_mta_entry;
+
+    DEBUGFUNC("e1000_mc_addr_list_update");
+
+    /* Set the new number of MC addresses that we are being requested to use. */
+    hw->num_mc_addrs = mc_addr_count;
+
+    /* Clear RAR[1-15] */
+    DEBUGOUT(" Clearing RAR[1-15]\n");
+    num_rar_entry = E1000_RAR_ENTRIES;
+    if (hw->mac_type == e1000_ich8lan)
+        num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
+
+    /* Reserve a spot for the Locally Administered Address to work around
+     * an 82571 issue in which a reset on one port will reload the MAC on
+     * the other port. */
+    if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
+        num_rar_entry -= 1;
+
+    for (i = rar_used_count; i < num_rar_entry; i++) {
+        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+        E1000_WRITE_FLUSH(hw);
+        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+        E1000_WRITE_FLUSH(hw);
+    }
+
+    /* Clear the MTA */
+    DEBUGOUT(" Clearing MTA\n");
+    num_mta_entry = E1000_NUM_MTA_REGISTERS;
+    if (hw->mac_type == e1000_ich8lan)
+        num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
+
+    for (i = 0; i < num_mta_entry; i++) {
+        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+        E1000_WRITE_FLUSH(hw);
+    }
+
+    /* Add the new addresses */
+    for (i = 0; i < mc_addr_count; i++) {
+        DEBUGOUT(" Adding the multicast addresses:\n");
+        DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
+                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
+                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
+                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
+                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
+                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
+                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
+
+        hash_value = e1000_hash_mc_addr(hw,
+                                        mc_addr_list +
+                                        (i * (ETH_LENGTH_OF_ADDRESS + pad)));
+
+        DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
+
+        /* Place this multicast address in the RAR if there is room, *
+         * else put it in the MTA
+         */
+        if (rar_used_count < num_rar_entry) {
+            e1000_rar_set(hw,
+                          mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
+                          rar_used_count);
+            rar_used_count++;
+        } else {
+            e1000_mta_set(hw, hash_value);
+        }
+    }
+    DEBUGOUT("MC Update Complete\n");
+}
+
+/******************************************************************************
+ * Hashes an address to determine its location in the multicast table
+ *
+ * hw - Struct containing variables accessed by shared code
+ * mc_addr - the multicast address to hash
+ *****************************************************************************/
+uint32_t
+e1000_hash_mc_addr(struct e1000_hw *hw,
+                   uint8_t *mc_addr)
+{
+    uint32_t hash_value = 0;
+
+    /* The portion of the address that is used for the hash table is
+     * determined by the mc_filter_type setting.
+     */
+    switch (hw->mc_filter_type) {
+    /* [0] [1] [2] [3] [4] [5]
+     * 01  AA  00  12  34  56
+     * LSB                 MSB
+     */
+    case 0:
+        if (hw->mac_type == e1000_ich8lan) {
+            /* [47:38] i.e. 0x158 for above example address */
+            hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
+        } else {
+            /* [47:36] i.e. 0x563 for above example address */
+            hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
+        }
+        break;
+    case 1:
+        if (hw->mac_type == e1000_ich8lan) {
+            /* [46:37] i.e. 0x2B1 for above example address */
+            hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
+        } else {
+            /* [46:35] i.e. 0xAC6 for above example address */
+            hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
+        }
+        break;
+    case 2:
+        if (hw->mac_type == e1000_ich8lan) {
+            /*[45:36] i.e. 0x163 for above example address */
+            hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
+        } else {
+            /* [45:34] i.e. 0x5D8 for above example address */
+            hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
+        }
+        break;
+    case 3:
+        if (hw->mac_type == e1000_ich8lan) {
+            /* [43:34] i.e. 0x18D for above example address */
+            hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
+        } else {
+            /* [43:32] i.e. 0x634 for above example address */
+            hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
+        }
+        break;
+    }
+
+    hash_value &= 0xFFF;
+    if (hw->mac_type == e1000_ich8lan)
+        hash_value &= 0x3FF;
+
+    return hash_value;
+}
+
+/******************************************************************************
+ * Sets the bit in the multicast table corresponding to the hash value.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * hash_value - Multicast address hash value
+ *****************************************************************************/
+void
+e1000_mta_set(struct e1000_hw *hw,
+              uint32_t hash_value)
+{
+    uint32_t hash_bit, hash_reg;
+    uint32_t mta;
+    uint32_t temp;
+
+    /* The MTA is a register array of 128 32-bit registers.
+     * It is treated like an array of 4096 bits.  We want to set
+     * bit BitArray[hash_value]. So we figure out what register
+     * the bit is in, read it, OR in the new bit, then write
+     * back the new value.  The register is determined by the
+     * upper 7 bits of the hash value and the bit within that
+     * register are determined by the lower 5 bits of the value.
+     */
+    hash_reg = (hash_value >> 5) & 0x7F;
+    if (hw->mac_type == e1000_ich8lan)
+        hash_reg &= 0x1F;
+
+    hash_bit = hash_value & 0x1F;
+
+    mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
+
+    mta |= (1 << hash_bit);
+
+    /* If we are on an 82544 and we are trying to write an odd offset
+     * in the MTA, save off the previous entry before writing and
+     * restore the old value after writing.
+     */
+    if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
+        temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
+        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
+        E1000_WRITE_FLUSH(hw);
+        E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
+        E1000_WRITE_FLUSH(hw);
+    } else {
+        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
+        E1000_WRITE_FLUSH(hw);
+    }
+}
+
+/******************************************************************************
+ * Puts an ethernet address into a receive address register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * addr - Address to put into receive address register
+ * index - Receive address register to write
+ *****************************************************************************/
+void
+e1000_rar_set(struct e1000_hw *hw,
+              uint8_t *addr,
+              uint32_t index)
+{
+    uint32_t rar_low, rar_high;
+
+    /* HW expects these in little endian so we reverse the byte order
+     * from network order (big endian) to little endian
+     */
+    rar_low = ((uint32_t) addr[0] |
+               ((uint32_t) addr[1] << 8) |
+               ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
+    rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
+
+    /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
+     * unit hang.
+     *
+     * Description:
+     * If there are any Rx frames queued up or otherwise present in the HW
+     * before RSS is enabled, and then we enable RSS, the HW Rx unit will
+     * hang.  To work around this issue, we have to disable receives and
+     * flush out all Rx frames before we enable RSS. To do so, we modify we
+     * redirect all Rx traffic to manageability and then reset the HW.
+     * This flushes away Rx frames, and (since the redirections to
+     * manageability persists across resets) keeps new ones from coming in
+     * while we work.  Then, we clear the Address Valid AV bit for all MAC
+     * addresses and undo the re-direction to manageability.
+     * Now, frames are coming in again, but the MAC won't accept them, so
+     * far so good.  We now proceed to initialize RSS (if necessary) and
+     * configure the Rx unit.  Last, we re-enable the AV bits and continue
+     * on our merry way.
+     */
+    switch (hw->mac_type) {
+    case e1000_82571:
+    case e1000_82572:
+    case e1000_80003es2lan:
+        if (hw->leave_av_bit_off == TRUE)
+            break;
+    default:
+        /* Indicate to hardware the Address is Valid. */
+        rar_high |= E1000_RAH_AV;
+        break;
+    }
+
+    E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
+    E1000_WRITE_FLUSH(hw);
+    E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
+    E1000_WRITE_FLUSH(hw);
+}
+
+/******************************************************************************
+ * Writes a value to the specified offset in the VLAN filter table.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - Offset in VLAN filer table to write
+ * value - Value to write into VLAN filter table
+ *****************************************************************************/
+void
+e1000_write_vfta(struct e1000_hw *hw,
+                 uint32_t offset,
+                 uint32_t value)
+{
+    uint32_t temp;
+
+    if (hw->mac_type == e1000_ich8lan)
+        return;
+
+    if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
+        temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
+        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+        E1000_WRITE_FLUSH(hw);
+        E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
+        E1000_WRITE_FLUSH(hw);
+    } else {
+        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+        E1000_WRITE_FLUSH(hw);
+    }
+}
+
+/******************************************************************************
+ * Clears the VLAN filer table
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+STATIC void
+e1000_clear_vfta(struct e1000_hw *hw)
+{
+    uint32_t offset;
+    uint32_t vfta_value = 0;
+    uint32_t vfta_offset = 0;
+    uint32_t vfta_bit_in_reg = 0;
+
+    if (hw->mac_type == e1000_ich8lan)
+        return;
+
+    if (hw->mac_type == e1000_82573) {
+        if (hw->mng_cookie.vlan_id != 0) {
+            /* The VFTA is a 4096b bit-field, each identifying a single VLAN
+             * ID.  The following operations determine which 32b entry
+             * (i.e. offset) into the array we want to set the VLAN ID
+             * (i.e. bit) of the manageability unit. */
+            vfta_offset = (hw->mng_cookie.vlan_id >>
+                           E1000_VFTA_ENTRY_SHIFT) &
+                          E1000_VFTA_ENTRY_MASK;
+            vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
+                                    E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
+        }
+    }
+    for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+        /* If the offset we want to clear is the same offset of the
+         * manageability VLAN ID, then clear all bits except that of the
+         * manageability unit */
+        vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
+        E1000_WRITE_FLUSH(hw);
+    }
+}
+
+STATIC int32_t
+e1000_id_led_init(struct e1000_hw * hw)
+{
+    uint32_t ledctl;
+    const uint32_t ledctl_mask = 0x000000FF;
+    const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+    const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+    uint16_t eeprom_data, i, temp;
+    const uint16_t led_mask = 0x0F;
+
+    DEBUGFUNC("e1000_id_led_init");
+
+    if (hw->mac_type < e1000_82540) {
+        /* Nothing to do */
+        return E1000_SUCCESS;
+    }
+
+    ledctl = E1000_READ_REG(hw, LEDCTL);
+    hw->ledctl_default = ledctl;
+    hw->ledctl_mode1 = hw->ledctl_default;
+    hw->ledctl_mode2 = hw->ledctl_default;
+
+    if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
+        DEBUGOUT("EEPROM Read Error\n");
+        return -E1000_ERR_EEPROM;
+    }
+
+    if ((hw->mac_type == e1000_82573) &&
+        (eeprom_data == ID_LED_RESERVED_82573))
+        eeprom_data = ID_LED_DEFAULT_82573;
+    else if ((eeprom_data == ID_LED_RESERVED_0000) ||
+            (eeprom_data == ID_LED_RESERVED_FFFF)) {
+        if (hw->mac_type == e1000_ich8lan)
+            eeprom_data = ID_LED_DEFAULT_ICH8LAN;
+        else
+            eeprom_data = ID_LED_DEFAULT;
+    }
+
+    for (i = 0; i < 4; i++) {
+        temp = (eeprom_data >> (i << 2)) & led_mask;
+        switch (temp) {
+        case ID_LED_ON1_DEF2:
+        case ID_LED_ON1_ON2:
+        case ID_LED_ON1_OFF2:
+            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+            hw->ledctl_mode1 |= ledctl_on << (i << 3);
+            break;
+        case ID_LED_OFF1_DEF2:
+        case ID_LED_OFF1_ON2:
+        case ID_LED_OFF1_OFF2:
+            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+            hw->ledctl_mode1 |= ledctl_off << (i << 3);
+            break;
+        default:
+            /* Do nothing */
+            break;
+        }
+        switch (temp) {
+        case ID_LED_DEF1_ON2:
+        case ID_LED_ON1_ON2:
+        case ID_LED_OFF1_ON2:
+            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+            hw->ledctl_mode2 |= ledctl_on << (i << 3);
+            break;
+        case ID_LED_DEF1_OFF2:
+        case ID_LED_ON1_OFF2:
+        case ID_LED_OFF1_OFF2:
+            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+            hw->ledctl_mode2 |= ledctl_off << (i << 3);
+            break;
+        default:
+            /* Do nothing */
+            break;
+        }
+    }
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Prepares SW controlable LED for use and saves the current state of the LED.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_setup_led(struct e1000_hw *hw)
+{
+    uint32_t ledctl;
+    int32_t ret_val = E1000_SUCCESS;
+
+    DEBUGFUNC("e1000_setup_led");
+
+    switch (hw->mac_type) {
+    case e1000_82542_rev2_0:
+    case e1000_82542_rev2_1:
+    case e1000_82543:
+    case e1000_82544:
+        /* No setup necessary */
+        break;
+    case e1000_82541:
+    case e1000_82547:
+    case e1000_82541_rev_2:
+    case e1000_82547_rev_2:
+        /* Turn off PHY Smart Power Down (if enabled) */
+        ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
+                                     &hw->phy_spd_default);
+        if (ret_val)
+            return ret_val;
+        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+                                      (uint16_t)(hw->phy_spd_default &
+                                      ~IGP01E1000_GMII_SPD));
+        if (ret_val)
+            return ret_val;
+        /* Fall Through */
+    default:
+        if (hw->media_type == e1000_media_type_fiber) {
+            ledctl = E1000_READ_REG(hw, LEDCTL);
+            /* Save current LEDCTL settings */
+            hw->ledctl_default = ledctl;
+            /* Turn off LED0 */
+            ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+                        E1000_LEDCTL_LED0_BLINK |
+                        E1000_LEDCTL_LED0_MODE_MASK);
+            ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+                       E1000_LEDCTL_LED0_MODE_SHIFT);
+            E1000_WRITE_REG(hw, LEDCTL, ledctl);
+        } else if (hw->media_type == e1000_media_type_copper)
+            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
+        break;
+    }
+
+    return E1000_SUCCESS;
+}
+
+
+/******************************************************************************
+ * Used on 82571 and later Si that has LED blink bits.
+ * Callers must use their own timer and should have already called
+ * e1000_id_led_init()
+ * Call e1000_cleanup led() to stop blinking
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_blink_led_start(struct e1000_hw *hw)
+{
+    int16_t  i;
+    uint32_t ledctl_blink = 0;
+
+    DEBUGFUNC("e1000_id_led_blink_on");
+
+    if (hw->mac_type < e1000_82571) {
+        /* Nothing to do */
+        return E1000_SUCCESS;
+    }
+    if (hw->media_type == e1000_media_type_fiber) {
+        /* always blink LED0 for PCI-E fiber */
+        ledctl_blink = E1000_LEDCTL_LED0_BLINK |
+                     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
+    } else {
+        /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
+        ledctl_blink = hw->ledctl_mode2;
+        for (i=0; i < 4; i++)
+            if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
+                E1000_LEDCTL_MODE_LED_ON)
+                ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
+    }
+
+    E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Restores the saved state of the SW controlable LED.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_cleanup_led(struct e1000_hw *hw)
+{
+    int32_t ret_val = E1000_SUCCESS;
+
+    DEBUGFUNC("e1000_cleanup_led");
+
+    switch (hw->mac_type) {
+    case e1000_82542_rev2_0:
+    case e1000_82542_rev2_1:
+    case e1000_82543:
+    case e1000_82544:
+        /* No cleanup necessary */
+        break;
+    case e1000_82541:
+    case e1000_82547:
+    case e1000_82541_rev_2:
+    case e1000_82547_rev_2:
+        /* Turn on PHY Smart Power Down (if previously enabled) */
+        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+                                      hw->phy_spd_default);
+        if (ret_val)
+            return ret_val;
+        /* Fall Through */
+    default:
+        if (hw->phy_type == e1000_phy_ife) {
+            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
+            break;
+        }
+        /* Restore LEDCTL settings */
+        E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
+        break;
+    }
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Turns on the software controllable LED
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_led_on(struct e1000_hw *hw)
+{
+    uint32_t ctrl = E1000_READ_REG(hw, CTRL);
+
+    DEBUGFUNC("e1000_led_on");
+
+    switch (hw->mac_type) {
+    case e1000_82542_rev2_0:
+    case e1000_82542_rev2_1:
+    case e1000_82543:
+        /* Set SW Defineable Pin 0 to turn on the LED */
+        ctrl |= E1000_CTRL_SWDPIN0;
+        ctrl |= E1000_CTRL_SWDPIO0;
+        break;
+    case e1000_82544:
+        if (hw->media_type == e1000_media_type_fiber) {
+            /* Set SW Defineable Pin 0 to turn on the LED */
+            ctrl |= E1000_CTRL_SWDPIN0;
+            ctrl |= E1000_CTRL_SWDPIO0;
+        } else {
+            /* Clear SW Defineable Pin 0 to turn on the LED */
+            ctrl &= ~E1000_CTRL_SWDPIN0;
+            ctrl |= E1000_CTRL_SWDPIO0;
+        }
+        break;
+    default:
+        if (hw->media_type == e1000_media_type_fiber) {
+            /* Clear SW Defineable Pin 0 to turn on the LED */
+            ctrl &= ~E1000_CTRL_SWDPIN0;
+            ctrl |= E1000_CTRL_SWDPIO0;
+        } else if (hw->phy_type == e1000_phy_ife) {
+            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
+        } else if (hw->media_type == e1000_media_type_copper) {
+            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
+            return E1000_SUCCESS;
+        }
+        break;
+    }
+
+    E1000_WRITE_REG(hw, CTRL, ctrl);
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Turns off the software controllable LED
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_led_off(struct e1000_hw *hw)
+{
+    uint32_t ctrl = E1000_READ_REG(hw, CTRL);
+
+    DEBUGFUNC("e1000_led_off");
+
+    switch (hw->mac_type) {
+    case e1000_82542_rev2_0:
+    case e1000_82542_rev2_1:
+    case e1000_82543:
+        /* Clear SW Defineable Pin 0 to turn off the LED */
+        ctrl &= ~E1000_CTRL_SWDPIN0;
+        ctrl |= E1000_CTRL_SWDPIO0;
+        break;
+    case e1000_82544:
+        if (hw->media_type == e1000_media_type_fiber) {
+            /* Clear SW Defineable Pin 0 to turn off the LED */
+            ctrl &= ~E1000_CTRL_SWDPIN0;
+            ctrl |= E1000_CTRL_SWDPIO0;
+        } else {
+            /* Set SW Defineable Pin 0 to turn off the LED */
+            ctrl |= E1000_CTRL_SWDPIN0;
+            ctrl |= E1000_CTRL_SWDPIO0;
+        }
+        break;
+    default:
+        if (hw->media_type == e1000_media_type_fiber) {
+            /* Set SW Defineable Pin 0 to turn off the LED */
+            ctrl |= E1000_CTRL_SWDPIN0;
+            ctrl |= E1000_CTRL_SWDPIO0;
+        } else if (hw->phy_type == e1000_phy_ife) {
+            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
+        } else if (hw->media_type == e1000_media_type_copper) {
+            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
+            return E1000_SUCCESS;
+        }
+        break;
+    }
+
+    E1000_WRITE_REG(hw, CTRL, ctrl);
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Clears all hardware statistics counters.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+e1000_clear_hw_cntrs(struct e1000_hw *hw)
+{
+    volatile uint32_t temp;
+
+    temp = E1000_READ_REG(hw, CRCERRS);
+    temp = E1000_READ_REG(hw, SYMERRS);
+    temp = E1000_READ_REG(hw, MPC);
+    temp = E1000_READ_REG(hw, SCC);
+    temp = E1000_READ_REG(hw, ECOL);
+    temp = E1000_READ_REG(hw, MCC);
+    temp = E1000_READ_REG(hw, LATECOL);
+    temp = E1000_READ_REG(hw, COLC);
+    temp = E1000_READ_REG(hw, DC);
+    temp = E1000_READ_REG(hw, SEC);
+    temp = E1000_READ_REG(hw, RLEC);
+    temp = E1000_READ_REG(hw, XONRXC);
+    temp = E1000_READ_REG(hw, XONTXC);
+    temp = E1000_READ_REG(hw, XOFFRXC);
+    temp = E1000_READ_REG(hw, XOFFTXC);
+    temp = E1000_READ_REG(hw, FCRUC);
+
+    if (hw->mac_type != e1000_ich8lan) {
+    temp = E1000_READ_REG(hw, PRC64);
+    temp = E1000_READ_REG(hw, PRC127);
+    temp = E1000_READ_REG(hw, PRC255);
+    temp = E1000_READ_REG(hw, PRC511);
+    temp = E1000_READ_REG(hw, PRC1023);
+    temp = E1000_READ_REG(hw, PRC1522);
+    }
+
+    temp = E1000_READ_REG(hw, GPRC);
+    temp = E1000_READ_REG(hw, BPRC);
+    temp = E1000_READ_REG(hw, MPRC);
+    temp = E1000_READ_REG(hw, GPTC);
+    temp = E1000_READ_REG(hw, GORCL);
+    temp = E1000_READ_REG(hw, GORCH);
+    temp = E1000_READ_REG(hw, GOTCL);
+    temp = E1000_READ_REG(hw, GOTCH);
+    temp = E1000_READ_REG(hw, RNBC);
+    temp = E1000_READ_REG(hw, RUC);
+    temp = E1000_READ_REG(hw, RFC);
+    temp = E1000_READ_REG(hw, ROC);
+    temp = E1000_READ_REG(hw, RJC);
+    temp = E1000_READ_REG(hw, TORL);
+    temp = E1000_READ_REG(hw, TORH);
+    temp = E1000_READ_REG(hw, TOTL);
+    temp = E1000_READ_REG(hw, TOTH);
+    temp = E1000_READ_REG(hw, TPR);
+    temp = E1000_READ_REG(hw, TPT);
+
+    if (hw->mac_type != e1000_ich8lan) {
+    temp = E1000_READ_REG(hw, PTC64);
+    temp = E1000_READ_REG(hw, PTC127);
+    temp = E1000_READ_REG(hw, PTC255);
+    temp = E1000_READ_REG(hw, PTC511);
+    temp = E1000_READ_REG(hw, PTC1023);
+    temp = E1000_READ_REG(hw, PTC1522);
+    }
+
+    temp = E1000_READ_REG(hw, MPTC);
+    temp = E1000_READ_REG(hw, BPTC);
+
+    if (hw->mac_type < e1000_82543) return;
+
+    temp = E1000_READ_REG(hw, ALGNERRC);
+    temp = E1000_READ_REG(hw, RXERRC);
+    temp = E1000_READ_REG(hw, TNCRS);
+    temp = E1000_READ_REG(hw, CEXTERR);
+    temp = E1000_READ_REG(hw, TSCTC);
+    temp = E1000_READ_REG(hw, TSCTFC);
+
+    if (hw->mac_type <= e1000_82544) return;
+
+    temp = E1000_READ_REG(hw, MGTPRC);
+    temp = E1000_READ_REG(hw, MGTPDC);
+    temp = E1000_READ_REG(hw, MGTPTC);
+
+    if (hw->mac_type <= e1000_82547_rev_2) return;
+
+    temp = E1000_READ_REG(hw, IAC);
+    temp = E1000_READ_REG(hw, ICRXOC);
+
+    if (hw->mac_type == e1000_ich8lan) return;
+
+    temp = E1000_READ_REG(hw, ICRXPTC);
+    temp = E1000_READ_REG(hw, ICRXATC);
+    temp = E1000_READ_REG(hw, ICTXPTC);
+    temp = E1000_READ_REG(hw, ICTXATC);
+    temp = E1000_READ_REG(hw, ICTXQEC);
+    temp = E1000_READ_REG(hw, ICTXQMTC);
+    temp = E1000_READ_REG(hw, ICRXDMTC);
+
+}
+
+/******************************************************************************
+ * Resets Adaptive IFS to its default state.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Call this after e1000_init_hw. You may override the IFS defaults by setting
+ * hw->ifs_params_forced to TRUE. However, you must initialize hw->
+ * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
+ * before calling this function.
+ *****************************************************************************/
+void
+e1000_reset_adaptive(struct e1000_hw *hw)
+{
+    DEBUGFUNC("e1000_reset_adaptive");
+
+    if (hw->adaptive_ifs) {
+        if (!hw->ifs_params_forced) {
+            hw->current_ifs_val = 0;
+            hw->ifs_min_val = IFS_MIN;
+            hw->ifs_max_val = IFS_MAX;
+            hw->ifs_step_size = IFS_STEP;
+            hw->ifs_ratio = IFS_RATIO;
+        }
+        hw->in_ifs_mode = FALSE;
+        E1000_WRITE_REG(hw, AIT, 0);
+    } else {
+        DEBUGOUT("Not in Adaptive IFS mode!\n");
+    }
+}
+
+/******************************************************************************
+ * Called during the callback/watchdog routine to update IFS value based on
+ * the ratio of transmits to collisions.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * tx_packets - Number of transmits since last callback
+ * total_collisions - Number of collisions since last callback
+ *****************************************************************************/
+void
+e1000_update_adaptive(struct e1000_hw *hw)
+{
+    DEBUGFUNC("e1000_update_adaptive");
+
+    if (hw->adaptive_ifs) {
+        if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
+            if (hw->tx_packet_delta > MIN_NUM_XMITS) {
+                hw->in_ifs_mode = TRUE;
+                if (hw->current_ifs_val < hw->ifs_max_val) {
+                    if (hw->current_ifs_val == 0)
+                        hw->current_ifs_val = hw->ifs_min_val;
+                    else
+                        hw->current_ifs_val += hw->ifs_step_size;
+                    E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
+                }
+            }
+        } else {
+            if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
+                hw->current_ifs_val = 0;
+                hw->in_ifs_mode = FALSE;
+                E1000_WRITE_REG(hw, AIT, 0);
+            }
+        }
+    } else {
+        DEBUGOUT("Not in Adaptive IFS mode!\n");
+    }
+}
+
+/******************************************************************************
+ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ *
+ * hw - Struct containing variables accessed by shared code
+ * frame_len - The length of the frame in question
+ * mac_addr - The Ethernet destination address of the frame in question
+ *****************************************************************************/
+void
+e1000_tbi_adjust_stats(struct e1000_hw *hw,
+                       struct e1000_hw_stats *stats,
+                       uint32_t frame_len,
+                       uint8_t *mac_addr)
+{
+    uint64_t carry_bit;
+
+    /* First adjust the frame length. */
+    frame_len--;
+    /* We need to adjust the statistics counters, since the hardware
+     * counters overcount this packet as a CRC error and undercount
+     * the packet as a good packet
+     */
+    /* This packet should not be counted as a CRC error.    */
+    stats->crcerrs--;
+    /* This packet does count as a Good Packet Received.    */
+    stats->gprc++;
+
+    /* Adjust the Good Octets received counters             */
+    carry_bit = 0x80000000 & stats->gorcl;
+    stats->gorcl += frame_len;
+    /* If the high bit of Gorcl (the low 32 bits of the Good Octets
+     * Received Count) was one before the addition,
+     * AND it is zero after, then we lost the carry out,
+     * need to add one to Gorch (Good Octets Received Count High).
+     * This could be simplified if all environments supported
+     * 64-bit integers.
+     */
+    if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
+        stats->gorch++;
+    /* Is this a broadcast or multicast?  Check broadcast first,
+     * since the test for a multicast frame will test positive on
+     * a broadcast frame.
+     */
+    if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
+        /* Broadcast packet */
+        stats->bprc++;
+    else if (*mac_addr & 0x01)
+        /* Multicast packet */
+        stats->mprc++;
+
+    if (frame_len == hw->max_frame_size) {
+        /* In this case, the hardware has overcounted the number of
+         * oversize frames.
+         */
+        if (stats->roc > 0)
+            stats->roc--;
+    }
+
+    /* Adjust the bin counters when the extra byte put the frame in the
+     * wrong bin. Remember that the frame_len was adjusted above.
+     */
+    if (frame_len == 64) {
+        stats->prc64++;
+        stats->prc127--;
+    } else if (frame_len == 127) {
+        stats->prc127++;
+        stats->prc255--;
+    } else if (frame_len == 255) {
+        stats->prc255++;
+        stats->prc511--;
+    } else if (frame_len == 511) {
+        stats->prc511++;
+        stats->prc1023--;
+    } else if (frame_len == 1023) {
+        stats->prc1023++;
+        stats->prc1522--;
+    } else if (frame_len == 1522) {
+        stats->prc1522++;
+    }
+}
+
+/******************************************************************************
+ * Gets the current PCI bus type, speed, and width of the hardware
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+e1000_get_bus_info(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    uint16_t pci_ex_link_status;
+    uint32_t status;
+
+    switch (hw->mac_type) {
+    case e1000_82542_rev2_0:
+    case e1000_82542_rev2_1:
+        hw->bus_type = e1000_bus_type_unknown;
+        hw->bus_speed = e1000_bus_speed_unknown;
+        hw->bus_width = e1000_bus_width_unknown;
+        break;
+    case e1000_82571:
+    case e1000_82572:
+    case e1000_82573:
+    case e1000_80003es2lan:
+        hw->bus_type = e1000_bus_type_pci_express;
+        hw->bus_speed = e1000_bus_speed_2500;
+        ret_val = e1000_read_pcie_cap_reg(hw,
+                                      PCI_EX_LINK_STATUS,
+                                      &pci_ex_link_status);
+        if (ret_val)
+            hw->bus_width = e1000_bus_width_unknown;
+        else
+            hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >>
+                          PCI_EX_LINK_WIDTH_SHIFT;
+        break;
+    case e1000_ich8lan:
+        hw->bus_type = e1000_bus_type_pci_express;
+        hw->bus_speed = e1000_bus_speed_2500;
+        hw->bus_width = e1000_bus_width_pciex_1;
+        break;
+    default:
+        status = E1000_READ_REG(hw, STATUS);
+        hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
+                       e1000_bus_type_pcix : e1000_bus_type_pci;
+
+        if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
+            hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
+                            e1000_bus_speed_66 : e1000_bus_speed_120;
+        } else if (hw->bus_type == e1000_bus_type_pci) {
+            hw->bus_speed = (status & E1000_STATUS_PCI66) ?
+                            e1000_bus_speed_66 : e1000_bus_speed_33;
+        } else {
+            switch (status & E1000_STATUS_PCIX_SPEED) {
+            case E1000_STATUS_PCIX_SPEED_66:
+                hw->bus_speed = e1000_bus_speed_66;
+                break;
+            case E1000_STATUS_PCIX_SPEED_100:
+                hw->bus_speed = e1000_bus_speed_100;
+                break;
+            case E1000_STATUS_PCIX_SPEED_133:
+                hw->bus_speed = e1000_bus_speed_133;
+                break;
+            default:
+                hw->bus_speed = e1000_bus_speed_reserved;
+                break;
+            }
+        }
+        hw->bus_width = (status & E1000_STATUS_BUS64) ?
+                        e1000_bus_width_64 : e1000_bus_width_32;
+        break;
+    }
+}
+
+#ifndef __sparc
+/******************************************************************************
+ * Writes a value to one of the devices registers using port I/O (as opposed to
+ * memory mapped I/O). Only 82544 and newer devices support port I/O.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset to write to
+ * value - value to write
+ *****************************************************************************/
+STATIC void
+e1000_write_reg_io(struct e1000_hw *hw,
+                   uint32_t offset,
+                   uint32_t value)
+{
+    unsigned long io_addr = hw->io_base;
+    unsigned long io_data = hw->io_base + 4;
+
+    e1000_io_write(hw, io_addr, offset);
+    e1000_io_write(hw, io_data, value);
+}
+#endif
+
+/******************************************************************************
+ * Estimates the cable length.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * min_length - The estimated minimum length
+ * max_length - The estimated maximum length
+ *
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
+ *
+ * This function always returns a ranged length (minimum & maximum).
+ * So for M88 phy's, this function interprets the one value returned from the
+ * register to the minimum and maximum range.
+ * For IGP phy's, the function calculates the range by the AGC registers.
+ *****************************************************************************/
+STATIC int32_t
+e1000_get_cable_length(struct e1000_hw *hw,
+                       uint16_t *min_length,
+                       uint16_t *max_length)
+{
+    int32_t ret_val;
+    uint16_t agc_value = 0;
+    uint16_t i, phy_data;
+    uint16_t cable_length;
+
+    DEBUGFUNC("e1000_get_cable_length");
+
+    *min_length = *max_length = 0;
+
+    /* Use old method for Phy older than IGP */
+    if (hw->phy_type == e1000_phy_m88) {
+
+        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+                                     &phy_data);
+        if (ret_val)
+            return ret_val;
+        cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+                       M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+
+        /* Convert the enum value to ranged values */
+        switch (cable_length) {
+        case e1000_cable_length_50:
+            *min_length = 0;
+            *max_length = e1000_igp_cable_length_50;
+            break;
+        case e1000_cable_length_50_80:
+            *min_length = e1000_igp_cable_length_50;
+            *max_length = e1000_igp_cable_length_80;
+            break;
+        case e1000_cable_length_80_110:
+            *min_length = e1000_igp_cable_length_80;
+            *max_length = e1000_igp_cable_length_110;
+            break;
+        case e1000_cable_length_110_140:
+            *min_length = e1000_igp_cable_length_110;
+            *max_length = e1000_igp_cable_length_140;
+            break;
+        case e1000_cable_length_140:
+            *min_length = e1000_igp_cable_length_140;
+            *max_length = e1000_igp_cable_length_170;
+            break;
+        default:
+            return -E1000_ERR_PHY;
+        }
+    } else if (hw->phy_type == e1000_phy_gg82563) {
+        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
+                                     &phy_data);
+        if (ret_val)
+            return ret_val;
+        cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
+
+        switch (cable_length) {
+        case e1000_gg_cable_length_60:
+            *min_length = 0;
+            *max_length = e1000_igp_cable_length_60;
+            break;
+        case e1000_gg_cable_length_60_115:
+            *min_length = e1000_igp_cable_length_60;
+            *max_length = e1000_igp_cable_length_115;
+            break;
+        case e1000_gg_cable_length_115_150:
+            *min_length = e1000_igp_cable_length_115;
+            *max_length = e1000_igp_cable_length_150;
+            break;
+        case e1000_gg_cable_length_150:
+            *min_length = e1000_igp_cable_length_150;
+            *max_length = e1000_igp_cable_length_180;
+            break;
+        default:
+            return -E1000_ERR_PHY;
+        }
+    } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
+        uint16_t cur_agc_value;
+        uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+        uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+                                                         {IGP01E1000_PHY_AGC_A,
+                                                          IGP01E1000_PHY_AGC_B,
+                                                          IGP01E1000_PHY_AGC_C,
+                                                          IGP01E1000_PHY_AGC_D};
+        /* Read the AGC registers for all channels */
+        for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+
+            ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
+            if (ret_val)
+                return ret_val;
+
+            cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
+
+            /* Value bound check. */
+            if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
+                (cur_agc_value == 0))
+                return -E1000_ERR_PHY;
+
+            agc_value += cur_agc_value;
+
+            /* Update minimal AGC value. */
+            if (min_agc_value > cur_agc_value)
+                min_agc_value = cur_agc_value;
+        }
+
+        /* Remove the minimal AGC result for length < 50m */
+        if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
+            agc_value -= min_agc_value;
+
+            /* Get the average length of the remaining 3 channels */
+            agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
+        } else {
+            /* Get the average length of all the 4 channels. */
+            agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
+        }
+
+        /* Set the range of the calculated length. */
+        *min_length = ((e1000_igp_cable_length_table[agc_value] -
+                       IGP01E1000_AGC_RANGE) > 0) ?
+                       (e1000_igp_cable_length_table[agc_value] -
+                       IGP01E1000_AGC_RANGE) : 0;
+        *max_length = e1000_igp_cable_length_table[agc_value] +
+                      IGP01E1000_AGC_RANGE;
+    } else if (hw->phy_type == e1000_phy_igp_2 ||
+               hw->phy_type == e1000_phy_igp_3) {
+        uint16_t cur_agc_index, max_agc_index = 0;
+        uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
+        uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
+                                                         {IGP02E1000_PHY_AGC_A,
+                                                          IGP02E1000_PHY_AGC_B,
+                                                          IGP02E1000_PHY_AGC_C,
+                                                          IGP02E1000_PHY_AGC_D};
+        /* Read the AGC registers for all channels */
+        for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
+            ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
+            if (ret_val)
+                return ret_val;
+
+            /* Getting bits 15:9, which represent the combination of course and
+             * fine gain values.  The result is a number that can be put into
+             * the lookup table to obtain the approximate cable length. */
+            cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+                            IGP02E1000_AGC_LENGTH_MASK;
+
+            /* Array index bound check. */
+            if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
+                (cur_agc_index == 0))
+                return -E1000_ERR_PHY;
+
+            /* Remove min & max AGC values from calculation. */
+            if (e1000_igp_2_cable_length_table[min_agc_index] >
+                e1000_igp_2_cable_length_table[cur_agc_index])
+                min_agc_index = cur_agc_index;
+            if (e1000_igp_2_cable_length_table[max_agc_index] <
+                e1000_igp_2_cable_length_table[cur_agc_index])
+                max_agc_index = cur_agc_index;
+
+            agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
+        }
+
+        agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
+                      e1000_igp_2_cable_length_table[max_agc_index]);
+        agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
+
+        /* Calculate cable length with the error range of +/- 10 meters. */
+        *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
+                       (agc_value - IGP02E1000_AGC_RANGE) : 0;
+        *max_length = agc_value + IGP02E1000_AGC_RANGE;
+    }
+
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Check the cable polarity
+ *
+ * hw - Struct containing variables accessed by shared code
+ * polarity - output parameter : 0 - Polarity is not reversed
+ *                               1 - Polarity is reversed.
+ *
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
+ *
+ * For phy's older then IGP, this function simply reads the polarity bit in the
+ * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
+ * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
+ * return 0.  If the link speed is 1000 Mbps the polarity status is in the
+ * IGP01E1000_PHY_PCS_INIT_REG.
+ *****************************************************************************/
+STATIC int32_t
+e1000_check_polarity(struct e1000_hw *hw,
+                     e1000_rev_polarity *polarity)
+{
+    int32_t ret_val;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_check_polarity");
+
+    if ((hw->phy_type == e1000_phy_m88) ||
+        (hw->phy_type == e1000_phy_gg82563)) {
+        /* return the Polarity bit in the Status register. */
+        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+                                     &phy_data);
+        if (ret_val)
+            return ret_val;
+        *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
+                     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
+                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
+
+    } else if (hw->phy_type == e1000_phy_igp ||
+              hw->phy_type == e1000_phy_igp_3 ||
+              hw->phy_type == e1000_phy_igp_2) {
+        /* Read the Status register to check the speed */
+        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
+                                     &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
+         * find the polarity status */
+        if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+           IGP01E1000_PSSR_SPEED_1000MBPS) {
+
+            /* Read the GIG initialization PCS register (0x00B4) */
+            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
+                                         &phy_data);
+            if (ret_val)
+                return ret_val;
+
+            /* Check the polarity bits */
+            *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
+                         e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
+        } else {
+            /* For 10 Mbps, read the polarity bit in the status register. (for
+             * 100 Mbps this bit is always 0) */
+            *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
+                         e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
+        }
+    } else if (hw->phy_type == e1000_phy_ife) {
+        ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
+                                     &phy_data);
+        if (ret_val)
+            return ret_val;
+        *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >>
+                     IFE_PESC_POLARITY_REVERSED_SHIFT) ?
+                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
+    }
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Check if Downshift occured
+ *
+ * hw - Struct containing variables accessed by shared code
+ * downshift - output parameter : 0 - No Downshift ocured.
+ *                                1 - Downshift ocured.
+ *
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
+ *
+ * For phy's older then IGP, this function reads the Downshift bit in the Phy
+ * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
+ * Link Health register.  In IGP this bit is latched high, so the driver must
+ * read it immediately after link is established.
+ *****************************************************************************/
+STATIC int32_t
+e1000_check_downshift(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_check_downshift");
+
+    if (hw->phy_type == e1000_phy_igp ||
+        hw->phy_type == e1000_phy_igp_3 ||
+        hw->phy_type == e1000_phy_igp_2) {
+        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
+                                     &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
+    } else if ((hw->phy_type == e1000_phy_m88) ||
+               (hw->phy_type == e1000_phy_gg82563)) {
+        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+                                     &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
+                               M88E1000_PSSR_DOWNSHIFT_SHIFT;
+    } else if (hw->phy_type == e1000_phy_ife) {
+        /* e1000_phy_ife supports 10/100 speed only */
+        hw->speed_downgraded = FALSE;
+    }
+
+    return E1000_SUCCESS;
+}
+
+#ifndef FIFO_WORKAROUND
+/*****************************************************************************
+ *
+ * Workaround for the Tanacross TX fifo failure.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * length - Length of next outgoing frame
+ *
+ *
+ * returns: - E1000_ERR_FIFO_WRAP if the next packet cannot be transmitted yet
+ *            E1000_SUCCESS if the next packet can be transmitted
+ *
+ *****************************************************************************/
+int32_t
+e1000_82547_fifo_workaround(struct e1000_hw *hw,
+                            uint16_t length)
+{
+    uint32_t tctl;
+    uint16_t fifo_space, fifo_pkt_len;
+
+    /* get the length as seen by the FIFO of the next real packet to
+     * be transmitted
+     */
+    fifo_pkt_len =  E1000_ROUNDUP(length + E1000_FIFO_HDR_SIZE,
+                                  E1000_FIFO_GRANULARITY);
+
+    if (fifo_pkt_len > E1000_82547_FIFO_PAD + E1000_FIFO_HDR_SIZE) {
+        fifo_space = hw->tx_fifo_size - hw->tx_fifo_head;
+
+        if ((hw->tx_fifo_head + fifo_pkt_len) >=
+            (hw->tx_fifo_size + E1000_82547_FIFO_PAD)) {
+            if (E1000_READ_REG(hw, TDT) != E1000_READ_REG(hw, TDH))
+                return -E1000_ERR_FIFO_WRAP;
+
+            if (E1000_READ_REG(hw, TDFT) != E1000_READ_REG(hw, TDFH))
+                return -E1000_ERR_FIFO_WRAP;
+
+            if (E1000_READ_REG(hw, TDFTS) != E1000_READ_REG(hw, TDFHS))
+                return -E1000_ERR_FIFO_WRAP;
+
+            /* Disable the tx unit to avoid further pointer movement */
+            tctl = E1000_READ_REG(hw, TCTL);
+            E1000_WRITE_REG(hw, TCTL, tctl & ~E1000_TCTL_EN);
+
+            /* Reset the fifo pointers. */
+            E1000_WRITE_REG(hw, TDFT, hw->tx_fifo_start);
+            E1000_WRITE_REG(hw, TDFH, hw->tx_fifo_start);
+            E1000_WRITE_REG(hw, TDFTS, hw->tx_fifo_start);
+            E1000_WRITE_REG(hw, TDFHS, hw->tx_fifo_start);
+
+            /* Re-enabling tx unit */
+            E1000_WRITE_REG(hw, TCTL, tctl);
+            E1000_WRITE_FLUSH(hw);
+
+            hw->tx_fifo_head = 0;
+
+        }
+    }
+    return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ *
+ * Updates the SW calculated TX FIFO head pointer.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * length - Length of next outgoing frame
+ ****************************************************************************/
+void
+e1000_update_tx_fifo_head(struct e1000_hw *hw,
+                          uint32_t length)
+{
+    hw->tx_fifo_head += E1000_ROUNDUP(length + E1000_FIFO_HDR_SIZE,
+                                      E1000_FIFO_GRANULARITY);
+
+    if (hw->tx_fifo_head > hw->tx_fifo_size)
+        hw->tx_fifo_head -= hw->tx_fifo_size;
+
+    return;
+}
+
+#endif /* FIFO_WORKAROUND */
+/*****************************************************************************
+ *
+ * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
+ * gigabit link is achieved to improve link quality.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ *
+ ****************************************************************************/
+
+STATIC int32_t
+e1000_config_dsp_after_link_change(struct e1000_hw *hw,
+                                   boolean_t link_up)
+{
+    int32_t ret_val;
+    uint16_t phy_data, phy_saved_data, speed, duplex, i;
+    uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+                                        {IGP01E1000_PHY_AGC_PARAM_A,
+                                        IGP01E1000_PHY_AGC_PARAM_B,
+                                        IGP01E1000_PHY_AGC_PARAM_C,
+                                        IGP01E1000_PHY_AGC_PARAM_D};
+    uint16_t min_length, max_length;
+
+    DEBUGFUNC("e1000_config_dsp_after_link_change");
+
+    if (hw->phy_type != e1000_phy_igp)
+        return E1000_SUCCESS;
+
+    if (link_up) {
+        ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+        if (ret_val) {
+            DEBUGOUT("Error getting link speed and duplex\n");
+            return ret_val;
+        }
+
+        if (speed == SPEED_1000) {
+
+            ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
+            if (ret_val)
+                return ret_val;
+
+            if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
+                min_length >= e1000_igp_cable_length_50) {
+
+                for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+                    ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
+                                                 &phy_data);
+                    if (ret_val)
+                        return ret_val;
+
+                    phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+
+                    ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
+                                                  phy_data);
+                    if (ret_val)
+                        return ret_val;
+                }
+                hw->dsp_config_state = e1000_dsp_config_activated;
+            }
+
+            if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
+               (min_length < e1000_igp_cable_length_50)) {
+
+                uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
+                uint32_t idle_errs = 0;
+
+                /* clear previous idle error counts */
+                ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
+                                             &phy_data);
+                if (ret_val)
+                    return ret_val;
+
+                for (i = 0; i < ffe_idle_err_timeout; i++) {
+                    usec_delay(1000);
+                    ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
+                                                 &phy_data);
+                    if (ret_val)
+                        return ret_val;
+
+                    idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
+                    if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
+                        hw->ffe_config_state = e1000_ffe_config_active;
+
+                        ret_val = e1000_write_phy_reg(hw,
+                                    IGP01E1000_PHY_DSP_FFE,
+                                    IGP01E1000_PHY_DSP_FFE_CM_CP);
+                        if (ret_val)
+                            return ret_val;
+                        break;
+                    }
+
+                    if (idle_errs)
+                        ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
+                }
+            }
+        }
+    } else {
+        if (hw->dsp_config_state == e1000_dsp_config_activated) {
+            /* Save off the current value of register 0x2F5B to be restored at
+             * the end of the routines. */
+            ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+            if (ret_val)
+                return ret_val;
+
+            /* Disable the PHY transmitter */
+            ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+            if (ret_val)
+                return ret_val;
+
+            msec_delay_irq(20);
+
+            ret_val = e1000_write_phy_reg(hw, 0x0000,
+                                          IGP01E1000_IEEE_FORCE_GIGA);
+            if (ret_val)
+                return ret_val;
+            for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+                ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
+                if (ret_val)
+                    return ret_val;
+
+                phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+                phy_data |=  IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
+
+                ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
+                if (ret_val)
+                    return ret_val;
+            }
+
+            ret_val = e1000_write_phy_reg(hw, 0x0000,
+                                          IGP01E1000_IEEE_RESTART_AUTONEG);
+            if (ret_val)
+                return ret_val;
+
+            msec_delay_irq(20);
+
+            /* Now enable the transmitter */
+            ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+            if (ret_val)
+                return ret_val;
+
+            hw->dsp_config_state = e1000_dsp_config_enabled;
+        }
+
+        if (hw->ffe_config_state == e1000_ffe_config_active) {
+            /* Save off the current value of register 0x2F5B to be restored at
+             * the end of the routines. */
+            ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+            if (ret_val)
+                return ret_val;
+
+            /* Disable the PHY transmitter */
+            ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+            if (ret_val)
+                return ret_val;
+
+            msec_delay_irq(20);
+
+            ret_val = e1000_write_phy_reg(hw, 0x0000,
+                                          IGP01E1000_IEEE_FORCE_GIGA);
+            if (ret_val)
+                return ret_val;
+            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
+                                          IGP01E1000_PHY_DSP_FFE_DEFAULT);
+            if (ret_val)
+                return ret_val;
+
+            ret_val = e1000_write_phy_reg(hw, 0x0000,
+                                          IGP01E1000_IEEE_RESTART_AUTONEG);
+            if (ret_val)
+                return ret_val;
+
+            msec_delay_irq(20);
+
+            /* Now enable the transmitter */
+            ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+            if (ret_val)
+                return ret_val;
+
+            hw->ffe_config_state = e1000_ffe_config_enabled;
+        }
+    }
+    return E1000_SUCCESS;
+}
+
+#ifndef FIFO_WORKAROUND
+/***************************************************************************
+ *
+ * Workaround for the 82547 long TTL on noisy 100HD hubs.
+ *
+ * This function, specific to 82547 hardware only, needs to be called every
+ * second.  It checks if a parallel detect fault has occurred.  If a fault
+ * occurred, disable/enable the DSP reset mechanism up to 5 times (once per
+ * second).  If link is established, stop the workaround and ensure the DSP
+ * reset is enabled.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS in any other case
+ *
+ ****************************************************************************/
+int32_t
+e1000_igp_ttl_workaround(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    uint16_t phy_data = 0;
+    uint16_t dsp_value = DSP_RESET_ENABLE;
+
+    /* The workaround needed only for B-0 silicon HW */
+    if (((hw->mac_type != e1000_82541) && (hw->mac_type != e1000_82547)) ||
+         (!hw->ttl_wa_activation)) {
+        return E1000_SUCCESS;
+    }
+
+    /* Check for link first */
+    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+    if (ret_val)
+        return ret_val;
+
+    if (phy_data & MII_SR_LINK_STATUS) {
+        /* If link is established during the workaround, the DSP mechanism must
+         * be enabled. */
+        if (hw->dsp_reset_counter) {
+            hw->dsp_reset_counter = 0;
+            dsp_value = DSP_RESET_ENABLE;
+        } else
+            return E1000_SUCCESS;
+    } else {
+        if (hw->dsp_reset_counter == 0) {
+            /* Workaround not activated, check if it needs activation */
+            ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
+            if (ret_val)
+                return ret_val;
+            /* Activate the workaround if there was a parallel detect fault */
+            if (phy_data & NWAY_ER_PAR_DETECT_FAULT)
+                hw->dsp_reset_counter++;
+            else
+                return E1000_SUCCESS;
+        }
+
+        if (hw->dsp_reset_counter) {
+            /* After 5 times, stop the workaround */
+            if (hw->dsp_reset_counter > E1000_MAX_DSP_RESETS) {
+                hw->dsp_reset_counter = 0;
+                dsp_value = DSP_RESET_ENABLE;
+            } else {
+                dsp_value = (hw->dsp_reset_counter & 1) ? DSP_RESET_DISABLE :
+                            DSP_RESET_ENABLE;
+                hw->dsp_reset_counter++;
+            }
+        }
+    }
+
+    ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_RESET, dsp_value);
+    if (ret_val)
+        return ret_val;
+
+    return E1000_SUCCESS;
+}
+
+#endif /* FIFO_WORKAROUND */
+/*****************************************************************************
+ * Set PHY to class A mode
+ * Assumes the following operations will follow to enable the new class mode.
+ *  1. Do a PHY soft reset
+ *  2. Restart auto-negotiation or force link.
+ *
+ * hw - Struct containing variables accessed by shared code
+ ****************************************************************************/
+static int32_t
+e1000_set_phy_mode(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    uint16_t eeprom_data;
+
+    DEBUGFUNC("e1000_set_phy_mode");
+
+    if ((hw->mac_type == e1000_82545_rev_3) &&
+        (hw->media_type == e1000_media_type_copper)) {
+        ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
+        if (ret_val) {
+            return ret_val;
+        }
+
+        if ((eeprom_data != EEPROM_RESERVED_WORD) &&
+            (eeprom_data & EEPROM_PHY_CLASS_A)) {
+            ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
+            if (ret_val)
+                return ret_val;
+            ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
+            if (ret_val)
+                return ret_val;
+
+            hw->phy_reset_disable = FALSE;
+        }
+    }
+
+    return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ *
+ * This function sets the lplu state according to the active flag.  When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisment
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * hw: Struct containing variables accessed by shared code
+ * active - true to enable lplu false to disable lplu.
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ *
+ ****************************************************************************/
+
+STATIC int32_t
+e1000_set_d3_lplu_state(struct e1000_hw *hw,
+                        boolean_t active)
+{
+    uint32_t phy_ctrl = 0;
+    int32_t ret_val;
+    uint16_t phy_data;
+    DEBUGFUNC("e1000_set_d3_lplu_state");
+
+    if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
+        && hw->phy_type != e1000_phy_igp_3)
+        return E1000_SUCCESS;
+
+    /* During driver activity LPLU should not be used or it will attain link
+     * from the lowest speeds starting from 10Mbps. The capability is used for
+     * Dx transitions and states */
+    if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
+        ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
+        if (ret_val)
+            return ret_val;
+    } else if (hw->mac_type == e1000_ich8lan) {
+        /* MAC writes into PHY register based on the state transition
+         * and start auto-negotiation. SW driver can overwrite the settings
+         * in CSR PHY power control E1000_PHY_CTRL register. */
+        phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
+    } else {
+        ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
+        if (ret_val)
+            return ret_val;
+    }
+
+    if (!active) {
+        if (hw->mac_type == e1000_82541_rev_2 ||
+            hw->mac_type == e1000_82547_rev_2) {
+            phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
+            ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
+            if (ret_val)
+                return ret_val;
+        } else {
+            if (hw->mac_type == e1000_ich8lan) {
+                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+            } else {
+                phy_data &= ~IGP02E1000_PM_D3_LPLU;
+                ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+                                              phy_data);
+                if (ret_val)
+                    return ret_val;
+            }
+        }
+
+        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
+         * Dx states where the power conservation is most important.  During
+         * driver activity we should enable SmartSpeed, so performance is
+         * maintained. */
+        if (hw->smart_speed == e1000_smart_speed_on) {
+            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+                                         &phy_data);
+            if (ret_val)
+                return ret_val;
+
+            phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
+            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+                                          phy_data);
+            if (ret_val)
+                return ret_val;
+        } else if (hw->smart_speed == e1000_smart_speed_off) {
+            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+                                         &phy_data);
+            if (ret_val)
+                return ret_val;
+
+            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+                                          phy_data);
+            if (ret_val)
+                return ret_val;
+        }
+
+    } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
+               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
+               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
+
+        if (hw->mac_type == e1000_82541_rev_2 ||
+            hw->mac_type == e1000_82547_rev_2) {
+            phy_data |= IGP01E1000_GMII_FLEX_SPD;
+            ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
+            if (ret_val)
+                return ret_val;
+        } else {
+            if (hw->mac_type == e1000_ich8lan) {
+                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
+                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+            } else {
+                phy_data |= IGP02E1000_PM_D3_LPLU;
+                ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+                                              phy_data);
+                if (ret_val)
+                    return ret_val;
+            }
+        }
+
+        /* When LPLU is enabled we should disable SmartSpeed */
+        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
+        if (ret_val)
+            return ret_val;
+
+    }
+    return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ *
+ * This function sets the lplu d0 state according to the active flag.  When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisment
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * hw: Struct containing variables accessed by shared code
+ * active - true to enable lplu false to disable lplu.
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ *
+ ****************************************************************************/
+
+STATIC int32_t
+e1000_set_d0_lplu_state(struct e1000_hw *hw,
+                        boolean_t active)
+{
+    uint32_t phy_ctrl = 0;
+    int32_t ret_val;
+    uint16_t phy_data;
+    DEBUGFUNC("e1000_set_d0_lplu_state");
+
+    if (hw->mac_type <= e1000_82547_rev_2)
+        return E1000_SUCCESS;
+
+    if (hw->mac_type == e1000_ich8lan) {
+        phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
+    } else {
+        ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
+        if (ret_val)
+            return ret_val;
+    }
+
+    if (!active) {
+        if (hw->mac_type == e1000_ich8lan) {
+            phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+            E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+        } else {
+            phy_data &= ~IGP02E1000_PM_D0_LPLU;
+            ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
+            if (ret_val)
+                return ret_val;
+        }
+
+        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
+         * Dx states where the power conservation is most important.  During
+         * driver activity we should enable SmartSpeed, so performance is
+         * maintained. */
+        if (hw->smart_speed == e1000_smart_speed_on) {
+            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+                                         &phy_data);
+            if (ret_val)
+                return ret_val;
+
+            phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
+            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+                                          phy_data);
+            if (ret_val)
+                return ret_val;
+        } else if (hw->smart_speed == e1000_smart_speed_off) {
+            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+                                         &phy_data);
+            if (ret_val)
+                return ret_val;
+
+            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+                                          phy_data);
+            if (ret_val)
+                return ret_val;
+        }
+
+
+    } else {
+
+        if (hw->mac_type == e1000_ich8lan) {
+            phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
+            E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+        } else {
+            phy_data |= IGP02E1000_PM_D0_LPLU;
+            ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
+            if (ret_val)
+                return ret_val;
+        }
+
+        /* When LPLU is enabled we should disable SmartSpeed */
+        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
+        if (ret_val)
+            return ret_val;
+
+    }
+    return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Change VCO speed register to improve Bit Error Rate performance of SERDES.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int32_t
+e1000_set_vco_speed(struct e1000_hw *hw)
+{
+    int32_t  ret_val;
+    uint16_t default_page = 0;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_set_vco_speed");
+
+    switch (hw->mac_type) {
+    case e1000_82545_rev_3:
+    case e1000_82546_rev_3:
+       break;
+    default:
+        return E1000_SUCCESS;
+    }
+
+    /* Set PHY register 30, page 5, bit 8 to 0 */
+
+    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
+    if (ret_val)
+        return ret_val;
+
+    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
+    if (ret_val)
+        return ret_val;
+
+    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+    if (ret_val)
+        return ret_val;
+
+    phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
+    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+    if (ret_val)
+        return ret_val;
+
+    /* Set PHY register 30, page 4, bit 11 to 1 */
+
+    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
+    if (ret_val)
+        return ret_val;
+
+    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+    if (ret_val)
+        return ret_val;
+
+    phy_data |= M88E1000_PHY_VCO_REG_BIT11;
+    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+    if (ret_val)
+        return ret_val;
+
+    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
+    if (ret_val)
+        return ret_val;
+
+    return E1000_SUCCESS;
+}
+
+
+/*****************************************************************************
+ * This function reads the cookie from ARC ram.
+ *
+ * returns: - E1000_SUCCESS .
+ ****************************************************************************/
+STATIC int32_t
+e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
+{
+    uint8_t i;
+    uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
+    uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
+
+    length = (length >> 2);
+    offset = (offset >> 2);
+
+    for (i = 0; i < length; i++) {
+        *((uint32_t *) buffer + i) =
+            E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
+    }
+    return E1000_SUCCESS;
+}
+
+
+/*****************************************************************************
+ * This function checks whether the HOST IF is enabled for command operaton
+ * and also checks whether the previous command is completed.
+ * It busy waits in case of previous command is not completed.
+ *
+ * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
+ *            timeout
+ *          - E1000_SUCCESS for success.
+ ****************************************************************************/
+STATIC int32_t
+e1000_mng_enable_host_if(struct e1000_hw * hw)
+{
+    uint32_t hicr;
+    uint8_t i;
+
+    /* Check that the host interface is enabled. */
+    hicr = E1000_READ_REG(hw, HICR);
+    if ((hicr & E1000_HICR_EN) == 0) {
+        DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+        return -E1000_ERR_HOST_INTERFACE_COMMAND;
+    }
+    /* check the previous command is completed */
+    for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
+        hicr = E1000_READ_REG(hw, HICR);
+        if (!(hicr & E1000_HICR_C))
+            break;
+        msec_delay_irq(1);
+    }
+
+    if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
+        DEBUGOUT("Previous command timeout failed .\n");
+        return -E1000_ERR_HOST_INTERFACE_COMMAND;
+    }
+    return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ * This function writes the buffer content at the offset given on the host if.
+ * It also does alignment considerations to do the writes in most efficient way.
+ * Also fills up the sum of the buffer in *buffer parameter.
+ *
+ * returns  - E1000_SUCCESS for success.
+ ****************************************************************************/
+STATIC int32_t
+e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
+                        uint16_t length, uint16_t offset, uint8_t *sum)
+{
+    uint8_t *tmp;
+    uint8_t *bufptr = buffer;
+    uint32_t data = 0;
+    uint16_t remaining, i, j, prev_bytes;
+
+    /* sum = only sum of the data and it is not checksum */
+
+    if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
+        return -E1000_ERR_PARAM;
+    }
+
+    tmp = (uint8_t *)&data;
+    prev_bytes = offset & 0x3;
+    offset &= 0xFFFC;
+    offset >>= 2;
+
+    if (prev_bytes) {
+        data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
+        for (j = prev_bytes; j < sizeof(uint32_t); j++) {
+            *(tmp + j) = *bufptr++;
+            *sum += *(tmp + j);
+        }
+        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
+        length -= j - prev_bytes;
+        offset++;
+    }
+
+    remaining = length & 0x3;
+    length -= remaining;
+
+    /* Calculate length in DWORDs */
+    length >>= 2;
+
+    /* The device driver writes the relevant command block into the
+     * ram area. */
+    for (i = 0; i < length; i++) {
+        for (j = 0; j < sizeof(uint32_t); j++) {
+            *(tmp + j) = *bufptr++;
+            *sum += *(tmp + j);
+        }
+
+        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
+    }
+    if (remaining) {
+        for (j = 0; j < sizeof(uint32_t); j++) {
+            if (j < remaining)
+                *(tmp + j) = *bufptr++;
+            else
+                *(tmp + j) = 0;
+
+            *sum += *(tmp + j);
+        }
+        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
+    }
+
+    return E1000_SUCCESS;
+}
+
+
+/*****************************************************************************
+ * This function writes the command header after does the checksum calculation.
+ *
+ * returns  - E1000_SUCCESS for success.
+ ****************************************************************************/
+STATIC int32_t
+e1000_mng_write_cmd_header(struct e1000_hw * hw,
+                           struct e1000_host_mng_command_header * hdr)
+{
+    uint16_t i;
+    uint8_t sum;
+    uint8_t *buffer;
+
+    /* Write the whole command header structure which includes sum of
+     * the buffer */
+
+    uint16_t length = sizeof(struct e1000_host_mng_command_header);
+
+    sum = hdr->checksum;
+    hdr->checksum = 0;
+
+    buffer = (uint8_t *) hdr;
+    i = length;
+    while (i--)
+        sum += buffer[i];
+
+    hdr->checksum = 0 - sum;
+
+    length >>= 2;
+    /* The device driver writes the relevant command block into the ram area. */
+    for (i = 0; i < length; i++) {
+        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
+        E1000_WRITE_FLUSH(hw);
+    }
+
+    return E1000_SUCCESS;
+}
+
+
+/*****************************************************************************
+ * This function indicates to ARC that a new command is pending which completes
+ * one write operation by the driver.
+ *
+ * returns  - E1000_SUCCESS for success.
+ ****************************************************************************/
+STATIC int32_t
+e1000_mng_write_commit(struct e1000_hw * hw)
+{
+    uint32_t hicr;
+
+    hicr = E1000_READ_REG(hw, HICR);
+    /* Setting this bit tells the ARC that a new command is pending. */
+    E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
+
+    return E1000_SUCCESS;
+}
+
+
+/*****************************************************************************
+ * This function checks the mode of the firmware.
+ *
+ * returns  - TRUE when the mode is IAMT or FALSE.
+ ****************************************************************************/
+boolean_t
+e1000_check_mng_mode(struct e1000_hw *hw)
+{
+    uint32_t fwsm;
+
+    fwsm = E1000_READ_REG(hw, FWSM);
+
+    if (hw->mac_type == e1000_ich8lan) {
+        if ((fwsm & E1000_FWSM_MODE_MASK) ==
+            (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+            return TRUE;
+    } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
+               (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+        return TRUE;
+
+    return FALSE;
+}
+
+
+/*****************************************************************************
+ * This function writes the dhcp info .
+ ****************************************************************************/
+int32_t
+e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
+                          uint16_t length)
+{
+    int32_t ret_val;
+    struct e1000_host_mng_command_header hdr;
+
+    hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
+    hdr.command_length = length;
+    hdr.reserved1 = 0;
+    hdr.reserved2 = 0;
+    hdr.checksum = 0;
+
+    ret_val = e1000_mng_enable_host_if(hw);
+    if (ret_val == E1000_SUCCESS) {
+        ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
+                                          &(hdr.checksum));
+        if (ret_val == E1000_SUCCESS) {
+            ret_val = e1000_mng_write_cmd_header(hw, &hdr);
+            if (ret_val == E1000_SUCCESS)
+                ret_val = e1000_mng_write_commit(hw);
+        }
+    }
+    return ret_val;
+}
+
+
+/*****************************************************************************
+ * This function calculates the checksum.
+ *
+ * returns  - checksum of buffer contents.
+ ****************************************************************************/
+STATIC uint8_t
+e1000_calculate_mng_checksum(char *buffer, uint32_t length)
+{
+    uint8_t sum = 0;
+    uint32_t i;
+
+    if (!buffer)
+        return 0;
+
+    for (i=0; i < length; i++)
+        sum += buffer[i];
+
+    return (uint8_t) (0 - sum);
+}
+
+/*****************************************************************************
+ * This function checks whether tx pkt filtering needs to be enabled or not.
+ *
+ * returns  - TRUE for packet filtering or FALSE.
+ ****************************************************************************/
+boolean_t
+e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
+{
+    /* called in init as well as watchdog timer functions */
+
+    int32_t ret_val, checksum;
+    boolean_t tx_filter = FALSE;
+    struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
+    uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
+
+    if (e1000_check_mng_mode(hw)) {
+        ret_val = e1000_mng_enable_host_if(hw);
+        if (ret_val == E1000_SUCCESS) {
+            ret_val = e1000_host_if_read_cookie(hw, buffer);
+            if (ret_val == E1000_SUCCESS) {
+                checksum = hdr->checksum;
+                hdr->checksum = 0;
+                if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
+                    checksum == e1000_calculate_mng_checksum((char *)buffer,
+                                               E1000_MNG_DHCP_COOKIE_LENGTH)) {
+                    if (hdr->status &
+                        E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
+                        tx_filter = TRUE;
+                } else
+                    tx_filter = TRUE;
+            } else
+                tx_filter = TRUE;
+        }
+    }
+
+    hw->tx_pkt_filtering = tx_filter;
+    return tx_filter;
+}
+
+/******************************************************************************
+ * Verifies the hardware needs to allow ARPs to be processed by the host
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * returns: - TRUE/FALSE
+ *
+ *****************************************************************************/
+uint32_t
+e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+    uint32_t manc;
+    uint32_t fwsm, factps;
+
+    if (hw->asf_firmware_present) {
+        manc = E1000_READ_REG(hw, MANC);
+
+        if (!(manc & E1000_MANC_RCV_TCO_EN) ||
+            !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
+            return FALSE;
+        if (e1000_arc_subsystem_valid(hw) == TRUE) {
+            fwsm = E1000_READ_REG(hw, FWSM);
+            factps = E1000_READ_REG(hw, FACTPS);
+
+            if (((fwsm & E1000_FWSM_MODE_MASK) ==
+                (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
+                (factps & E1000_FACTPS_MNGCG))
+                return TRUE;
+        } else
+            if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
+                return TRUE;
+    }
+    return FALSE;
+}
+
+static int32_t
+e1000_polarity_reversal_workaround(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    uint16_t mii_status_reg;
+    uint16_t i;
+
+    /* Polarity reversal workaround for forced 10F/10H links. */
+
+    /* Disable the transmitter on the PHY */
+
+    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+    if (ret_val)
+        return ret_val;
+    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
+    if (ret_val)
+        return ret_val;
+
+    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+    if (ret_val)
+        return ret_val;
+
+    /* This loop will early-out if the NO link condition has been met. */
+    for (i = PHY_FORCE_TIME; i > 0; i--) {
+        /* Read the MII Status Register and wait for Link Status bit
+         * to be clear.
+         */
+
+        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+        if (ret_val)
+            return ret_val;
+
+        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+        if (ret_val)
+            return ret_val;
+
+        if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
+        msec_delay_irq(100);
+    }
+
+    /* Recommended delay time after link has been lost */
+    msec_delay_irq(1000);
+
+    /* Now we will re-enable th transmitter on the PHY */
+
+    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+    if (ret_val)
+        return ret_val;
+    msec_delay_irq(50);
+    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
+    if (ret_val)
+        return ret_val;
+    msec_delay_irq(50);
+    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
+    if (ret_val)
+        return ret_val;
+    msec_delay_irq(50);
+    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
+    if (ret_val)
+        return ret_val;
+
+    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+    if (ret_val)
+        return ret_val;
+
+    /* This loop will early-out if the link condition has been met. */
+    for (i = PHY_FORCE_TIME; i > 0; i--) {
+        /* Read the MII Status Register and wait for Link Status bit
+         * to be set.
+         */
+
+        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+        if (ret_val)
+            return ret_val;
+
+        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+        if (ret_val)
+            return ret_val;
+
+        if (mii_status_reg & MII_SR_LINK_STATUS) break;
+        msec_delay_irq(100);
+    }
+    return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ *
+ * Disables PCI-Express master access.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - none.
+ *
+ ***************************************************************************/
+STATIC void
+e1000_set_pci_express_master_disable(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+
+    DEBUGFUNC("e1000_set_pci_express_master_disable");
+
+    if (hw->bus_type != e1000_bus_type_pci_express)
+        return;
+
+    ctrl = E1000_READ_REG(hw, CTRL);
+    ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+    E1000_WRITE_REG(hw, CTRL, ctrl);
+}
+
+/*******************************************************************************
+ *
+ * Disables PCI-Express master access and verifies there are no pending requests
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
+ *            caused the master requests to be disabled.
+ *            E1000_SUCCESS master requests disabled.
+ *
+ ******************************************************************************/
+int32_t
+e1000_disable_pciex_master(struct e1000_hw *hw)
+{
+    int32_t timeout = MASTER_DISABLE_TIMEOUT;   /* 80ms */
+
+    DEBUGFUNC("e1000_disable_pciex_master");
+
+    if (hw->bus_type != e1000_bus_type_pci_express)
+        return E1000_SUCCESS;
+
+    e1000_set_pci_express_master_disable(hw);
+
+    while (timeout) {
+        if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
+            break;
+        else
+            usec_delay(100);
+        timeout--;
+    }
+
+    if (!timeout) {
+        DEBUGOUT("Master requests are pending.\n");
+        return -E1000_ERR_MASTER_REQUESTS_PENDING;
+    }
+
+    return E1000_SUCCESS;
+}
+
+/*******************************************************************************
+ *
+ * Check for EEPROM Auto Read bit done.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
+ *
+ ******************************************************************************/
+STATIC int32_t
+e1000_get_auto_rd_done(struct e1000_hw *hw)
+{
+    int32_t timeout = AUTO_READ_DONE_TIMEOUT;
+
+    DEBUGFUNC("e1000_get_auto_rd_done");
+
+    switch (hw->mac_type) {
+    default:
+        msec_delay(5);
+        break;
+    case e1000_82571:
+    case e1000_82572:
+    case e1000_82573:
+    case e1000_80003es2lan:
+    case e1000_ich8lan:
+        while (timeout) {
+            if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
+                break;
+            else msec_delay(1);
+            timeout--;
+        }
+
+        if (!timeout) {
+            DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
+            return -E1000_ERR_RESET;
+        }
+        break;
+    }
+
+    /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
+     * Need to wait for PHY configuration completion before accessing NVM
+     * and PHY. */
+    if (hw->mac_type == e1000_82573)
+        msec_delay(25);
+
+    return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ * Checks if the PHY configuration is done
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+STATIC int32_t
+e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+    int32_t timeout = PHY_CFG_TIMEOUT;
+    uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
+
+    DEBUGFUNC("e1000_get_phy_cfg_done");
+
+    switch (hw->mac_type) {
+    default:
+        msec_delay_irq(10);
+        break;
+    case e1000_80003es2lan:
+        /* Separate *_CFG_DONE_* bit for each port */
+        if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
+            cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
+        /* Fall Through */
+    case e1000_82571:
+    case e1000_82572:
+        while (timeout) {
+            if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
+                break;
+            else
+                msec_delay(1);
+            timeout--;
+        }
+        if (!timeout) {
+            DEBUGOUT("MNG configuration cycle has not completed.\n");
+        }
+        break;
+    }
+
+    return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ *
+ * Using the combination of SMBI and SWESMBI semaphore bits when resetting
+ * adapter or Eeprom access.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
+ *            E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+STATIC int32_t
+e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
+{
+    int32_t timeout;
+    uint32_t swsm;
+
+    DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
+
+    if (!hw->eeprom_semaphore_present)
+        return E1000_SUCCESS;
+
+    if (hw->mac_type == e1000_80003es2lan) {
+        /* Get the SW semaphore. */
+        if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
+            return -E1000_ERR_EEPROM;
+    }
+
+    /* Get the FW semaphore. */
+    timeout = hw->eeprom.word_size + 1;
+    while (timeout) {
+        swsm = E1000_READ_REG(hw, SWSM);
+        swsm |= E1000_SWSM_SWESMBI;
+        E1000_WRITE_REG(hw, SWSM, swsm);
+        /* if we managed to set the bit we got the semaphore. */
+        swsm = E1000_READ_REG(hw, SWSM);
+        if (swsm & E1000_SWSM_SWESMBI)
+            break;
+
+        usec_delay(50);
+        timeout--;
+    }
+
+    if (!timeout) {
+        /* Release semaphores */
+        e1000_put_hw_eeprom_semaphore(hw);
+        DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
+        return -E1000_ERR_EEPROM;
+    }
+
+    return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ * This function clears HW semaphore bits.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - None.
+ *
+ ***************************************************************************/
+STATIC void
+e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
+{
+    uint32_t swsm;
+
+    DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
+
+    if (!hw->eeprom_semaphore_present)
+        return;
+
+    swsm = E1000_READ_REG(hw, SWSM);
+    if (hw->mac_type == e1000_80003es2lan) {
+        /* Release both semaphores. */
+        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+    } else
+        swsm &= ~(E1000_SWSM_SWESMBI);
+    E1000_WRITE_REG(hw, SWSM, swsm);
+}
+
+/***************************************************************************
+ *
+ * Obtaining software semaphore bit (SMBI) before resetting PHY.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_RESET if fail to obtain semaphore.
+ *            E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+STATIC int32_t
+e1000_get_software_semaphore(struct e1000_hw *hw)
+{
+    int32_t timeout = hw->eeprom.word_size + 1;
+    uint32_t swsm;
+
+    DEBUGFUNC("e1000_get_software_semaphore");
+
+    if (hw->mac_type != e1000_80003es2lan) {
+        return E1000_SUCCESS;
+    }
+
+    while (timeout) {
+        swsm = E1000_READ_REG(hw, SWSM);
+        /* If SMBI bit cleared, it is now set and we hold the semaphore */
+        if (!(swsm & E1000_SWSM_SMBI))
+            break;
+        msec_delay_irq(1);
+        timeout--;
+    }
+
+    if (!timeout) {
+        DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+        return -E1000_ERR_RESET;
+    }
+
+    return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ *
+ * Release semaphore bit (SMBI).
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ ***************************************************************************/
+STATIC void
+e1000_release_software_semaphore(struct e1000_hw *hw)
+{
+    uint32_t swsm;
+
+    DEBUGFUNC("e1000_release_software_semaphore");
+
+    if (hw->mac_type != e1000_80003es2lan) {
+        return;
+    }
+
+    swsm = E1000_READ_REG(hw, SWSM);
+    /* Release the SW semaphores.*/
+    swsm &= ~E1000_SWSM_SMBI;
+    E1000_WRITE_REG(hw, SWSM, swsm);
+}
+
+/******************************************************************************
+ * Checks if PHY reset is blocked due to SOL/IDER session, for example.
+ * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
+ * the caller to figure out how to deal with it.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_BLK_PHY_RESET
+ *            E1000_SUCCESS
+ *
+ *****************************************************************************/
+int32_t
+e1000_check_phy_reset_block(struct e1000_hw *hw)
+{
+    uint32_t manc = 0;
+    uint32_t fwsm = 0;
+
+    if (hw->mac_type == e1000_ich8lan) {
+        fwsm = E1000_READ_REG(hw, FWSM);
+        return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
+                                            : E1000_BLK_PHY_RESET;
+    }
+
+    if (hw->mac_type > e1000_82547_rev_2)
+        manc = E1000_READ_REG(hw, MANC);
+    return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+        E1000_BLK_PHY_RESET : E1000_SUCCESS;
+}
+
+STATIC uint8_t
+e1000_arc_subsystem_valid(struct e1000_hw *hw)
+{
+    uint32_t fwsm;
+
+    /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
+     * may not be provided a DMA clock when no manageability features are
+     * enabled.  We do not want to perform any reads/writes to these registers
+     * if this is the case.  We read FWSM to determine the manageability mode.
+     */
+    switch (hw->mac_type) {
+    case e1000_82571:
+    case e1000_82572:
+    case e1000_82573:
+    case e1000_80003es2lan:
+        fwsm = E1000_READ_REG(hw, FWSM);
+        if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
+            return TRUE;
+        break;
+    case e1000_ich8lan:
+        return TRUE;
+    default:
+        break;
+    }
+    return FALSE;
+}
+
+
+/******************************************************************************
+ * Configure PCI-Ex no-snoop
+ *
+ * hw - Struct containing variables accessed by shared code.
+ * no_snoop - Bitmap of no-snoop events.
+ *
+ * returns: E1000_SUCCESS
+ *
+ *****************************************************************************/
+STATIC int32_t
+e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
+{
+    uint32_t gcr_reg = 0;
+
+    DEBUGFUNC("e1000_set_pci_ex_no_snoop");
+
+    if (hw->bus_type == e1000_bus_type_unknown)
+        e1000_get_bus_info(hw);
+
+    if (hw->bus_type != e1000_bus_type_pci_express)
+        return E1000_SUCCESS;
+
+    if (no_snoop) {
+        gcr_reg = E1000_READ_REG(hw, GCR);
+        gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
+        gcr_reg |= no_snoop;
+        E1000_WRITE_REG(hw, GCR, gcr_reg);
+    }
+    if (hw->mac_type == e1000_ich8lan) {
+        uint32_t ctrl_ext;
+
+        E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
+
+        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+    }
+
+    return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ *
+ * Get software semaphore FLAG bit (SWFLAG).
+ * SWFLAG is used to synchronize the access to all shared resource between
+ * SW, FW and HW.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ ***************************************************************************/
+STATIC int32_t
+e1000_get_software_flag(struct e1000_hw *hw)
+{
+    int32_t timeout = PHY_CFG_TIMEOUT;
+    uint32_t extcnf_ctrl;
+
+    DEBUGFUNC("e1000_get_software_flag");
+
+    if (hw->mac_type == e1000_ich8lan) {
+        while (timeout) {
+            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
+            extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
+            E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
+
+            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
+            if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
+                break;
+            msec_delay_irq(1);
+            timeout--;
+        }
+
+        if (!timeout) {
+            DEBUGOUT("FW or HW locks the resource too long.\n");
+            return -E1000_ERR_CONFIG;
+        }
+    }
+
+    return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ *
+ * Release software semaphore FLAG bit (SWFLAG).
+ * SWFLAG is used to synchronize the access to all shared resource between
+ * SW, FW and HW.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ ***************************************************************************/
+STATIC void
+e1000_release_software_flag(struct e1000_hw *hw)
+{
+    uint32_t extcnf_ctrl;
+
+    DEBUGFUNC("e1000_release_software_flag");
+
+    if (hw->mac_type == e1000_ich8lan) {
+        extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
+        extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+        E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
+    }
+
+    return;
+}
+
+
+/******************************************************************************
+ * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
+ * register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of word in the EEPROM to read
+ * data - word read from the EEPROM
+ * words - number of words to read
+ *****************************************************************************/
+STATIC int32_t
+e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
+                       uint16_t *data)
+{
+    int32_t  error = E1000_SUCCESS;
+    uint32_t flash_bank = 0;
+    uint32_t act_offset = 0;
+    uint32_t bank_offset = 0;
+    uint16_t word = 0;
+    uint16_t i = 0;
+
+    /* We need to know which is the valid flash bank.  In the event
+     * that we didn't allocate eeprom_shadow_ram, we may not be
+     * managing flash_bank.  So it cannot be trusted and needs
+     * to be updated with each read.
+     */
+    /* Value of bit 22 corresponds to the flash bank we're on. */
+    flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
+
+    /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
+    bank_offset = flash_bank * (hw->flash_bank_size * 2);
+
+    error = e1000_get_software_flag(hw);
+    if (error != E1000_SUCCESS)
+        return error;
+
+    for (i = 0; i < words; i++) {
+        if (hw->eeprom_shadow_ram != NULL &&
+            hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
+            data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
+        } else {
+            /* The NVM part needs a byte offset, hence * 2 */
+            act_offset = bank_offset + ((offset + i) * 2);
+            error = e1000_read_ich8_word(hw, act_offset, &word);
+            if (error != E1000_SUCCESS)
+                break;
+            data[i] = word;
+        }
+    }
+
+    e1000_release_software_flag(hw);
+
+    return error;
+}
+
+/******************************************************************************
+ * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
+ * register.  Actually, writes are written to the shadow ram cache in the hw
+ * structure hw->e1000_shadow_ram.  e1000_commit_shadow_ram flushes this to
+ * the NVM, which occurs when the NVM checksum is updated.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of word in the EEPROM to write
+ * words - number of words to write
+ * data - words to write to the EEPROM
+ *****************************************************************************/
+STATIC int32_t
+e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
+                        uint16_t *data)
+{
+    uint32_t i = 0;
+    int32_t error = E1000_SUCCESS;
+
+    error = e1000_get_software_flag(hw);
+    if (error != E1000_SUCCESS)
+        return error;
+
+    /* A driver can write to the NVM only if it has eeprom_shadow_ram
+     * allocated.  Subsequent reads to the modified words are read from
+     * this cached structure as well.  Writes will only go into this
+     * cached structure unless it's followed by a call to
+     * e1000_update_eeprom_checksum() where it will commit the changes
+     * and clear the "modified" field.
+     */
+    if (hw->eeprom_shadow_ram != NULL) {
+        for (i = 0; i < words; i++) {
+            if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
+                hw->eeprom_shadow_ram[offset+i].modified = TRUE;
+                hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
+            } else {
+                error = -E1000_ERR_EEPROM;
+                break;
+            }
+        }
+    } else {
+        /* Drivers have the option to not allocate eeprom_shadow_ram as long
+         * as they don't perform any NVM writes.  An attempt in doing so
+         * will result in this error.
+         */
+        error = -E1000_ERR_EEPROM;
+    }
+
+    e1000_release_software_flag(hw);
+
+    return error;
+}
+
+/******************************************************************************
+ * This function does initial flash setup so that a new read/write/erase cycle
+ * can be started.
+ *
+ * hw - The pointer to the hw structure
+ ****************************************************************************/
+STATIC int32_t
+e1000_ich8_cycle_init(struct e1000_hw *hw)
+{
+    union ich8_hws_flash_status hsfsts;
+    int32_t error = E1000_ERR_EEPROM;
+    int32_t i     = 0;
+
+    DEBUGFUNC("e1000_ich8_cycle_init");
+
+    hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+
+    /* May be check the Flash Des Valid bit in Hw status */
+    if (hsfsts.hsf_status.fldesvalid == 0) {
+        DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.");
+        return error;
+    }
+
+    /* Clear FCERR in Hw status by writing 1 */
+    /* Clear DAEL in Hw status by writing a 1 */
+    hsfsts.hsf_status.flcerr = 1;
+    hsfsts.hsf_status.dael = 1;
+
+    E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
+
+    /* Either we should have a hardware SPI cycle in progress bit to check
+     * against, in order to start a new cycle or FDONE bit should be changed
+     * in the hardware so that it is 1 after harware reset, which can then be
+     * used as an indication whether a cycle is in progress or has been
+     * completed .. we should also have some software semaphore mechanism to
+     * guard FDONE or the cycle in progress bit so that two threads access to
+     * those bits can be sequentiallized or a way so that 2 threads dont
+     * start the cycle at the same time */
+
+    if (hsfsts.hsf_status.flcinprog == 0) {
+        /* There is no cycle running at present, so we can start a cycle */
+        /* Begin by setting Flash Cycle Done. */
+        hsfsts.hsf_status.flcdone = 1;
+        E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
+        error = E1000_SUCCESS;
+    } else {
+        /* otherwise poll for sometime so the current cycle has a chance
+         * to end before giving up. */
+        for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
+            hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+            if (hsfsts.hsf_status.flcinprog == 0) {
+                error = E1000_SUCCESS;
+                break;
+            }
+            usec_delay(1);
+        }
+        if (error == E1000_SUCCESS) {
+            /* Successful in waiting for previous cycle to timeout,
+             * now set the Flash Cycle Done. */
+            hsfsts.hsf_status.flcdone = 1;
+            E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
+        } else {
+            DEBUGOUT("Flash controller busy, cannot get access");
+        }
+    }
+    return error;
+}
+
+/******************************************************************************
+ * This function starts a flash cycle and waits for its completion
+ *
+ * hw - The pointer to the hw structure
+ ****************************************************************************/
+STATIC int32_t
+e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
+{
+    union ich8_hws_flash_ctrl hsflctl;
+    union ich8_hws_flash_status hsfsts;
+    int32_t error = E1000_ERR_EEPROM;
+    uint32_t i = 0;
+
+    /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
+    hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+    hsflctl.hsf_ctrl.flcgo = 1;
+    E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+    /* wait till FDONE bit is set to 1 */
+    do {
+        hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+        if (hsfsts.hsf_status.flcdone == 1)
+            break;
+        usec_delay(1);
+        i++;
+    } while (i < timeout);
+    if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
+        error = E1000_SUCCESS;
+    }
+    return error;
+}
+
+/******************************************************************************
+ * Reads a byte or word from the NVM using the ICH8 flash access registers.
+ *
+ * hw - The pointer to the hw structure
+ * index - The index of the byte or word to read.
+ * size - Size of data to read, 1=byte 2=word
+ * data - Pointer to the word to store the value read.
+ *****************************************************************************/
+STATIC int32_t
+e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
+                     uint32_t size, uint16_t* data)
+{
+    union ich8_hws_flash_status hsfsts;
+    union ich8_hws_flash_ctrl hsflctl;
+    uint32_t flash_linear_address;
+    uint32_t flash_data = 0;
+    int32_t error = -E1000_ERR_EEPROM;
+    int32_t count = 0;
+
+    DEBUGFUNC("e1000_read_ich8_data");
+
+    if (size < 1  || size > 2 || data == 0x0 ||
+        index > ICH_FLASH_LINEAR_ADDR_MASK)
+        return error;
+
+    flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
+                           hw->flash_base_addr;
+
+    do {
+        usec_delay(1);
+        /* Steps */
+        error = e1000_ich8_cycle_init(hw);
+        if (error != E1000_SUCCESS)
+            break;
+
+        hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+        hsflctl.hsf_ctrl.fldbcount = size - 1;
+        hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
+        E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+        /* Write the last 24 bits of index into Flash Linear address field in
+         * Flash Address */
+        /* TODO: TBD maybe check the index against the size of flash */
+
+        E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
+
+        error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
+
+        /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
+         * sequence a few more times, else read in (shift in) the Flash Data0,
+         * the order is least significant byte first msb to lsb */
+        if (error == E1000_SUCCESS) {
+            flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0);
+            if (size == 1) {
+                *data = (uint8_t)(flash_data & 0x000000FF);
+            } else if (size == 2) {
+                *data = (uint16_t)(flash_data & 0x0000FFFF);
+            }
+            break;
+        } else {
+            /* If we've gotten here, then things are probably completely hosed,
+             * but if the error condition is detected, it won't hurt to give
+             * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
+             */
+            hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+            if (hsfsts.hsf_status.flcerr == 1) {
+                /* Repeat for some time before giving up. */
+                continue;
+            } else if (hsfsts.hsf_status.flcdone == 0) {
+                DEBUGOUT("Timeout error - flash cycle did not complete.");
+                break;
+            }
+        }
+    } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+    return error;
+}
+
+/******************************************************************************
+ * Writes One /two bytes to the NVM using the ICH8 flash access registers.
+ *
+ * hw - The pointer to the hw structure
+ * index - The index of the byte/word to read.
+ * size - Size of data to read, 1=byte 2=word
+ * data - The byte(s) to write to the NVM.
+ *****************************************************************************/
+STATIC int32_t
+e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
+                      uint16_t data)
+{
+    union ich8_hws_flash_status hsfsts;
+    union ich8_hws_flash_ctrl hsflctl;
+    uint32_t flash_linear_address;
+    uint32_t flash_data = 0;
+    int32_t error = -E1000_ERR_EEPROM;
+    int32_t count = 0;
+
+    DEBUGFUNC("e1000_write_ich8_data");
+
+    if (size < 1  || size > 2 || data > size * 0xff ||
+        index > ICH_FLASH_LINEAR_ADDR_MASK)
+        return error;
+
+    flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
+                           hw->flash_base_addr;
+
+    do {
+        usec_delay(1);
+        /* Steps */
+        error = e1000_ich8_cycle_init(hw);
+        if (error != E1000_SUCCESS)
+            break;
+
+        hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+        hsflctl.hsf_ctrl.fldbcount = size -1;
+        hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
+        E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+        /* Write the last 24 bits of index into Flash Linear address field in
+         * Flash Address */
+        E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
+
+        if (size == 1)
+            flash_data = (uint32_t)data & 0x00FF;
+        else
+            flash_data = (uint32_t)data;
+
+        E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
+
+        /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
+         * sequence a few more times else done */
+        error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
+        if (error == E1000_SUCCESS) {
+            break;
+        } else {
+            /* If we're here, then things are most likely completely hosed,
+             * but if the error condition is detected, it won't hurt to give
+             * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
+             */
+            hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+            if (hsfsts.hsf_status.flcerr == 1) {
+                /* Repeat for some time before giving up. */
+                continue;
+            } else if (hsfsts.hsf_status.flcdone == 0) {
+                DEBUGOUT("Timeout error - flash cycle did not complete.");
+                break;
+            }
+        }
+    } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+    return error;
+}
+
+/******************************************************************************
+ * Reads a single byte from the NVM using the ICH8 flash access registers.
+ *
+ * hw - pointer to e1000_hw structure
+ * index - The index of the byte to read.
+ * data - Pointer to a byte to store the value read.
+ *****************************************************************************/
+STATIC int32_t
+e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
+{
+    int32_t status = E1000_SUCCESS;
+    uint16_t word = 0;
+
+    status = e1000_read_ich8_data(hw, index, 1, &word);
+    if (status == E1000_SUCCESS) {
+        *data = (uint8_t)word;
+    }
+
+    return status;
+}
+
+/******************************************************************************
+ * Writes a single byte to the NVM using the ICH8 flash access registers.
+ * Performs verification by reading back the value and then going through
+ * a retry algorithm before giving up.
+ *
+ * hw - pointer to e1000_hw structure
+ * index - The index of the byte to write.
+ * byte - The byte to write to the NVM.
+ *****************************************************************************/
+STATIC int32_t
+e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
+{
+    int32_t error = E1000_SUCCESS;
+    int32_t program_retries = 0;
+
+    DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
+
+    error = e1000_write_ich8_byte(hw, index, byte);
+
+    if (error != E1000_SUCCESS) {
+        for (program_retries = 0; program_retries < 100; program_retries++) {
+            DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index);
+            error = e1000_write_ich8_byte(hw, index, byte);
+            usec_delay(100);
+            if (error == E1000_SUCCESS)
+                break;
+        }
+    }
+
+    if (program_retries == 100)
+        error = E1000_ERR_EEPROM;
+
+    return error;
+}
+
+/******************************************************************************
+ * Writes a single byte to the NVM using the ICH8 flash access registers.
+ *
+ * hw - pointer to e1000_hw structure
+ * index - The index of the byte to read.
+ * data - The byte to write to the NVM.
+ *****************************************************************************/
+STATIC int32_t
+e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
+{
+    int32_t status = E1000_SUCCESS;
+    uint16_t word = (uint16_t)data;
+
+    status = e1000_write_ich8_data(hw, index, 1, word);
+
+    return status;
+}
+
+/******************************************************************************
+ * Reads a word from the NVM using the ICH8 flash access registers.
+ *
+ * hw - pointer to e1000_hw structure
+ * index - The starting byte index of the word to read.
+ * data - Pointer to a word to store the value read.
+ *****************************************************************************/
+STATIC int32_t
+e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
+{
+    int32_t status = E1000_SUCCESS;
+    status = e1000_read_ich8_data(hw, index, 2, data);
+    return status;
+}
+
+
+/******************************************************************************
+ * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
+ * based.
+ *
+ * hw - pointer to e1000_hw structure
+ * bank - 0 for first bank, 1 for second bank
+ *
+ * Note that this function may actually erase as much as 8 or 64 KBytes.  The
+ * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the
+ * bank size may be 4, 8 or 64 KBytes
+ *****************************************************************************/
+int32_t
+e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank)
+{
+    union ich8_hws_flash_status hsfsts;
+    union ich8_hws_flash_ctrl hsflctl;
+    uint32_t flash_linear_address;
+    int32_t  count = 0;
+    int32_t  error = E1000_ERR_EEPROM;
+    int32_t  iteration;
+    int32_t  sub_sector_size = 0;
+    int32_t  bank_size;
+    int32_t  j = 0;
+    int32_t  error_flag = 0;
+
+    hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+
+    /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
+    /* 00: The Hw sector is 256 bytes, hence we need to erase 16
+     *     consecutive sectors.  The start index for the nth Hw sector can be
+     *     calculated as bank * 4096 + n * 256
+     * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
+     *     The start index for the nth Hw sector can be calculated
+     *     as bank * 4096
+     * 10: The HW sector is 8K bytes
+     * 11: The Hw sector size is 64K bytes */
+    if (hsfsts.hsf_status.berasesz == 0x0) {
+        /* Hw sector size 256 */
+        sub_sector_size = ICH_FLASH_SEG_SIZE_256;
+        bank_size = ICH_FLASH_SECTOR_SIZE;
+        iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256;
+    } else if (hsfsts.hsf_status.berasesz == 0x1) {
+        bank_size = ICH_FLASH_SEG_SIZE_4K;
+        iteration = 1;
+    } else if (hsfsts.hsf_status.berasesz == 0x3) {
+        bank_size = ICH_FLASH_SEG_SIZE_64K;
+        iteration = 1;
+    } else {
+        return error;
+    }
+
+    for (j = 0; j < iteration ; j++) {
+        do {
+            count++;
+            /* Steps */
+            error = e1000_ich8_cycle_init(hw);
+            if (error != E1000_SUCCESS) {
+                error_flag = 1;
+                break;
+            }
+
+            /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
+             * Control */
+            hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+            hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
+            E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+            /* Write the last 24 bits of an index within the block into Flash
+             * Linear address field in Flash Address.  This probably needs to
+             * be calculated here based off the on-chip erase sector size and
+             * the software bank size (4, 8 or 64 KBytes) */
+            flash_linear_address = bank * bank_size + j * sub_sector_size;
+            flash_linear_address += hw->flash_base_addr;
+            flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK;
+
+            E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
+
+            error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT);
+            /* Check if FCERR is set to 1.  If 1, clear it and try the whole
+             * sequence a few more times else Done */
+            if (error == E1000_SUCCESS) {
+                break;
+            } else {
+                hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+                if (hsfsts.hsf_status.flcerr == 1) {
+                    /* repeat for some time before giving up */
+                    continue;
+                } else if (hsfsts.hsf_status.flcdone == 0) {
+                    error_flag = 1;
+                    break;
+                }
+            }
+        } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
+        if (error_flag == 1)
+            break;
+    }
+    if (error_flag != 1)
+        error = E1000_SUCCESS;
+    return error;
+}
+
+
+STATIC int32_t
+e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
+                                      uint32_t cnf_base_addr, uint32_t cnf_size)
+{
+    uint32_t ret_val = E1000_SUCCESS;
+    uint16_t word_addr, reg_data, reg_addr;
+    uint16_t i;
+
+    /* cnf_base_addr is in DWORD */
+    word_addr = (uint16_t)(cnf_base_addr << 1);
+
+    /* cnf_size is returned in size of dwords */
+    for (i = 0; i < cnf_size; i++) {
+        ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
+        if (ret_val)
+            return ret_val;
+
+        ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
+        if (ret_val)
+            return ret_val;
+
+        ret_val = e1000_get_software_flag(hw);
+        if (ret_val != E1000_SUCCESS)
+            return ret_val;
+
+        ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
+
+        e1000_release_software_flag(hw);
+    }
+
+    return ret_val;
+}
+
+
+/******************************************************************************
+ * This function initializes the PHY from the NVM on ICH8 platforms. This
+ * is needed due to an issue where the NVM configuration is not properly
+ * autoloaded after power transitions. Therefore, after each PHY reset, we
+ * will load the configuration data out of the NVM manually.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *****************************************************************************/
+STATIC int32_t
+e1000_init_lcd_from_nvm(struct e1000_hw *hw)
+{
+    uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
+
+    if (hw->phy_type != e1000_phy_igp_3)
+          return E1000_SUCCESS;
+
+    /* Check if SW needs configure the PHY */
+    reg_data = E1000_READ_REG(hw, FEXTNVM);
+    if (!(reg_data & FEXTNVM_SW_CONFIG))
+        return E1000_SUCCESS;
+
+    /* Wait for basic configuration completes before proceeding*/
+    loop = 0;
+    do {
+        reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
+        usec_delay(100);
+        loop++;
+    } while ((!reg_data) && (loop < 50));
+
+    /* Clear the Init Done bit for the next init event */
+    reg_data = E1000_READ_REG(hw, STATUS);
+    reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
+    E1000_WRITE_REG(hw, STATUS, reg_data);
+
+    /* Make sure HW does not configure LCD from PHY extended configuration
+       before SW configuration */
+    reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
+    if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
+        reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
+        cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
+        cnf_size >>= 16;
+        if (cnf_size) {
+            reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
+            cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
+            /* cnf_base_addr is in DWORD */
+            cnf_base_addr >>= 16;
+
+            /* Configure LCD from extended configuration region. */
+            ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
+                                                            cnf_size);
+            if (ret_val)
+                return ret_val;
+        }
+    }
+
+    return E1000_SUCCESS;
+}
+
--- a/usr/src/pkgdefs/SUNWintgige/postinstall	Mon Aug 20 23:01:08 2007 -0700
+++ b/usr/src/pkgdefs/SUNWintgige/postinstall	Tue Aug 21 00:30:10 2007 -0700
@@ -188,9 +188,16 @@
 	"pci8086,10ba"
 	"pci8086,10bb"
 	"pci8086,10bc"
+	"pci8086,10bd"
+	"pci8086,10be"
+	"pci8086,10bf"
+	"pci8086,10c0"
+	"pci8086,10c2"
+	"pci8086,10c3"
 	"pci8086,10c4"
 	"pci8086,10c5"
 	"pci8086,10d5"
+	"pci8086,294c"
 	"pciex8086,1049"
 	"pciex8086,104a"
 	"pciex8086,104b"
@@ -212,7 +219,14 @@
 	"pciex8086,10ba"
 	"pciex8086,10bb"
 	"pciex8086,10bc"
+	"pciex8086,10bd"
+	"pciex8086,10be"
+	"pciex8086,10bf"
+	"pciex8086,10c0"
+	"pciex8086,10c2"
+	"pciex8086,10c3"
 	"pciex8086,10c4"
 	"pciex8086,10c5" 
-	"pciex8086,10d5"' \
+	"pciex8086,10d5"
+	"pciex8086,294c"' \
 	-m '* 0666 root root' e1000g
--- a/usr/src/uts/common/Makefile.files	Mon Aug 20 23:01:08 2007 -0700
+++ b/usr/src/uts/common/Makefile.files	Tue Aug 21 00:30:10 2007 -0700
@@ -1396,7 +1396,10 @@
 #
 #	e1000g module
 #
-E1000G_OBJS +=	e1000g_debug.o e1000_hw.o e1000g_main.o e1000g_alloc.o \
+E1000G_OBJS +=	e1000_80003es2lan.o e1000_82540.o e1000_82541.o e1000_82542.o \
+		e1000_82543.o e1000_82571.o e1000_api.o e1000_ich8lan.o \
+		e1000_mac.o e1000_manage.o e1000_nvm.o e1000_osdep.o \
+		e1000_phy.o e1000g_debug.o e1000g_main.o e1000g_alloc.o \
 		e1000g_tx.o e1000g_rx.o e1000g_stat.o e1000g_ndd.o
 #
 #	NIU 10G/1G driver module
--- a/usr/src/uts/common/io/e1000g/README	Mon Aug 20 23:01:08 2007 -0700
+++ b/usr/src/uts/common/io/e1000g/README	Tue Aug 21 00:30:10 2007 -0700
@@ -520,3 +520,11 @@
 ======
   This version has the following fix:
    6552853 system panics in e1000g_alloc_dvma_buffer during hotplug testing
+
+5.2.0
+======
+  This version has the following fix:
+   6535620 e1000g needs to support ICH9 devices
+   6572330 e1000g: integrate the latest Intel refactored shared code
+   6573381 e1000g receiving VLAN tagged frames does not do hardware checksumming
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_80003es2lan.c	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,1351 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+/*
+ * e1000_80003es2lan
+ */
+
+#include "e1000_api.h"
+#include "e1000_80003es2lan.h"
+
+void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw);
+
+static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
+static void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
+static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+    u32 offset, u16 *data);
+static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+    u32 offset, u16 data);
+static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+    u16 words, u16 *data);
+static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+    u16 *duplex);
+static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
+static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
+static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
+static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
+static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
+
+/*
+ * A table for the GG82563 cable length where the range is defined with a
+ * lower bound at "index" and the upper bound at "index + 5".
+ */
+static const u16 e1000_gg82563_cable_length_table[] =
+	{0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF};
+
+#define	GG82563_CABLE_LENGTH_TABLE_SIZE \
+	(sizeof (e1000_gg82563_cable_length_table) / \
+	sizeof (e1000_gg82563_cable_length_table[0]))
+
+/*
+ * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_phy_params_80003es2lan");
+
+	if (hw->media_type != e1000_media_type_copper) {
+		phy->type = e1000_phy_none;
+		goto out;
+	}
+
+	phy->addr = 1;
+	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us = 100;
+	phy->type = e1000_phy_gg82563;
+
+	func->acquire_phy = e1000_acquire_phy_80003es2lan;
+	func->check_polarity = e1000_check_polarity_m88;
+	func->check_reset_block = e1000_check_reset_block_generic;
+	func->commit_phy = e1000_phy_sw_reset_generic;
+	func->get_cfg_done = e1000_get_cfg_done_80003es2lan;
+	func->get_phy_info = e1000_get_phy_info_m88;
+	func->release_phy = e1000_release_phy_80003es2lan;
+	func->reset_phy = e1000_phy_hw_reset_generic;
+	func->set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+
+	func->force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
+	func->get_cable_length = e1000_get_cable_length_80003es2lan;
+	func->read_phy_reg = e1000_read_phy_reg_gg82563_80003es2lan;
+	func->write_phy_reg = e1000_write_phy_reg_gg82563_80003es2lan;
+
+	/* This can only be done after all function pointers are setup. */
+	ret_val = e1000_get_phy_id(hw);
+
+	/* Verify phy id */
+	if (phy->id != GG82563_E_PHY_ID) {
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_functions *func = &hw->func;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	u16 size;
+
+	DEBUGFUNC("e1000_init_nvm_params_80003es2lan");
+
+	nvm->opcode_bits = 8;
+	nvm->delay_usec = 1;
+	switch (nvm->override) {
+	case e1000_nvm_override_spi_large:
+		nvm->page_size = 32;
+		nvm->address_bits = 16;
+		break;
+	case e1000_nvm_override_spi_small:
+		nvm->page_size = 8;
+		nvm->address_bits = 8;
+		break;
+	default:
+		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+		break;
+	}
+
+	nvm->type = e1000_nvm_eeprom_spi;
+
+	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+	    E1000_EECD_SIZE_EX_SHIFT);
+
+	/*
+	 * Added to a constant, "size" becomes the left-shift value
+	 * for setting word_size.
+	 */
+	size += NVM_WORD_SIZE_BASE_SHIFT;
+	nvm->word_size = 1 << size;
+
+	/* Function Pointers */
+	func->acquire_nvm = e1000_acquire_nvm_80003es2lan;
+	func->read_nvm = e1000_read_nvm_eerd;
+	func->release_nvm = e1000_release_nvm_80003es2lan;
+	func->update_nvm = e1000_update_nvm_checksum_generic;
+	func->valid_led_default = e1000_valid_led_default_generic;
+	func->validate_nvm = e1000_validate_nvm_checksum_generic;
+	func->write_nvm = e1000_write_nvm_80003es2lan;
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_mac_params_80003es2lan");
+
+	/* Set media type */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+		hw->media_type = e1000_media_type_internal_serdes;
+		break;
+	default:
+		hw->media_type = e1000_media_type_copper;
+		break;
+	}
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+	/* Set if part includes ASF firmware */
+	mac->asf_firmware_present = TRUE;
+	/* Set if manageability features are enabled. */
+	mac->arc_subsystem_valid =
+	    (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
+	    ? TRUE : FALSE;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	func->get_bus_info = e1000_get_bus_info_pcie_generic;
+	/* reset */
+	func->reset_hw = e1000_reset_hw_80003es2lan;
+	/* hw initialization */
+	func->init_hw = e1000_init_hw_80003es2lan;
+	/* link setup */
+	func->setup_link = e1000_setup_link_generic;
+	/* physical interface link setup */
+	func->setup_physical_interface =
+	    (hw->media_type == e1000_media_type_copper)
+	    ? e1000_setup_copper_link_80003es2lan
+	    : e1000_setup_fiber_serdes_link_generic;
+	/* check for link */
+	switch (hw->media_type) {
+	case e1000_media_type_copper:
+		func->check_for_link = e1000_check_for_copper_link_generic;
+		break;
+	case e1000_media_type_fiber:
+		func->check_for_link = e1000_check_for_fiber_link_generic;
+		break;
+	case e1000_media_type_internal_serdes:
+		func->check_for_link = e1000_check_for_serdes_link_generic;
+		break;
+	default:
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+	/* check management mode */
+	func->check_mng_mode = e1000_check_mng_mode_generic;
+	/* multicast address update */
+	func->mc_addr_list_update = e1000_mc_addr_list_update_generic;
+	/* writing VFTA */
+	func->write_vfta = e1000_write_vfta_generic;
+	/* clearing VFTA */
+	func->clear_vfta = e1000_clear_vfta_generic;
+	/* setting MTA */
+	func->mta_set = e1000_mta_set_generic;
+	/* blink LED */
+	func->blink_led = e1000_blink_led_generic;
+	/* setup LED */
+	func->setup_led = e1000_setup_led_generic;
+	/* cleanup LED */
+	func->cleanup_led = e1000_cleanup_led_generic;
+	/* turn on/off LED */
+	func->led_on = e1000_led_on_generic;
+	func->led_off = e1000_led_off_generic;
+	/* remove device */
+	func->remove_device = e1000_remove_device_generic;
+	/* clear hardware counters */
+	func->clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan;
+	/* link info */
+	func->get_link_up_info = e1000_get_link_up_info_80003es2lan;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * The only function explicitly called by the api module to initialize
+ * all function pointers and parameters.
+ */
+void
+e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_80003es2lan");
+
+	hw->func.init_mac_params = e1000_init_mac_params_80003es2lan;
+	hw->func.init_nvm_params = e1000_init_nvm_params_80003es2lan;
+	hw->func.init_phy_params = e1000_init_phy_params_80003es2lan;
+}
+
+/*
+ * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * A wrapper to acquire access rights to the correct PHY.  This is a
+ * function pointer entry point called by the api module.
+ */
+static s32
+e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	DEBUGFUNC("e1000_acquire_phy_80003es2lan");
+
+	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+
+	return (e1000_acquire_swfw_sync_80003es2lan(hw, mask));
+}
+
+/*
+ * e1000_release_phy_80003es2lan - Release rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * A wrapper to release access rights to the correct PHY.  This is a
+ * function pointer entry point called by the api module.
+ */
+static void
+e1000_release_phy_80003es2lan(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	DEBUGFUNC("e1000_release_phy_80003es2lan");
+
+	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+	e1000_release_swfw_sync_80003es2lan(hw, mask);
+}
+
+/*
+ * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the semaphore to access the EEPROM.  This is a function
+ * pointer entry point called by the api module.
+ */
+static s32
+e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_acquire_nvm_80003es2lan");
+
+	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_acquire_nvm_generic(hw);
+
+	if (ret_val)
+		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
+ * @hw: pointer to the HW structure
+ *
+ * Release the semaphore used to access the EEPROM.  This is a
+ * function pointer entry point called by the api module.
+ */
+static void
+e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_release_nvm_80003es2lan");
+
+	e1000_release_nvm_generic(hw);
+	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+}
+
+/*
+ * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
+ * will also specify which port we're acquiring the lock for.
+ */
+static s32
+e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+{
+	u32 swfw_sync;
+	u32 swmask = mask;
+	u32 fwmask = mask << 16;
+	s32 ret_val = E1000_SUCCESS;
+	s32 i = 0, timeout = 200;
+
+	DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan");
+
+	while (i < timeout) {
+		if (e1000_get_hw_semaphore_generic(hw)) {
+			ret_val = -E1000_ERR_SWFW_SYNC;
+			goto out;
+		}
+
+		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+		if (!(swfw_sync & (fwmask | swmask)))
+			break;
+
+		/*
+		 * Firmware currently using resource (fwmask)
+		 * or other software thread using resource (swmask)
+		 */
+		e1000_put_hw_semaphore_generic(hw);
+		msec_delay_irq(5);
+		i++;
+	}
+
+	if (i == timeout) {
+		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+		ret_val = -E1000_ERR_SWFW_SYNC;
+		goto out;
+	}
+
+	swfw_sync |= swmask;
+	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+	e1000_put_hw_semaphore_generic(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
+ * will also specify which port we're releasing the lock for.
+ */
+static void
+e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+{
+	u32 swfw_sync;
+
+	DEBUGFUNC("e1000_release_swfw_sync_80003es2lan");
+
+	while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) {
+		/* Empty */
+	}
+
+	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+	swfw_sync &= ~mask;
+	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+	e1000_put_hw_semaphore_generic(hw);
+}
+
+/*
+ * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: offset of the register to read
+ * @data: pointer to the data returned from the operation
+ *
+ * Read the GG82563 PHY register.  This is a function pointer entry
+ * point called by the api module.
+ */
+static s32
+e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+    u32 offset, u16 *data)
+{
+	s32 ret_val;
+	u32 page_select;
+	u16 temp;
+
+	DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan");
+
+	/* Select Configuration Page */
+	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+		page_select = GG82563_PHY_PAGE_SELECT;
+	} else {
+		/*
+		 * Use Alternative Page Select register to access
+		 * registers 30 and 31
+		 */
+		page_select = GG82563_PHY_PAGE_SELECT_ALT;
+	}
+
+	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+	ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * The "ready" bit in the MDIC register may be incorrectly set
+	 * before the device has completed the "Page Select" MDI
+	 * transaction.  So we wait 200us after each MDI command...
+	 */
+	usec_delay(200);
+
+	/* ...and verify the command was successful. */
+	ret_val = e1000_read_phy_reg_m88(hw, page_select, &temp);
+
+	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+	usec_delay(200);
+
+	ret_val = e1000_read_phy_reg_m88(hw,
+	    MAX_PHY_REG_ADDRESS & offset,
+	    data);
+
+	usec_delay(200);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: offset of the register to read
+ * @data: value to write to the register
+ *
+ * Write to the GG82563 PHY register.  This is a function pointer entry
+ * point called by the api module.
+ */
+static s32
+e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+    u32 offset, u16 data)
+{
+	s32 ret_val;
+	u32 page_select;
+	u16 temp;
+
+	DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan");
+
+	/* Select Configuration Page */
+	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+		page_select = GG82563_PHY_PAGE_SELECT;
+	} else {
+		/*
+		 * Use Alternative Page Select register to access
+		 * registers 30 and 31
+		 */
+		page_select = GG82563_PHY_PAGE_SELECT_ALT;
+	}
+
+	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+	ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
+	if (ret_val)
+		goto out;
+
+
+	/*
+	 * The "ready" bit in the MDIC register may be incorrectly set
+	 * before the device has completed the "Page Select" MDI
+	 * transaction.  So we wait 200us after each MDI command...
+	 */
+	usec_delay(200);
+
+	/* ...and verify the command was successful. */
+	ret_val = e1000_read_phy_reg_m88(hw, page_select, &temp);
+
+	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+	usec_delay(200);
+
+	ret_val = e1000_write_phy_reg_m88(hw,
+	    MAX_PHY_REG_ADDRESS & offset,
+	    data);
+
+	usec_delay(200);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
+ * @hw: pointer to the HW structure
+ * @offset: offset of the register to read
+ * @words: number of words to write
+ * @data: buffer of data to write to the NVM
+ *
+ * Write "words" of data to the ESB2 NVM.  This is a function
+ * pointer entry point called by the api module.
+ */
+static s32
+e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+    u16 words, u16 *data)
+{
+	DEBUGFUNC("e1000_write_nvm_80003es2lan");
+
+	return (e1000_write_nvm_spi(hw, offset, words, data));
+}
+
+/*
+ * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
+ * @hw: pointer to the HW structure
+ *
+ * Wait a specific amount of time for manageability processes to complete.
+ * This is a function pointer entry point called by the phy module.
+ */
+static s32
+e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
+{
+	s32 timeout = PHY_CFG_TIMEOUT;
+	s32 ret_val = E1000_SUCCESS;
+	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+
+	DEBUGFUNC("e1000_get_cfg_done_80003es2lan");
+
+	if (hw->bus.func == 1)
+		mask = E1000_NVM_CFG_DONE_PORT_1;
+
+	while (timeout) {
+		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
+			break;
+		msec_delay(1);
+		timeout--;
+	}
+	if (!timeout) {
+		DEBUGOUT("MNG configuration cycle has not completed.\n");
+		ret_val = -E1000_ERR_RESET;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
+ * @hw: pointer to the HW structure
+ *
+ * Force the speed and duplex settings onto the PHY.  This is a
+ * function pointer entry point called by the phy module.
+ */
+static s32
+e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+	boolean_t link;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan");
+
+	/*
+	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
+	 * forced whenever speed and duplex are forced.
+	 */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		goto out;
+
+	DEBUGOUT1("GG82563 PSCR: %X\n", phy_data);
+
+	ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	/* Reset the phy to commit changes. */
+	phy_data |= MII_CR_RESET;
+
+	ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		goto out;
+
+	usec_delay(1);
+
+	if (hw->phy.wait_for_link) {
+		DEBUGOUT("Waiting for forced speed/duplex link "
+		    "on GG82563 phy.\n");
+
+		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+		    100000, &link);
+		if (ret_val)
+			goto out;
+
+		if (!link) {
+			/*
+			 * We didn't get link.
+			 * Reset the DSP and cross our fingers.
+			 */
+			ret_val = e1000_phy_reset_dsp_generic(hw);
+			if (ret_val)
+				goto out;
+		}
+
+		/* Try once more */
+		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+		    100000, &link);
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Resetting the phy means we need to verify the TX_CLK corresponds
+	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
+	 */
+	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
+	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
+		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
+	else
+		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
+
+	/*
+	 * In addition, we must re-enable CRS on Tx for both half and full
+	 * duplex.
+	 */
+	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_get_cable_length_80003es2lan - Set approximate cable length
+ * @hw: pointer to the HW structure
+ *
+ * Find the approximate cable length as measured by the GG82563 PHY.
+ * This is a function pointer entry point called by the phy module.
+ */
+static s32
+e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, index;
+
+	DEBUGFUNC("e1000_get_cable_length_80003es2lan");
+
+	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
+	if (ret_val)
+		goto out;
+
+	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
+	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
+	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_get_link_up_info_80003es2lan - Report speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to speed buffer
+ * @duplex: pointer to duplex buffer
+ *
+ * Retrieve the current speed and duplex configuration.
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_get_link_up_info_80003es2lan");
+
+	if (hw->media_type == e1000_media_type_copper) {
+		ret_val = e1000_get_speed_and_duplex_copper_generic(hw,
+		    speed,
+		    duplex);
+		if (ret_val)
+			goto out;
+		if (*speed == SPEED_1000)
+			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
+		else
+			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
+			    *duplex);
+	} else {
+		ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
+		    speed,
+		    duplex);
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
+ * @hw: pointer to the HW structure
+ *
+ * Perform a global reset to the ESB2 controller.
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
+{
+	u32 ctrl, icr;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_reset_hw_80003es2lan");
+
+	/*
+	 * Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000_disable_pcie_master_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("PCI-E Master disable polling has failed.\n");
+	}
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGOUT("Issuing a global reset to MAC\n");
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+	ret_val = e1000_get_auto_rd_done_generic(hw);
+	if (ret_val)
+		/* We don't want to continue accessing MAC registers. */
+		goto out;
+
+	/* Clear any pending interrupt events. */
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	icr = E1000_READ_REG(hw, E1000_ICR);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
+ * @hw: pointer to the HW structure
+ *
+ * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_hw_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 reg_data;
+	s32 ret_val;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_hw_80003es2lan");
+
+	e1000_initialize_hw_bits_80003es2lan(hw);
+
+	/* Initialize identification LED */
+	ret_val = e1000_id_led_init_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error initializing identification LED\n");
+		goto out;
+	}
+
+	/* Disabling VLAN filtering */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	e1000_clear_vfta(hw);
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link(hw);
+
+	/* Set the transmit descriptor write-back policy */
+	reg_data = E1000_READ_REG(hw, E1000_TXDCTL);
+	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+	    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+	E1000_WRITE_REG(hw, E1000_TXDCTL, reg_data);
+
+	/* ...for both queues. */
+	reg_data = E1000_READ_REG(hw, E1000_TXDCTL1);
+	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+	    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+	E1000_WRITE_REG(hw, E1000_TXDCTL1, reg_data);
+
+	/* Enable retransmit on late collisions */
+	reg_data = E1000_READ_REG(hw, E1000_TCTL);
+	reg_data |= E1000_TCTL_RTLC;
+	E1000_WRITE_REG(hw, E1000_TCTL, reg_data);
+
+	/* Configure Gigabit Carry Extend Padding */
+	reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT);
+	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
+	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
+	E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data);
+
+	/* Configure Transmit Inter-Packet Gap */
+	reg_data = E1000_READ_REG(hw, E1000_TIPG);
+	reg_data &= ~E1000_TIPG_IPGT_MASK;
+	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
+	E1000_WRITE_REG(hw, E1000_TIPG, reg_data);
+
+	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
+	reg_data &= ~0x00100000;
+	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_80003es2lan(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
+ * @hw: pointer to the HW structure
+ *
+ * Initializes required hardware-dependent bits needed for normal operation.
+ */
+static void
+e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan");
+
+	if (hw->mac.disable_hw_init_bits)
+		return;
+
+	/* Transmit Descriptor Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL);
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL, reg);
+
+	/* Transmit Descriptor Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL1);
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL1, reg);
+
+	/* Transmit Arbitration Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TARC0);
+	reg &= ~(0xF << 27);	/* 30:27 */
+	if (hw->media_type != e1000_media_type_copper)
+		reg &= ~(1 << 20);
+	E1000_WRITE_REG(hw, E1000_TARC0, reg);
+
+	/* Transmit Arbitration Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TARC1);
+	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+		reg &= ~(1 << 28);
+	else
+		reg |= (1 << 28);
+	E1000_WRITE_REG(hw, E1000_TARC1, reg);
+}
+
+/*
+ * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
+ * @hw: pointer to the HW structure
+ *
+ * Setup some GG82563 PHY registers for obtaining link
+ */
+static s32
+e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u32 ctrl_ext;
+	u16 data;
+
+	DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");
+
+	if (!phy->reset_disable) {
+		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+		    &data);
+		if (ret_val)
+			goto out;
+
+		data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+		/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
+		data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
+
+		ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+		    data);
+		if (ret_val)
+			goto out;
+
+		/*
+		 * Options:
+		 *   MDI/MDI-X = 0 (default)
+		 *   0 - Auto for all speeds
+		 *   1 - MDI mode
+		 *   2 - MDI-X mode
+		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+		 */
+		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &data);
+		if (ret_val)
+			goto out;
+
+		data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
+
+		switch (phy->mdix) {
+		case 1:
+			data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
+			break;
+		case 2:
+			data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
+			break;
+		case 0:
+		default:
+			data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
+			break;
+		}
+
+		/*
+		 * Options:
+		 *   disable_polarity_correction = 0 (default)
+		 *	Automatic Correction for Reversed Cable Polarity
+		 *   0 - Disabled
+		 *   1 - Enabled
+		 */
+		data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+		if (phy->disable_polarity_correction)
+			data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+
+		ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, data);
+		if (ret_val)
+			goto out;
+
+		/* SW Reset the PHY so all changes take effect */
+		ret_val = e1000_phy_commit(hw);
+		if (ret_val) {
+			DEBUGOUT("Error Resetting the PHY\n");
+			goto out;
+		}
+
+	}
+
+	/* Bypass RX and TX FIFO's */
+	ret_val = e1000_write_kmrn_reg(hw,
+	    E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
+	    E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
+	    E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data);
+	if (ret_val)
+		goto out;
+
+	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, data);
+	if (ret_val)
+		goto out;
+
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Do not init these registers when the HW is in IAMT mode, since the
+	 * firmware will have already initialized them.  We only initialize
+	 * them if the HW is not in IAMT mode.
+	 */
+	if (!(e1000_check_mng_mode(hw))) {
+		/* Enable Electrical Idle on the PHY */
+		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+		ret_val = e1000_write_phy_reg(hw,
+		    GG82563_PHY_PWR_MGMT_CTRL,
+		    data);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_read_phy_reg(hw,
+		    GG82563_PHY_KMRN_MODE_CTRL,
+		    &data);
+		if (ret_val)
+			goto out;
+
+		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+		ret_val = e1000_write_phy_reg(hw,
+		    GG82563_PHY_KMRN_MODE_CTRL,
+		    data);
+
+		if (ret_val)
+			goto out;
+	}
+
+	/*
+	 * Workaround: Disable padding in Kumeran interface in the MAC
+	 * and in the PHY to avoid CRC errors.
+	 */
+	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, &data);
+	if (ret_val)
+		goto out;
+
+	data |= GG82563_ICR_DIS_PADDING;
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, data);
+	if (ret_val)
+		goto out;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
+ * @hw: pointer to the HW structure
+ *
+ * Essentially a wrapper for setting up all things "copper" related.
+ * This is a function pointer entry point called by the mac module.
+ */
+static s32
+e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 reg_data;
+
+	DEBUGFUNC("e1000_setup_copper_link_80003es2lan");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	/*
+	 * Set the mac to wait the maximum time between each
+	 * iteration and increase the max iterations when
+	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
+	 */
+	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
+	if (ret_val)
+		goto out;
+	ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
+	if (ret_val)
+		goto out;
+	reg_data |= 0x3F;
+	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
+	if (ret_val)
+		goto out;
+	ret_val = e1000_read_kmrn_reg(hw,
+	    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+	    &reg_data);
+	if (ret_val)
+		goto out;
+	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
+	ret_val = e1000_write_kmrn_reg(hw,
+	    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+	    reg_data);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
+ * @hw: pointer to the HW structure
+ * @duplex: current duplex setting
+ *
+ * Configure the KMRN interface by applying last minute quirks for
+ * 10/100 operation.
+ */
+static s32
+e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u32 tipg;
+	u32 i = 0;
+	u16 reg_data, reg_data2;
+
+	DEBUGFUNC("e1000_configure_kmrn_for_10_100");
+
+	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
+	ret_val = e1000_write_kmrn_reg(hw,
+	    E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+	    reg_data);
+	if (ret_val)
+		goto out;
+
+	/* Configure Transmit Inter-Packet Gap */
+	tipg = E1000_READ_REG(hw, E1000_TIPG);
+	tipg &= ~E1000_TIPG_IPGT_MASK;
+	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
+	E1000_WRITE_REG(hw, E1000_TIPG, tipg);
+
+
+	do {
+		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+		    &reg_data);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+		    &reg_data2);
+		if (ret_val)
+			goto out;
+		i++;
+	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
+
+	if (duplex == HALF_DUPLEX)
+		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+	else
+		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
+ * @hw: pointer to the HW structure
+ *
+ * Configure the KMRN interface by applying last minute quirks for
+ * gigabit operation.
+ */
+static s32
+e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 reg_data, reg_data2;
+	u32 tipg;
+	u32 i = 0;
+
+	DEBUGFUNC("e1000_configure_kmrn_for_1000");
+
+	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
+	ret_val = e1000_write_kmrn_reg(hw,
+	    E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+	    reg_data);
+	if (ret_val)
+		goto out;
+
+	/* Configure Transmit Inter-Packet Gap */
+	tipg = E1000_READ_REG(hw, E1000_TIPG);
+	tipg &= ~E1000_TIPG_IPGT_MASK;
+	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
+	E1000_WRITE_REG(hw, E1000_TIPG, tipg);
+
+
+	do {
+		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+		    &reg_data);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+		    &reg_data2);
+		if (ret_val)
+			goto out;
+		i++;
+	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
+
+	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ */
+static void
+e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	temp = E1000_READ_REG(hw, E1000_PRC64);
+	temp = E1000_READ_REG(hw, E1000_PRC127);
+	temp = E1000_READ_REG(hw, E1000_PRC255);
+	temp = E1000_READ_REG(hw, E1000_PRC511);
+	temp = E1000_READ_REG(hw, E1000_PRC1023);
+	temp = E1000_READ_REG(hw, E1000_PRC1522);
+	temp = E1000_READ_REG(hw, E1000_PTC64);
+	temp = E1000_READ_REG(hw, E1000_PTC127);
+	temp = E1000_READ_REG(hw, E1000_PTC255);
+	temp = E1000_READ_REG(hw, E1000_PTC511);
+	temp = E1000_READ_REG(hw, E1000_PTC1023);
+	temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+	temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+	temp = E1000_READ_REG(hw, E1000_RXERRC);
+	temp = E1000_READ_REG(hw, E1000_TNCRS);
+	temp = E1000_READ_REG(hw, E1000_CEXTERR);
+	temp = E1000_READ_REG(hw, E1000_TSCTC);
+	temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+	temp = E1000_READ_REG(hw, E1000_MGTPRC);
+	temp = E1000_READ_REG(hw, E1000_MGTPDC);
+	temp = E1000_READ_REG(hw, E1000_MGTPTC);
+
+	temp = E1000_READ_REG(hw, E1000_IAC);
+	temp = E1000_READ_REG(hw, E1000_ICRXOC);
+
+	temp = E1000_READ_REG(hw, E1000_ICRXPTC);
+	temp = E1000_READ_REG(hw, E1000_ICRXATC);
+	temp = E1000_READ_REG(hw, E1000_ICTXPTC);
+	temp = E1000_READ_REG(hw, E1000_ICTXATC);
+	temp = E1000_READ_REG(hw, E1000_ICTXQEC);
+	temp = E1000_READ_REG(hw, E1000_ICTXQMTC);
+	temp = E1000_READ_REG(hw, E1000_ICRXDMTC);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_80003es2lan.h	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,105 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#ifndef _E1000_80003ES2LAN_H_
+#define	_E1000_80003ES2LAN_H_
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define	E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL	0x00
+#define	E1000_KMRNCTRLSTA_OFFSET_INB_CTRL	0x02
+#define	E1000_KMRNCTRLSTA_OFFSET_HD_CTRL	0x10
+
+#define	E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS	0x0008
+#define	E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS	0x0800
+#define	E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING	0x0010
+
+#define	E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
+#define	E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT	0x0000
+
+/* Gigabit Carry Extend Padding */
+#define	E1000_TCTL_EXT_GCEX_MASK		0x000FFC00
+
+#define	DEFAULT_TCTL_EXT_GCEX_80003ES2LAN	0x00010000
+
+#define	DEFAULT_TIPG_IPGT_1000_80003ES2LAN	0x8
+#define	DEFAULT_TIPG_IPGT_10_100_80003ES2LAN	0x9
+
+/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
+#define	GG82563_PSCR_POLARITY_REVERSAL_DISABLE	0x0002 /* 1=Reversal Disabled */
+#define	GG82563_PSCR_CROSSOVER_MODE_MASK	0x0060
+#define	GG82563_PSCR_CROSSOVER_MODE_MDI		0x0000 /* 00=Manual MDI */
+#define	GG82563_PSCR_CROSSOVER_MODE_MDIX	0x0020 /* 01=Manual MDIX */
+#define	GG82563_PSCR_CROSSOVER_MODE_AUTO	0x0060 /* 11=Auto crossover */
+
+/* PHY Specific Control Register 2 (Page 0, Register 26) */
+#define	GG82563_PSCR2_REVERSE_AUTO_NEG		0x2000
+						/* 1=Reverse Auto-Negotiation */
+
+/* MAC Specific Control Register (Page 2, Register 21) */
+/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
+#define	GG82563_MSCR_TX_CLK_MASK		0x0007
+#define	GG82563_MSCR_TX_CLK_10MBPS_2_5		0x0004
+#define	GG82563_MSCR_TX_CLK_100MBPS_25		0x0005
+#define	GG82563_MSCR_TX_CLK_1000MBPS_2_5	0x0006
+#define	GG82563_MSCR_TX_CLK_1000MBPS_25		0x0007
+
+#define	GG82563_MSCR_ASSERT_CRS_ON_TX		0x0010	/* 1=Assert */
+
+/* DSP Distance Register (Page 5, Register 26) */
+/*
+ * 0 = <50M
+ * 1 = 50-80M
+ * 2 = 80-100M
+ * 3 = 110-140M
+ * 4 = >140M
+ */
+#define	GG82563_DSPD_CABLE_LENGTH		0x0007
+
+/* Kumeran Mode Control Register (Page 193, Register 16) */
+#define	GG82563_KMCR_PASS_FALSE_CARRIER		0x0800
+
+/* Max number of times Kumeran read/write should be validated */
+#define	GG82563_MAX_KMRN_RETRY			0x5
+
+/* Power Management Control Register (Page 193, Register 20) */
+#define	GG82563_PMCR_ENABLE_ELECTRICAL_IDLE	0x0001
+					/* 1=Enable SERDES Electrical Idle */
+
+/* In-Band Control Register (Page 194, Register 18) */
+#define	GG82563_ICR_DIS_PADDING			0x0010	/* Disable Padding */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif	/* _E1000_80003ES2LAN_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_82540.c	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,676 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+/*
+ * e1000_82540
+ * e1000_82545
+ * e1000_82546
+ * e1000_82545_rev_3
+ * e1000_82546_rev_3
+ */
+
+#include "e1000_api.h"
+
+void e1000_init_function_pointers_82540(struct e1000_hw *hw);
+
+static s32 e1000_init_phy_params_82540(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_82540(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_82540(struct e1000_hw *hw);
+static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw);
+static void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw);
+static s32 e1000_init_hw_82540(struct e1000_hw *hw);
+static s32 e1000_reset_hw_82540(struct e1000_hw *hw);
+static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw);
+static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link_82540(struct e1000_hw *hw);
+static s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw);
+
+/*
+ * e1000_init_phy_params_82540 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_phy_params_82540(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	phy->addr = 1;
+	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us = 10000;
+	phy->type = e1000_phy_m88;
+
+	/* Function Pointers */
+	func->check_polarity = e1000_check_polarity_m88;
+	func->commit_phy = e1000_phy_sw_reset_generic;
+	func->force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+	func->get_cable_length = e1000_get_cable_length_m88;
+	func->get_cfg_done = e1000_get_cfg_done_generic;
+	func->read_phy_reg = e1000_read_phy_reg_m88;
+	func->reset_phy = e1000_phy_hw_reset_generic;
+	func->write_phy_reg = e1000_write_phy_reg_m88;
+	func->get_phy_info = e1000_get_phy_info_m88;
+
+	ret_val = e1000_get_phy_id(hw);
+	if (ret_val)
+		goto out;
+
+	/* Verify phy id */
+	switch (hw->mac.type) {
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (phy->id == M88E1011_I_PHY_ID)
+			break;
+		/* Fall Through */
+	default:
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_nvm_params_82540 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_nvm_params_82540(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_functions *func = &hw->func;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+
+	DEBUGFUNC("e1000_init_nvm_params_82540");
+
+	nvm->type = e1000_nvm_eeprom_microwire;
+	nvm->delay_usec = 50;
+	nvm->opcode_bits = 3;
+	switch (nvm->override) {
+	case e1000_nvm_override_microwire_large:
+		nvm->address_bits = 8;
+		nvm->word_size = 256;
+		break;
+	case e1000_nvm_override_microwire_small:
+		nvm->address_bits = 6;
+		nvm->word_size = 64;
+		break;
+	default:
+		nvm->address_bits = eecd & E1000_EECD_SIZE ? 8 : 6;
+		nvm->word_size = eecd & E1000_EECD_SIZE ? 256 : 64;
+		break;
+	}
+
+	/* Function Pointers */
+	func->acquire_nvm = e1000_acquire_nvm_generic;
+	func->read_nvm = e1000_read_nvm_microwire;
+	func->release_nvm = e1000_release_nvm_generic;
+	func->update_nvm = e1000_update_nvm_checksum_generic;
+	func->valid_led_default = e1000_valid_led_default_generic;
+	func->validate_nvm = e1000_validate_nvm_checksum_generic;
+	func->write_nvm = e1000_write_nvm_microwire;
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_init_mac_params_82540 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_mac_params_82540(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_mac_params_82540");
+
+	/* Set media type */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82545EM_FIBER:
+	case E1000_DEV_ID_82545GM_FIBER:
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546GB_FIBER:
+		hw->media_type = e1000_media_type_fiber;
+		break;
+	case E1000_DEV_ID_82545GM_SERDES:
+	case E1000_DEV_ID_82546GB_SERDES:
+		hw->media_type = e1000_media_type_internal_serdes;
+		break;
+	default:
+		hw->media_type = e1000_media_type_copper;
+		break;
+	}
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	func->get_bus_info = e1000_get_bus_info_pci_generic;
+	/* reset */
+	func->reset_hw = e1000_reset_hw_82540;
+	/* hw initialization */
+	func->init_hw = e1000_init_hw_82540;
+	/* link setup */
+	func->setup_link = e1000_setup_link_generic;
+	/* physical interface setup */
+	func->setup_physical_interface =
+	    (hw->media_type == e1000_media_type_copper)
+	    ? e1000_setup_copper_link_82540
+	    : e1000_setup_fiber_serdes_link_82540;
+	/* check for link */
+	switch (hw->media_type) {
+	case e1000_media_type_copper:
+		func->check_for_link = e1000_check_for_copper_link_generic;
+		break;
+	case e1000_media_type_fiber:
+		func->check_for_link = e1000_check_for_fiber_link_generic;
+		break;
+	case e1000_media_type_internal_serdes:
+		func->check_for_link = e1000_check_for_serdes_link_generic;
+		break;
+	default:
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+	/* link info */
+	func->get_link_up_info =
+	    (hw->media_type == e1000_media_type_copper)
+	    ? e1000_get_speed_and_duplex_copper_generic
+	    : e1000_get_speed_and_duplex_fiber_serdes_generic;
+	/* multicast address update */
+	func->mc_addr_list_update = e1000_mc_addr_list_update_generic;
+	/* writing VFTA */
+	func->write_vfta = e1000_write_vfta_generic;
+	/* clearing VFTA */
+	func->clear_vfta = e1000_clear_vfta_generic;
+	/* setting MTA */
+	func->mta_set = e1000_mta_set_generic;
+	/* setup LED */
+	func->setup_led = e1000_setup_led_generic;
+	/* cleanup LED */
+	func->cleanup_led = e1000_cleanup_led_generic;
+	/* turn on/off LED */
+	func->led_on = e1000_led_on_generic;
+	func->led_off = e1000_led_off_generic;
+	/* clear hardware counters */
+	func->clear_hw_cntrs = e1000_clear_hw_cntrs_82540;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_function_pointers_82540 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * The only function explicitly called by the api module to initialize
+ * all function pointers and parameters.
+ */
+void
+e1000_init_function_pointers_82540(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82540");
+
+	hw->func.init_mac_params = e1000_init_mac_params_82540;
+	hw->func.init_nvm_params = e1000_init_nvm_params_82540;
+	hw->func.init_phy_params = e1000_init_phy_params_82540;
+}
+
+/*
+ * e1000_reset_hw_82540 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.  This is a
+ * function pointer entry point called by the api module.
+ */
+static s32
+e1000_reset_hw_82540(struct e1000_hw *hw)
+{
+	u32 ctrl, icr, manc;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_reset_hw_82540");
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	/*
+	 * Delay to allow any outstanding PCI transactions to complete
+	 * before resetting the device.
+	 */
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGOUT("Issuing a global reset to 82540/82545/82546 MAC\n");
+	switch (hw->mac.type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		E1000_WRITE_REG(hw, E1000_CTRL_DUP, ctrl | E1000_CTRL_RST);
+		break;
+	default:
+		/*
+		 * These controllers can't ack the 64-bit write when
+		 * issuing the reset, so we use IO-mapping as a
+		 * workaround to issue the reset.
+		 */
+		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+		break;
+	}
+
+	/* Wait for EEPROM reload */
+	msec_delay(5);
+
+	/* Disable HW ARPs on ASF enabled adapters */
+	manc = E1000_READ_REG(hw, E1000_MANC);
+	manc &= ~E1000_MANC_ARP_EN;
+	E1000_WRITE_REG(hw, E1000_MANC, manc);
+
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	icr = E1000_READ_REG(hw, E1000_ICR);
+
+	return (ret_val);
+}
+
+/*
+ * e1000_init_hw_82540 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.  This is a
+ * function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_hw_82540(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 txdctl, ctrl_ext;
+	s32 ret_val = E1000_SUCCESS;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_hw_82540");
+
+	/* Initialize identification LED */
+	ret_val = e1000_id_led_init_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error initializing identification LED\n");
+		goto out;
+	}
+
+	/* Disabling VLAN filtering */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	if (mac->type < e1000_82545_rev_3)
+		E1000_WRITE_REG(hw, E1000_VET, 0);
+
+	e1000_clear_vfta(hw);
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+		/*
+		 * Avoid back to back register writes by adding the register
+		 * read (flush).  This is to protect against some strange
+		 * bridge configurations that may issue Memory Write Block
+		 * (MWB) to our register space.  The *_rev_3 hardware at
+		 * least doesn't respond correctly to every other dword in an
+		 * MWB to our register space.
+		 */
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	if (mac->type < e1000_82545_rev_3)
+		e1000_pcix_mmrbc_workaround_generic(hw);
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link(hw);
+
+	txdctl = E1000_READ_REG(hw, E1000_TXDCTL);
+	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+	    E1000_TXDCTL_FULL_TX_DESC_WB;
+	E1000_WRITE_REG(hw, E1000_TXDCTL, txdctl);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82540(hw);
+
+	if ((hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER) ||
+	    (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3)) {
+		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		/*
+		 * Relaxed ordering must be disabled to avoid a parity
+		 * error crash in a PCI slot.
+		 */
+		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_setup_copper_link_82540 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Calls the appropriate function to configure the link for auto-neg or forced
+ * speed and duplex.  Then we check for link, once link is established calls
+ * to configure collision distance and flow control are called.  If link is
+ * not established, we return -E1000_ERR_PHY (-2).  This is a function
+ * pointer entry point called by the api module.
+ */
+static s32
+e1000_setup_copper_link_82540(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val = E1000_SUCCESS;
+	u16 data;
+
+	DEBUGFUNC("e1000_setup_copper_link_82540");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	ret_val = e1000_set_phy_mode_82540(hw);
+	if (ret_val)
+		goto out;
+
+	if (hw->mac.type == e1000_82545_rev_3 ||
+	    hw->mac.type == e1000_82546_rev_3) {
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &data);
+		if (ret_val)
+			goto out;
+		data |= 0x00000008;
+		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, data);
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000_copper_link_setup_m88(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_setup_fiber_serdes_link_82540 - Setup link for fiber/serdes
+ * @hw: pointer to the HW structure
+ *
+ * Set the output amplitude to the value in the EEPROM and adjust the VCO
+ * speed to improve Bit Error Rate (BER) performance.  Configures collision
+ * distance and flow control for fiber and serdes links.  Upon successful
+ * setup, poll for link.  This is a function pointer entry point called by
+ * the api module.
+ */
+static s32
+e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_fiber_serdes_link_82540");
+
+	switch (mac->type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		if (hw->media_type == e1000_media_type_internal_serdes) {
+			/*
+			 * If we're on serdes media, adjust the output
+			 * amplitude to value set in the EEPROM.
+			 */
+			ret_val = e1000_adjust_serdes_amplitude_82540(hw);
+			if (ret_val)
+				goto out;
+		}
+		/* Adjust VCO speed to improve BER performance */
+		ret_val = e1000_set_vco_speed_82540(hw);
+		if (ret_val)
+			goto out;
+	default:
+		break;
+	}
+
+	ret_val = e1000_setup_fiber_serdes_link_generic(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_adjust_serdes_amplitude_82540 - Adjust amplitude based on EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Adjust the SERDES ouput amplitude based on the EEPROM settings.
+ */
+static s32
+e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 nvm_data;
+
+	DEBUGFUNC("e1000_adjust_serdes_amplitude_82540");
+
+	ret_val = e1000_read_nvm(hw, NVM_SERDES_AMPLITUDE, 1, &nvm_data);
+	if (ret_val)
+		goto out;
+
+	if (nvm_data != NVM_RESERVED_WORD) {
+		/* Adjust serdes output amplitude only. */
+		nvm_data &= NVM_SERDES_AMPLITUDE_MASK;
+		ret_val = e1000_write_phy_reg(hw,
+		    M88E1000_PHY_EXT_CTRL,
+		    nvm_data);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_set_vco_speed_82540 - Set VCO speed for better performance
+ * @hw: pointer to the HW structure
+ *
+ * Set the VCO speed to improve Bit Error Rate (BER) performance.
+ */
+static s32
+e1000_set_vco_speed_82540(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 default_page = 0;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_set_vco_speed_82540");
+
+	/* Set PHY register 30, page 5, bit 8 to 0 */
+
+	ret_val = e1000_read_phy_reg(hw,
+	    M88E1000_PHY_PAGE_SELECT,
+	    &default_page);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+	if (ret_val)
+		goto out;
+
+	/* Set PHY register 30, page 4, bit 11 to 1 */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
+	    default_page);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_set_phy_mode_82540 - Set PHY to class A mode
+ * @hw: pointer to the HW structure
+ *
+ * Sets the PHY to class A mode and assumes the following operations will
+ * follow to enable the new class mode:
+ *	1.  Do a PHY soft reset.
+ *	2.  Restart auto-negotiation or force link.
+ */
+static s32
+e1000_set_phy_mode_82540(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+	u16 nvm_data;
+
+	DEBUGFUNC("e1000_set_phy_mode_82540");
+
+	if (hw->mac.type != e1000_82545_rev_3)
+		goto out;
+
+	ret_val = e1000_read_nvm(hw, NVM_PHY_CLASS_WORD, 1, &nvm_data);
+	if (ret_val) {
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+	if ((nvm_data != NVM_RESERVED_WORD) && (nvm_data & NVM_PHY_CLASS_A)) {
+		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
+		    0x000B);
+		if (ret_val) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+		ret_val = e1000_write_phy_reg(hw,
+		    M88E1000_PHY_GEN_CONTROL,
+		    0x8104);
+		if (ret_val) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+
+		phy->reset_disable = FALSE;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_clear_hw_cntrs_82540 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ */
+static void
+e1000_clear_hw_cntrs_82540(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_82540");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	temp = E1000_READ_REG(hw, E1000_PRC64);
+	temp = E1000_READ_REG(hw, E1000_PRC127);
+	temp = E1000_READ_REG(hw, E1000_PRC255);
+	temp = E1000_READ_REG(hw, E1000_PRC511);
+	temp = E1000_READ_REG(hw, E1000_PRC1023);
+	temp = E1000_READ_REG(hw, E1000_PRC1522);
+	temp = E1000_READ_REG(hw, E1000_PTC64);
+	temp = E1000_READ_REG(hw, E1000_PTC127);
+	temp = E1000_READ_REG(hw, E1000_PTC255);
+	temp = E1000_READ_REG(hw, E1000_PTC511);
+	temp = E1000_READ_REG(hw, E1000_PTC1023);
+	temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+	temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+	temp = E1000_READ_REG(hw, E1000_RXERRC);
+	temp = E1000_READ_REG(hw, E1000_TNCRS);
+	temp = E1000_READ_REG(hw, E1000_CEXTERR);
+	temp = E1000_READ_REG(hw, E1000_TSCTC);
+	temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+	temp = E1000_READ_REG(hw, E1000_MGTPRC);
+	temp = E1000_READ_REG(hw, E1000_MGTPDC);
+	temp = E1000_READ_REG(hw, E1000_MGTPTC);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_82541.c	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,1601 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+/*
+ * e1000_82541
+ * e1000_82547
+ * e1000_82541_rev_2
+ * e1000_82547_rev_2
+ */
+
+#include "e1000_api.h"
+#include "e1000_82541.h"
+
+void e1000_init_function_pointers_82541(struct e1000_hw *hw);
+
+static s32 e1000_init_phy_params_82541(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_82541(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_82541(struct e1000_hw *hw);
+static s32 e1000_reset_hw_82541(struct e1000_hw *hw);
+static s32 e1000_init_hw_82541(struct e1000_hw *hw);
+static s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
+    u16 *duplex);
+static s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link_82541(struct e1000_hw *hw);
+static s32 e1000_check_for_link_82541(struct e1000_hw *hw);
+static s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw);
+static s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw,
+    boolean_t active);
+static s32 e1000_setup_led_82541(struct e1000_hw *hw);
+static s32 e1000_cleanup_led_82541(struct e1000_hw *hw);
+static void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw);
+static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
+    boolean_t link_up);
+static s32 e1000_phy_init_script_82541(struct e1000_hw *hw);
+
+static const u16 e1000_igp_cable_length_table[] =
+{5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
+25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
+40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
+60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
+90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
+110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
+
+#define	IGP01E1000_AGC_LENGTH_TABLE_SIZE \
+	(sizeof (e1000_igp_cable_length_table) / \
+	sizeof (e1000_igp_cable_length_table[0]))
+
+struct e1000_dev_spec_82541 {
+	e1000_dsp_config dsp_config;
+	e1000_ffe_config ffe_config;
+#ifndef FIFO_WORKAROUND
+	u32 tx_fifo_head;
+	u32 tx_fifo_start;
+	u32 tx_fifo_size;
+	u16 dsp_reset_counter;
+#endif
+	u16 spd_default;
+	boolean_t phy_init_script;
+#ifndef FIFO_WORKAROUND
+	boolean_t ttl_workaround;
+#endif
+};
+
+/*
+ * e1000_init_phy_params_82541 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_phy_params_82541(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_phy_params_82541");
+
+	phy->addr = 1;
+	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us = 10000;
+	phy->type = e1000_phy_igp;
+
+	/* Function Pointers */
+	func->check_polarity = e1000_check_polarity_igp;
+	func->force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+	func->get_cable_length = e1000_get_cable_length_igp_82541;
+	func->get_cfg_done = e1000_get_cfg_done_generic;
+	func->get_phy_info = e1000_get_phy_info_igp;
+	func->read_phy_reg = e1000_read_phy_reg_igp;
+	func->reset_phy = e1000_phy_hw_reset_82541;
+	func->set_d3_lplu_state = e1000_set_d3_lplu_state_82541;
+	func->write_phy_reg = e1000_write_phy_reg_igp;
+
+	ret_val = e1000_get_phy_id(hw);
+	if (ret_val)
+		goto out;
+
+	/* Verify phy id */
+	if (phy->id != IGP01E1000_I_PHY_ID) {
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_nvm_params_82541 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_nvm_params_82541(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	u16 size;
+
+	DEBUGFUNC("e1000_init_nvm_params_82541");
+
+	switch (nvm->override) {
+	case e1000_nvm_override_spi_large:
+		nvm->type = e1000_nvm_eeprom_spi;
+		eecd |= E1000_EECD_ADDR_BITS;
+		break;
+	case e1000_nvm_override_spi_small:
+		nvm->type = e1000_nvm_eeprom_spi;
+		eecd &= ~E1000_EECD_ADDR_BITS;
+		break;
+	case e1000_nvm_override_microwire_large:
+		nvm->type = e1000_nvm_eeprom_microwire;
+		eecd |= E1000_EECD_SIZE;
+		break;
+	case e1000_nvm_override_microwire_small:
+		nvm->type = e1000_nvm_eeprom_microwire;
+		eecd &= ~E1000_EECD_SIZE;
+		break;
+	default:
+		nvm->type = eecd & E1000_EECD_TYPE
+		    ? e1000_nvm_eeprom_spi
+		    : e1000_nvm_eeprom_microwire;
+		break;
+	}
+
+	if (nvm->type == e1000_nvm_eeprom_spi) {
+		nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS)
+		    ? 16 : 8;
+		nvm->delay_usec = 1;
+		nvm->opcode_bits = 8;
+		nvm->page_size = (eecd & E1000_EECD_ADDR_BITS)
+		    ? 32 : 8;
+
+		/* Function Pointers */
+		func->acquire_nvm = e1000_acquire_nvm_generic;
+		func->read_nvm = e1000_read_nvm_spi;
+		func->release_nvm = e1000_release_nvm_generic;
+		func->update_nvm = e1000_update_nvm_checksum_generic;
+		func->valid_led_default = e1000_valid_led_default_generic;
+		func->validate_nvm = e1000_validate_nvm_checksum_generic;
+		func->write_nvm = e1000_write_nvm_spi;
+
+		/*
+		 * nvm->word_size must be discovered after the pointers
+		 * are set so we can verify the size from the nvm image
+		 * itself. Temporarily set it to a dummy value so the
+		 * read will work.
+		 */
+		nvm->word_size = 64;
+		ret_val = e1000_read_nvm(hw, NVM_CFG, 1, &size);
+		if (ret_val)
+			goto out;
+		size = (size & NVM_SIZE_MASK) >> NVM_SIZE_SHIFT;
+		/*
+		 * if size != 0, it can be added to a constant and become
+		 * the left-shift value to set the word_size.  Otherwise,
+		 * word_size stays at 64.
+		 */
+		if (size) {
+			size += NVM_WORD_SIZE_BASE_SHIFT_82541;
+			nvm->word_size = 1 << size;
+		}
+	} else {
+		nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS)
+		    ? 8 : 6;
+		nvm->delay_usec = 50;
+		nvm->opcode_bits = 3;
+		nvm->word_size = (eecd & E1000_EECD_ADDR_BITS)
+		    ? 256 : 64;
+
+		/* Function Pointers */
+		func->acquire_nvm = e1000_acquire_nvm_generic;
+		func->read_nvm = e1000_read_nvm_microwire;
+		func->release_nvm = e1000_release_nvm_generic;
+		func->update_nvm = e1000_update_nvm_checksum_generic;
+		func->valid_led_default = e1000_valid_led_default_generic;
+		func->validate_nvm = e1000_validate_nvm_checksum_generic;
+		func->write_nvm = e1000_write_nvm_microwire;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_mac_params_82541 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_mac_params_82541(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_init_mac_params_82541");
+
+	/* Set media type */
+	hw->media_type = e1000_media_type_copper;
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+	/* Set if part includes ASF firmware */
+	mac->asf_firmware_present = TRUE;
+
+	/* Function Pointers */
+
+	/* bus type/speed/width */
+	func->get_bus_info = e1000_get_bus_info_pci_generic;
+	/* reset */
+	func->reset_hw = e1000_reset_hw_82541;
+	/* hw initialization */
+	func->init_hw = e1000_init_hw_82541;
+	/* link setup */
+	func->setup_link = e1000_setup_link_generic;
+	/* physical interface link setup */
+	func->setup_physical_interface = e1000_setup_copper_link_82541;
+	/* check for link */
+	func->check_for_link = e1000_check_for_link_82541;
+	/* link info */
+	func->get_link_up_info = e1000_get_link_up_info_82541;
+	/* multicast address update */
+	func->mc_addr_list_update = e1000_mc_addr_list_update_generic;
+	/* writing VFTA */
+	func->write_vfta = e1000_write_vfta_generic;
+	/* clearing VFTA */
+	func->clear_vfta = e1000_clear_vfta_generic;
+	/* setting MTA */
+	func->mta_set = e1000_mta_set_generic;
+	/* setup LED */
+	func->setup_led = e1000_setup_led_82541;
+	/* cleanup LED */
+	func->cleanup_led = e1000_cleanup_led_82541;
+	/* turn on/off LED */
+	func->led_on = e1000_led_on_generic;
+	func->led_off = e1000_led_off_generic;
+	/* remove device */
+	func->remove_device = e1000_remove_device_generic;
+	/* clear hardware counters */
+	func->clear_hw_cntrs = e1000_clear_hw_cntrs_82541;
+
+	hw->dev_spec_size = sizeof (struct e1000_dev_spec_82541);
+
+	/* Device-specific structure allocation */
+	ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+
+	return (ret_val);
+}
+
+/*
+ * e1000_init_function_pointers_82541 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * The only function explicitly called by the api module to initialize
+ * all function pointers and parameters.
+ */
+void
+e1000_init_function_pointers_82541(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82541");
+
+	hw->func.init_mac_params = e1000_init_mac_params_82541;
+	hw->func.init_nvm_params = e1000_init_nvm_params_82541;
+	hw->func.init_phy_params = e1000_init_phy_params_82541;
+}
+
+/*
+ * e1000_reset_hw_82541 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.  This is a
+ * function pointer entry point called by the api module.
+ */
+static s32
+e1000_reset_hw_82541(struct e1000_hw *hw)
+{
+#ifndef FIFO_WORKAROUND
+	struct e1000_dev_spec_82541 *dev_spec;
+#endif
+	u32 ledctl, ctrl, icr, manc;
+
+	DEBUGFUNC("e1000_reset_hw_82541");
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+#ifndef FIFO_WORKAROUND
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+	dev_spec->tx_fifo_head = 0;
+
+#endif
+	/*
+	 * Delay to allow any outstanding PCI transactions to complete
+	 * before resetting the device.
+	 */
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/* Must reset the Phy before resetting the MAC */
+	if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_PHY_RST));
+		msec_delay(5);
+	}
+
+	DEBUGOUT("Issuing a global reset to 82541/82547 MAC\n");
+	switch (hw->mac.type) {
+	case e1000_82541:
+	case e1000_82541_rev_2:
+		/*
+		 * These controllers can't ack the 64-bit write when
+		 * issuing the reset, so we use IO-mapping as a
+		 * workaround to issue the reset.
+		 */
+		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+		break;
+	default:
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+		break;
+	}
+
+	/* Wait for NVM reload */
+	msec_delay(20);
+
+	/* Disable HW ARPs on ASF enabled adapters */
+	manc = E1000_READ_REG(hw, E1000_MANC);
+	manc &= ~E1000_MANC_ARP_EN;
+	E1000_WRITE_REG(hw, E1000_MANC, manc);
+
+	if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+		e1000_phy_init_script_82541(hw);
+
+		/* Configure activity LED after Phy reset */
+		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+		ledctl &= IGP_ACTIVITY_LED_MASK;
+		ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+	}
+
+	/* Once again, mask the interrupts */
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+	/* Clear any pending interrupt events. */
+	icr = E1000_READ_REG(hw, E1000_ICR);
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_init_hw_82541 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.  This is a
+ * function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_hw_82541(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+#ifndef FIFO_WORKAROUND
+	struct e1000_dev_spec_82541 *dev_spec;
+	u32 pba;
+#endif
+	u32 i, txdctl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_init_hw_82541");
+
+	/* Initialize identification LED */
+	ret_val = e1000_id_led_init_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error initializing identification LED\n");
+		goto out;
+	}
+
+#ifndef FIFO_WORKAROUND
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+	pba = E1000_READ_REG(hw, E1000_PBA);
+	dev_spec->tx_fifo_start = (pba & 0x0000FFFF) * E1000_FIFO_MULTIPLIER;
+	dev_spec->tx_fifo_size = (pba & 0xFFFF0000) >> 6;
+
+#endif
+	/* Disabling VLAN filtering */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	e1000_clear_vfta(hw);
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+		/*
+		 * Avoid back to back register writes by adding the register
+		 * read (flush).  This is to protect against some strange
+		 * bridge configurations that may issue Memory Write Block
+		 * (MWB) to our register space.
+		 */
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link(hw);
+
+	txdctl = E1000_READ_REG(hw, E1000_TXDCTL);
+	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+	    E1000_TXDCTL_FULL_TX_DESC_WB;
+	E1000_WRITE_REG(hw, E1000_TXDCTL, txdctl);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82541(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_get_link_up_info_82541 - Report speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to speed buffer
+ * @duplex: pointer to duplex buffer
+ *
+ * Retrieve the current speed and duplex configuration.
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_get_link_up_info_82541");
+
+	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
+	if (ret_val)
+		goto out;
+
+	if (!phy->speed_downgraded)
+		goto out;
+
+	/*
+	 * IGP01 PHY may advertise full duplex operation after speed
+	 * downgrade even if it is operating at half duplex.
+	 * Here we set the duplex settings to match the duplex in the
+	 * link partner's capabilities.
+	 */
+	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &data);
+	if (ret_val)
+		goto out;
+
+	if (!(data & NWAY_ER_LP_NWAY_CAPS)) {
+		*duplex = HALF_DUPLEX;
+	} else {
+		ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &data);
+		if (ret_val)
+			goto out;
+
+		if (*speed == SPEED_100) {
+			if (!(data & NWAY_LPAR_100TX_FD_CAPS))
+				*duplex = HALF_DUPLEX;
+		} else if (*speed == SPEED_10) {
+			if (!(data & NWAY_LPAR_10T_FD_CAPS))
+				*duplex = HALF_DUPLEX;
+		}
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_phy_hw_reset_82541 - PHY hardware reset
+ * @hw: pointer to the HW structure
+ *
+ * Verify the reset block is not blocking us from resetting.  Acquire
+ * semaphore (if necessary) and read/set/write the device control reset
+ * bit in the PHY.  Wait the appropriate delay time for the device to
+ * reset and relase the semaphore (if necessary).
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_phy_hw_reset_82541(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u32 ledctl;
+
+	DEBUGFUNC("e1000_phy_hw_reset_82541");
+
+	ret_val = e1000_phy_hw_reset_generic(hw);
+	if (ret_val)
+		goto out;
+
+	e1000_phy_init_script_82541(hw);
+
+	if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+		/* Configure activity LED after PHY reset */
+		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+		ledctl &= IGP_ACTIVITY_LED_MASK;
+		ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_setup_copper_link_82541 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Calls the appropriate function to configure the link for auto-neg or forced
+ * speed and duplex.  Then we check for link, once link is established calls
+ * to configure collision distance and flow control are called.  If link is
+ * not established, we return -E1000_ERR_PHY (-2).  This is a function
+ * pointer entry point called by the api module.
+ */
+static s32
+e1000_setup_copper_link_82541(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_dev_spec_82541 *dev_spec;
+	s32 ret_val;
+	u32 ctrl, ledctl;
+
+	DEBUGFUNC("e1000_setup_copper_link_82541");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	hw->phy.reset_disable = FALSE;
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	/* Earlier revs of the IGP phy require us to force MDI. */
+	if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) {
+		dev_spec->dsp_config = e1000_dsp_config_disabled;
+		phy->mdix = 1;
+	} else {
+		dev_spec->dsp_config = e1000_dsp_config_enabled;
+	}
+
+	ret_val = e1000_copper_link_setup_igp(hw);
+	if (ret_val)
+		goto out;
+
+	if (hw->mac.autoneg) {
+		if (dev_spec->ffe_config == e1000_ffe_config_active)
+			dev_spec->ffe_config = e1000_ffe_config_enabled;
+	}
+
+	/* Configure activity LED after Phy reset */
+	ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+	ledctl &= IGP_ACTIVITY_LED_MASK;
+	ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+	E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+
+	ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_check_for_link_82541 - Check/Store link connection
+ * @hw: pointer to the HW structure
+ *
+ * This checks the link condition of the adapter and stores the
+ * results in the hw->mac structure. This is a function pointer entry
+ * point called by the api module.
+ */
+static s32
+e1000_check_for_link_82541(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	boolean_t link;
+
+	DEBUGFUNC("e1000_check_for_link_82541");
+
+	/*
+	 * We only want to go out to the PHY registers to see if Auto-Neg
+	 * has completed and/or if our link status has changed.  The
+	 * get_link_status flag is set upon receiving a Link Status
+	 * Change or Rx Sequence Error interrupt.
+	 */
+	if (!mac->get_link_status) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	/*
+	 * First we want to see if the MII Status Register reports
+	 * link.  If so, then we want to get the current speed/duplex
+	 * of the PHY.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link) {
+		ret_val = e1000_config_dsp_after_link_change_82541(hw, FALSE);
+		goto out;	/* No link detected */
+	}
+
+	mac->get_link_status = FALSE;
+
+	/*
+	 * Check if there was DownShift, must be checked
+	 * immediately after link-up
+	 */
+	e1000_check_downshift_generic(hw);
+
+	/*
+	 * If we are forcing speed/duplex, then we simply return since
+	 * we have already determined whether we have link or not.
+	 */
+	if (!mac->autoneg) {
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	ret_val = e1000_config_dsp_after_link_change_82541(hw, TRUE);
+
+	/*
+	 * Auto-Neg is enabled.  Auto Speed Detection takes care
+	 * of MAC speed/duplex configuration.  So we only need to
+	 * configure Collision Distance in the MAC.
+	 */
+	e1000_config_collision_dist_generic(hw);
+
+	/*
+	 * Configure Flow Control now that Auto-Neg has completed.
+	 * First, we need to restore the desired flow control
+	 * settings because we may have had to re-autoneg with a
+	 * different link partner.
+	 */
+	ret_val = e1000_config_fc_after_link_up_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error configuring flow control\n");
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_config_dsp_after_link_change_82541 - Config DSP after link
+ * @hw: pointer to the HW structure
+ * @link_up: boolean flag for link up status
+ *
+ * Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS
+ * at any other case.
+ *
+ * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
+ * gigabit link is achieved to improve link quality.
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
+    boolean_t link_up)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_dev_spec_82541 *dev_spec;
+	s32 ret_val;
+	u32 idle_errs = 0;
+	u16 phy_data, phy_saved_data, speed, duplex, i;
+	u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
+	u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+	{IGP01E1000_PHY_AGC_PARAM_A,
+		IGP01E1000_PHY_AGC_PARAM_B,
+		IGP01E1000_PHY_AGC_PARAM_C,
+	IGP01E1000_PHY_AGC_PARAM_D};
+
+	DEBUGFUNC("e1000_config_dsp_after_link_change_82541");
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	if (link_up) {
+		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+		if (ret_val) {
+			DEBUGOUT("Error getting link speed and duplex\n");
+			goto out;
+		}
+
+		if (speed != SPEED_1000) {
+			ret_val = E1000_SUCCESS;
+			goto out;
+		}
+
+		ret_val = e1000_get_cable_length(hw);
+		if (ret_val)
+			goto out;
+
+		if ((dev_spec->dsp_config == e1000_dsp_config_enabled) &&
+		    phy->min_cable_length >= 50) {
+
+			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+				ret_val = e1000_read_phy_reg(hw,
+				    dsp_reg_array[i],
+				    &phy_data);
+				if (ret_val)
+					goto out;
+
+				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+
+				ret_val = e1000_write_phy_reg(hw,
+				    dsp_reg_array[i],
+				    phy_data);
+				if (ret_val)
+					goto out;
+			}
+			dev_spec->dsp_config = e1000_dsp_config_activated;
+		}
+
+		if ((dev_spec->ffe_config != e1000_ffe_config_enabled) ||
+		    (phy->min_cable_length >= 50)) {
+			ret_val = E1000_SUCCESS;
+			goto out;
+		}
+
+		/* clear previous idle error counts */
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			goto out;
+
+		for (i = 0; i < ffe_idle_err_timeout; i++) {
+			usec_delay(1000);
+			ret_val = e1000_read_phy_reg(hw,
+			    PHY_1000T_STATUS,
+			    &phy_data);
+			if (ret_val)
+				goto out;
+
+			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
+			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
+				dev_spec->ffe_config = e1000_ffe_config_active;
+
+				ret_val = e1000_write_phy_reg(hw,
+				    IGP01E1000_PHY_DSP_FFE,
+				    IGP01E1000_PHY_DSP_FFE_CM_CP);
+				if (ret_val)
+					goto out;
+				break;
+			}
+
+			if (idle_errs)
+				ffe_idle_err_timeout =
+				    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
+		}
+	} else {
+		if (dev_spec->dsp_config == e1000_dsp_config_activated) {
+			/*
+			 * Save off the current value of register 0x2F5B
+			 * to be restored at the end of the routines.
+			 */
+			ret_val = e1000_read_phy_reg(hw,
+			    0x2F5B,
+			    &phy_saved_data);
+			if (ret_val)
+				goto out;
+
+			/* Disable the PHY transmitter */
+			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+			if (ret_val)
+				goto out;
+
+			msec_delay_irq(20);
+
+			ret_val = e1000_write_phy_reg(hw,
+			    0x0000,
+			    IGP01E1000_IEEE_FORCE_GIG);
+			if (ret_val)
+				goto out;
+			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+				ret_val = e1000_read_phy_reg(hw,
+				    dsp_reg_array[i],
+				    &phy_data);
+				if (ret_val)
+					goto out;
+
+				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
+
+				ret_val = e1000_write_phy_reg(hw,
+				    dsp_reg_array[i],
+				    phy_data);
+				if (ret_val)
+					goto out;
+			}
+
+			ret_val = e1000_write_phy_reg(hw,
+			    0x0000,
+			    IGP01E1000_IEEE_RESTART_AUTONEG);
+			if (ret_val)
+				goto out;
+
+			msec_delay_irq(20);
+
+			/* Now enable the transmitter */
+			ret_val = e1000_write_phy_reg(hw,
+			    0x2F5B,
+			    phy_saved_data);
+			if (ret_val)
+				goto out;
+
+			dev_spec->dsp_config = e1000_dsp_config_enabled;
+		}
+
+		if (dev_spec->ffe_config != e1000_ffe_config_active) {
+			ret_val = E1000_SUCCESS;
+			goto out;
+		}
+
+		/*
+		 * Save off the current value of register 0x2F5B
+		 * to be restored at the end of the routines.
+		 */
+		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+		if (ret_val)
+			goto out;
+
+		/* Disable the PHY transmitter */
+		ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+		if (ret_val)
+			goto out;
+
+		msec_delay_irq(20);
+
+		ret_val = e1000_write_phy_reg(hw,
+		    0x0000,
+		    IGP01E1000_IEEE_FORCE_GIG);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_write_phy_reg(hw,
+		    IGP01E1000_PHY_DSP_FFE,
+		    IGP01E1000_PHY_DSP_FFE_DEFAULT);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_write_phy_reg(hw,
+		    0x0000,
+		    IGP01E1000_IEEE_RESTART_AUTONEG);
+		if (ret_val)
+			goto out;
+
+		msec_delay_irq(20);
+
+		/* Now enable the transmitter */
+		ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+		if (ret_val)
+			goto out;
+
+		dev_spec->ffe_config = e1000_ffe_config_enabled;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY
+ * @hw: pointer to the HW structure
+ *
+ * The automatic gain control (agc) normalizes the amplitude of the
+ * received signal, adjusting for the attenuation produced by the
+ * cable.  By reading the AGC registers, which reperesent the
+ * cobination of course and fine gain value, the value can be put
+ * into a lookup table to obtain the approximate cable length
+ * for each channel.  This is a function pointer entry point called by the
+ * api module.
+ */
+static s32
+e1000_get_cable_length_igp_82541(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+	u16 i, data;
+	u16 cur_agc_value, agc_value = 0;
+	u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+	u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+	{IGP01E1000_PHY_AGC_A,
+		IGP01E1000_PHY_AGC_B,
+		IGP01E1000_PHY_AGC_C,
+	IGP01E1000_PHY_AGC_D};
+
+	DEBUGFUNC("e1000_get_cable_length_igp_82541");
+
+	/* Read the AGC registers for all channels */
+	for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+		ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &data);
+		if (ret_val)
+			goto out;
+
+		cur_agc_value = data >> IGP01E1000_AGC_LENGTH_SHIFT;
+
+		/* Bounds checking */
+		if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
+		    (cur_agc_value == 0)) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+
+		agc_value += cur_agc_value;
+
+		if (min_agc_value > cur_agc_value)
+			min_agc_value = cur_agc_value;
+	}
+
+	/* Remove the minimal AGC result for length < 50m */
+	if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * 50) {
+		agc_value -= min_agc_value;
+		/* Average the three remaining channels for the length. */
+		agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
+	} else {
+		/* Average the channels for the length. */
+		agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
+	}
+
+	phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] >
+	    IGP01E1000_AGC_RANGE)
+	    ? (e1000_igp_cable_length_table[agc_value] -
+	    IGP01E1000_AGC_RANGE)
+	    : 0;
+	phy->max_cable_length = e1000_igp_cable_length_table[agc_value] +
+	    IGP01E1000_AGC_RANGE;
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is true, else clear lplu for D3
+ * and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.  This is a function pointer entry point called by the
+ * api module.
+ */
+static s32
+e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, boolean_t active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d3_lplu_state_82541");
+
+	switch (hw->mac.type) {
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		break;
+	default:
+		ret_val = e1000_set_d3_lplu_state_generic(hw, active);
+		goto out;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &data);
+	if (ret_val)
+		goto out;
+
+	if (!active) {
+		data &= ~IGP01E1000_GMII_FLEX_SPD;
+		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, data);
+		if (ret_val)
+			goto out;
+
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1000_read_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    &data);
+			if (ret_val)
+				goto out;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    data);
+			if (ret_val)
+				goto out;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1000_read_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    data);
+			if (ret_val)
+				goto out;
+		}
+	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+	    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+	    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+		data |= IGP01E1000_GMII_FLEX_SPD;
+		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, data);
+		if (ret_val)
+			goto out;
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1000_read_phy_reg(hw,
+		    IGP01E1000_PHY_PORT_CONFIG,
+		    &data);
+		if (ret_val)
+			goto out;
+
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1000_write_phy_reg(hw,
+		    IGP01E1000_PHY_PORT_CONFIG,
+		    data);
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_setup_led_82541 - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use and saves the current state
+ * of the LED so it can be later restored.  This is a function pointer entry
+ * point called by the api module.
+ */
+static s32
+e1000_setup_led_82541(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82541 *dev_spec;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_setup_led_82541");
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	ret_val = e1000_read_phy_reg(hw,
+	    IGP01E1000_GMII_FIFO,
+	    &dev_spec->spd_default);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_write_phy_reg(hw,
+	    IGP01E1000_GMII_FIFO,
+	    (u16)(dev_spec->spd_default &
+	    ~IGP01E1000_GMII_SPD));
+	if (ret_val)
+		goto out;
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_cleanup_led_82541 - Set LED config to default operation
+ * @hw: pointer to the HW structure
+ *
+ * Remove the current LED configuration and set the LED configuration
+ * to the default value, saved from the EEPROM.  This is a function pointer
+ * entry point called by the api module.
+ */
+static s32
+e1000_cleanup_led_82541(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82541 *dev_spec;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_cleanup_led_82541");
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	ret_val = e1000_write_phy_reg(hw,
+	    IGP01E1000_GMII_FIFO,
+	    dev_spec->spd_default);
+	if (ret_val)
+		goto out;
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_phy_init_script_82541 - Initialize GbE PHY
+ * @hw: pointer to the HW structure
+ *
+ * Initializes the IGP PHY.
+ */
+static s32
+e1000_phy_init_script_82541(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82541 *dev_spec;
+	u32 ret_val;
+	u16 phy_saved_data;
+
+	DEBUGFUNC("e1000_phy_init_script_82541");
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	if (!dev_spec->phy_init_script) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	/* Delay after phy reset to enable NVM configuration to load */
+	msec_delay(20);
+
+	/*
+	 * Save off the current value of register 0x2F5B to be restored at
+	 * the end of this routine.
+	 */
+	ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+	/* Disabled the PHY transmitter */
+	e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+	msec_delay(20);
+
+	e1000_write_phy_reg(hw, 0x0000, 0x0140);
+
+	msec_delay(5);
+
+	switch (hw->mac.type) {
+	case e1000_82541:
+	case e1000_82547:
+		e1000_write_phy_reg(hw, 0x1F95, 0x0001);
+
+		e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
+
+		e1000_write_phy_reg(hw, 0x1F79, 0x0018);
+
+		e1000_write_phy_reg(hw, 0x1F30, 0x1600);
+
+		e1000_write_phy_reg(hw, 0x1F31, 0x0014);
+
+		e1000_write_phy_reg(hw, 0x1F32, 0x161C);
+
+		e1000_write_phy_reg(hw, 0x1F94, 0x0003);
+
+		e1000_write_phy_reg(hw, 0x1F96, 0x003F);
+
+		e1000_write_phy_reg(hw, 0x2010, 0x0008);
+		break;
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		e1000_write_phy_reg(hw, 0x1F73, 0x0099);
+		break;
+	default:
+		break;
+	}
+
+	e1000_write_phy_reg(hw, 0x0000, 0x3300);
+
+	msec_delay(20);
+
+	/* Now enable the transmitter */
+	e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+	if (hw->mac.type == e1000_82547) {
+		u16 fused, fine, coarse;
+
+		/* Move to analog registers page */
+		e1000_read_phy_reg(hw,
+		    IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
+		    &fused);
+
+		if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+			e1000_read_phy_reg(hw,
+			    IGP01E1000_ANALOG_FUSE_STATUS,
+			    &fused);
+
+			fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+			coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+			if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+				coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
+				fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+			} else if (coarse ==
+			    IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+				fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+			fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+			    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+			    (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+			e1000_write_phy_reg(hw,
+			    IGP01E1000_ANALOG_FUSE_CONTROL,
+			    fused);
+			e1000_write_phy_reg(hw,
+			    IGP01E1000_ANALOG_FUSE_BYPASS,
+			    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+		}
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_script_state_82541 - Enable/Disable PHY init script
+ * @hw: pointer to the HW structure
+ * @state: boolean value used to enable/disable PHY init script
+ *
+ * Allows the driver to enable/disable the PHY init script, if the PHY is an
+ * IGP PHY.  This is a function pointer entry point called by the api module.
+ */
+void
+e1000_init_script_state_82541(struct e1000_hw *hw, boolean_t state)
+{
+	struct e1000_dev_spec_82541 *dev_spec;
+
+	DEBUGFUNC("e1000_init_script_state_82541");
+
+	if (hw->phy.type != e1000_phy_igp) {
+		DEBUGOUT("Initialization script not necessary.\n");
+		return;
+	}
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		return;
+	}
+
+	dev_spec->phy_init_script = state;
+}
+
+#ifndef FIFO_WORKAROUND
+/*
+ * e1000_fifo_workaround_82547 - Workaround for TX fifo failure
+ * @hw: pointer to the HW structure
+ * @length: length of next outgoing frame
+ *
+ * Returns: E1000_ERR_FIFO_WRAP if the next packet cannot be transmitted yet
+ *          E1000_SUCCESS if the next packet can be transmitted
+ *
+ * Workaround for the 82547 TX fifo failure.
+ */
+s32
+e1000_fifo_workaround_82547(struct e1000_hw *hw, u16 length)
+{
+	struct e1000_dev_spec_82541 *dev_spec;
+	u32 tctl;
+	s32 ret_val = E1000_SUCCESS;
+	u16 fifo_pkt_len;
+
+	DEBUGFUNC("e1000_fifo_workaround_82547");
+
+	if (hw->mac.type != e1000_82547)
+		goto out;
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	/*
+	 * Get the length as seen by the FIFO of the next real
+	 * packet to be transmitted.
+	 */
+	fifo_pkt_len = E1000_ROUNDUP(length + E1000_FIFO_HDR_SIZE,
+	    E1000_FIFO_GRANULARITY);
+
+	if (fifo_pkt_len <= (E1000_FIFO_PAD_82547 + E1000_FIFO_HDR_SIZE))
+		goto out;
+
+	if ((dev_spec->tx_fifo_head + fifo_pkt_len) <
+	    (dev_spec->tx_fifo_size + E1000_FIFO_PAD_82547))
+		goto out;
+
+	if (E1000_READ_REG(hw, E1000_TDT) != E1000_READ_REG(hw, E1000_TDH)) {
+		ret_val = -E1000_ERR_FIFO_WRAP;
+		goto out;
+	}
+
+	if (E1000_READ_REG(hw, E1000_TDFT) != E1000_READ_REG(hw, E1000_TDFH)) {
+		ret_val = -E1000_ERR_FIFO_WRAP;
+		goto out;
+	}
+
+	if (E1000_READ_REG(hw, E1000_TDFTS) !=
+	    E1000_READ_REG(hw, E1000_TDFHS)) {
+		ret_val = -E1000_ERR_FIFO_WRAP;
+		goto out;
+	}
+
+	/* Disable the tx unit to avoid further pointer movement */
+	tctl = E1000_READ_REG(hw, E1000_TCTL);
+	E1000_WRITE_REG(hw, E1000_TCTL, tctl & ~E1000_TCTL_EN);
+
+	/* Reset the fifo pointers. */
+	E1000_WRITE_REG(hw, E1000_TDFT, dev_spec->tx_fifo_start);
+	E1000_WRITE_REG(hw, E1000_TDFH, dev_spec->tx_fifo_start);
+	E1000_WRITE_REG(hw, E1000_TDFTS, dev_spec->tx_fifo_start);
+	E1000_WRITE_REG(hw, E1000_TDFHS, dev_spec->tx_fifo_start);
+
+	/* Re-enabling tx unit */
+	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+	E1000_WRITE_FLUSH(hw);
+
+	dev_spec->tx_fifo_head = 0;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_update_tx_fifo_head - Update TX fifo head pointer
+ * @hw: pointer to the HW structure
+ * @length: length of next outgoing frame
+ *
+ * Updates the SW calculated TX FIFO head pointer.
+ */
+void
+e1000_update_tx_fifo_head_82547(struct e1000_hw *hw, u32 length)
+{
+	struct e1000_dev_spec_82541 *dev_spec;
+
+	DEBUGFUNC("e1000_update_tx_fifo_head_82547");
+
+	if (hw->mac.type != e1000_82547)
+		return;
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	dev_spec->tx_fifo_head += E1000_ROUNDUP(length + E1000_FIFO_HDR_SIZE,
+	    E1000_FIFO_GRANULARITY);
+
+	if (dev_spec->tx_fifo_head > dev_spec->tx_fifo_size)
+		dev_spec->tx_fifo_head -= dev_spec->tx_fifo_size;
+}
+
+/*
+ * e1000_set_ttl_workaround_state_82541 - Enable/Disables TTL workaround
+ * @hw: pointer to the HW structure
+ * @state: boolean to enable/disable TTL workaround
+ *
+ * For 82541 or 82547 only silicon, allows the driver to enable/disable the
+ * TTL workaround.
+ */
+void
+e1000_set_ttl_workaround_state_82541(struct e1000_hw *hw, boolean_t state)
+{
+	struct e1000_dev_spec_82541 *dev_spec;
+
+	DEBUGFUNC("e1000_set_ttl_workaround_state_82541");
+
+	if ((hw->mac.type != e1000_82541) && (hw->mac.type != e1000_82547))
+		return;
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	dev_spec->ttl_workaround = state;
+}
+
+/*
+ * e1000_ttl_workaround_enabled_82541 - Returns current TTL workaround status
+ * @hw: pointer to the HW structure
+ *
+ * Returns the current status of the TTL workaround, as to whether the
+ * workaround is enabled or disabled.
+ */
+boolean_t
+e1000_ttl_workaround_enabled_82541(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82541 *dev_spec;
+	boolean_t state = FALSE;
+
+	DEBUGFUNC("e1000_ttl_workaround_enabled_82541");
+
+	if ((hw->mac.type != e1000_82541) && (hw->mac.type != e1000_82547))
+		goto out;
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	state = dev_spec->ttl_workaround;
+
+out:
+	return (state);
+}
+
+/*
+ * e1000_igp_ttl_workaround_82547 - Workaround for long TTL on 100HD hubs
+ * @hw: pointer to the HW structure
+ *
+ * Returns: E1000_ERR_PHY if fail to read/write the PHY
+ *          E1000_SUCCESS in any other case
+ *
+ * This function, specific to 82547 hardware only, needs to be called every
+ * second.  It checks if a parallel detect fault has occurred.  If a fault
+ * occurred, disable/enable the DSP reset mechanism up to 5 times (once per
+ * second).  If link is established, stop the workaround and ensure the DSP
+ * reset is enabled.
+ */
+s32
+e1000_igp_ttl_workaround_82547(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82541 *dev_spec;
+	s32 ret_val = E1000_SUCCESS;
+	u16 phy_data = 0;
+	u16 dsp_value = DSP_RESET_ENABLE;
+	boolean_t link;
+
+	DEBUGFUNC("e1000_igp_ttl_workaround_82547");
+
+	/* The workaround needed only for B-0 silicon HW */
+	if ((hw->mac.type != e1000_82541) && (hw->mac.type != e1000_82547))
+		goto out;
+
+	if (!(e1000_ttl_workaround_enabled_82541(hw)))
+		goto out;
+
+	dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec;
+
+	/* Check for link first */
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (link) {
+		/*
+		 * If link is established during the workaround,
+		 * the DSP mechanism must be enabled.
+		 */
+		if (dev_spec->dsp_reset_counter) {
+			dev_spec->dsp_reset_counter = 0;
+			dsp_value = DSP_RESET_ENABLE;
+		} else {
+			ret_val = E1000_SUCCESS;
+			goto out;
+		}
+	} else {
+		if (dev_spec->dsp_reset_counter == 0) {
+			/*
+			 * Workaround not activated,
+			 * check if it needs activation
+			 */
+			ret_val = e1000_read_phy_reg(hw,
+			    PHY_AUTONEG_EXP,
+			    &phy_data);
+			if (ret_val)
+				goto out;
+			/*
+			 * Activate the workaround if there was a
+			 * parallel detect fault
+			 */
+			if (phy_data & NWAY_ER_PAR_DETECT_FAULT) {
+				dev_spec->dsp_reset_counter++;
+			} else {
+				ret_val = E1000_SUCCESS;
+				goto out;
+			}
+		}
+
+		/* After 5 times, stop the workaround */
+		if (dev_spec->dsp_reset_counter > E1000_MAX_DSP_RESETS) {
+			dev_spec->dsp_reset_counter = 0;
+			dsp_value = DSP_RESET_ENABLE;
+		} else {
+			if (dev_spec->dsp_reset_counter) {
+				dsp_value = (dev_spec->dsp_reset_counter & 1)
+				    ? DSP_RESET_DISABLE
+				    : DSP_RESET_ENABLE;
+				dev_spec->dsp_reset_counter++;
+			}
+		}
+	}
+
+	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_RESET, dsp_value);
+
+out:
+	return (ret_val);
+}
+
+#endif
+/*
+ * e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ */
+static void
+e1000_clear_hw_cntrs_82541(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_82541");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	temp = E1000_READ_REG(hw, E1000_PRC64);
+	temp = E1000_READ_REG(hw, E1000_PRC127);
+	temp = E1000_READ_REG(hw, E1000_PRC255);
+	temp = E1000_READ_REG(hw, E1000_PRC511);
+	temp = E1000_READ_REG(hw, E1000_PRC1023);
+	temp = E1000_READ_REG(hw, E1000_PRC1522);
+	temp = E1000_READ_REG(hw, E1000_PTC64);
+	temp = E1000_READ_REG(hw, E1000_PTC127);
+	temp = E1000_READ_REG(hw, E1000_PTC255);
+	temp = E1000_READ_REG(hw, E1000_PTC511);
+	temp = E1000_READ_REG(hw, E1000_PTC1023);
+	temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+	temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+	temp = E1000_READ_REG(hw, E1000_RXERRC);
+	temp = E1000_READ_REG(hw, E1000_TNCRS);
+	temp = E1000_READ_REG(hw, E1000_CEXTERR);
+	temp = E1000_READ_REG(hw, E1000_TSCTC);
+	temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+	temp = E1000_READ_REG(hw, E1000_MGTPRC);
+	temp = E1000_READ_REG(hw, E1000_MGTPDC);
+	temp = E1000_READ_REG(hw, E1000_MGTPTC);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_82541.h	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,109 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#ifndef _E1000_82541_H_
+#define	_E1000_82541_H_
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define	NVM_WORD_SIZE_BASE_SHIFT_82541 (NVM_WORD_SIZE_BASE_SHIFT + 1)
+
+#define	IGP01E1000_PHY_CHANNEL_NUM		4
+
+#define	IGP01E1000_PHY_AGC_A			0x1172
+#define	IGP01E1000_PHY_AGC_B			0x1272
+#define	IGP01E1000_PHY_AGC_C			0x1472
+#define	IGP01E1000_PHY_AGC_D			0x1872
+
+#define	IGP01E1000_PHY_AGC_PARAM_A		0x1171
+#define	IGP01E1000_PHY_AGC_PARAM_B		0x1271
+#define	IGP01E1000_PHY_AGC_PARAM_C		0x1471
+#define	IGP01E1000_PHY_AGC_PARAM_D		0x1871
+
+#define	IGP01E1000_PHY_EDAC_MU_INDEX		0xC000
+#define	IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS	0x8000
+
+#define	IGP01E1000_PHY_DSP_RESET		0x1F33
+
+#define	IGP01E1000_PHY_DSP_FFE			0x1F35
+#define	IGP01E1000_PHY_DSP_FFE_CM_CP		0x0069
+#define	IGP01E1000_PHY_DSP_FFE_DEFAULT		0x002A
+
+#define	IGP01E1000_IEEE_FORCE_GIG		0x0140
+#define	IGP01E1000_IEEE_RESTART_AUTONEG		0x3300
+
+#define	IGP01E1000_AGC_LENGTH_SHIFT		7
+#define	IGP01E1000_AGC_RANGE			10
+
+#define	FFE_IDLE_ERR_COUNT_TIMEOUT_20		20
+#define	FFE_IDLE_ERR_COUNT_TIMEOUT_100		100
+
+#define	IGP01E1000_ANALOG_FUSE_STATUS		0x20D0
+#define	IGP01E1000_ANALOG_SPARE_FUSE_STATUS	0x20D1
+#define	IGP01E1000_ANALOG_FUSE_CONTROL		0x20DC
+#define	IGP01E1000_ANALOG_FUSE_BYPASS		0x20DE
+
+#define	IGP01E1000_ANALOG_SPARE_FUSE_ENABLED	0x0100
+#define	IGP01E1000_ANALOG_FUSE_FINE_MASK	0x0F80
+#define	IGP01E1000_ANALOG_FUSE_COARSE_MASK	0x0070
+#define	IGP01E1000_ANALOG_FUSE_COARSE_THRESH	0x0040
+#define	IGP01E1000_ANALOG_FUSE_COARSE_10	0x0010
+#define	IGP01E1000_ANALOG_FUSE_FINE_1		0x0080
+#define	IGP01E1000_ANALOG_FUSE_FINE_10		0x0500
+#define	IGP01E1000_ANALOG_FUSE_POLY_MASK	0xF000
+#define	IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002
+
+#define	IGP01E1000_MSE_CHANNEL_D		0x000F
+#define	IGP01E1000_MSE_CHANNEL_C		0x00F0
+#define	IGP01E1000_MSE_CHANNEL_B		0x0F00
+#define	IGP01E1000_MSE_CHANNEL_A		0xF000
+
+#ifndef FIFO_WORKAROUND
+#define	E1000_FIFO_MULTIPLIER			0x80
+#define	E1000_FIFO_HDR_SIZE			0x10
+#define	E1000_FIFO_GRANULARITY			0x10
+#define	E1000_FIFO_PAD_82547			0x3E0
+#define	E1000_ERR_FIFO_WRAP			8
+
+#define	DSP_RESET_ENABLE			0x0
+#define	DSP_RESET_DISABLE			0x2
+#define	E1000_MAX_DSP_RESETS			10
+
+#define	E1000_ROUNDUP(size, unit)	(((size) + (unit) - 1) & ~((unit) - 1))
+
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif	/* _E1000_82541_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_82542.c	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,560 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+/*
+ * e1000_82542 (rev 1 & 2)
+ */
+
+#include "e1000_api.h"
+
+void e1000_init_function_pointers_82542(struct e1000_hw *hw);
+
+static s32 e1000_init_phy_params_82542(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_82542(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_82542(struct e1000_hw *hw);
+static s32 e1000_get_bus_info_82542(struct e1000_hw *hw);
+static s32 e1000_reset_hw_82542(struct e1000_hw *hw);
+static s32 e1000_init_hw_82542(struct e1000_hw *hw);
+static s32 e1000_setup_link_82542(struct e1000_hw *hw);
+static s32 e1000_led_on_82542(struct e1000_hw *hw);
+static s32 e1000_led_off_82542(struct e1000_hw *hw);
+static void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw);
+
+struct e1000_dev_spec_82542 {
+	boolean_t dma_fairness;
+};
+
+/*
+ * e1000_init_phy_params_82542 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_phy_params_82542(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_phy_params_82542");
+
+	phy->type = e1000_phy_none;
+
+	return (ret_val);
+}
+
+/*
+ * e1000_init_nvm_params_82542 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_nvm_params_82542(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_functions *func = &hw->func;
+
+	DEBUGFUNC("e1000_init_nvm_params_82542");
+
+	nvm->address_bits = 6;
+	nvm->delay_usec = 50;
+	nvm->opcode_bits = 3;
+	nvm->type = e1000_nvm_eeprom_microwire;
+	nvm->word_size = 64;
+
+	/* Function Pointers */
+	func->read_nvm = e1000_read_nvm_microwire;
+	func->release_nvm = e1000_stop_nvm;
+	func->write_nvm = e1000_write_nvm_microwire;
+	func->update_nvm = e1000_update_nvm_checksum_generic;
+	func->validate_nvm = e1000_validate_nvm_checksum_generic;
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_init_mac_params_82542 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_mac_params_82542(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_mac_params_82542");
+
+	/* Set media type */
+	hw->media_type = e1000_media_type_fiber;
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	func->get_bus_info = e1000_get_bus_info_82542;
+	/* reset */
+	func->reset_hw = e1000_reset_hw_82542;
+	/* hw initialization */
+	func->init_hw = e1000_init_hw_82542;
+	/* link setup */
+	func->setup_link = e1000_setup_link_82542;
+	/* phy/fiber/serdes setup */
+	func->setup_physical_interface = e1000_setup_fiber_serdes_link_generic;
+	/* check for link */
+	func->check_for_link = e1000_check_for_fiber_link_generic;
+	/* multicast address update */
+	func->mc_addr_list_update = e1000_mc_addr_list_update_generic;
+	/* writing VFTA */
+	func->write_vfta = e1000_write_vfta_generic;
+	/* clearing VFTA */
+	func->clear_vfta = e1000_clear_vfta_generic;
+	/* setting MTA */
+	func->mta_set = e1000_mta_set_generic;
+	/* turn on/off LED */
+	func->led_on = e1000_led_on_82542;
+	func->led_off = e1000_led_off_82542;
+	/* remove device */
+	func->remove_device = e1000_remove_device_generic;
+	/* clear hardware counters */
+	func->clear_hw_cntrs = e1000_clear_hw_cntrs_82542;
+	/* link info */
+	func->get_link_up_info =
+	    e1000_get_speed_and_duplex_fiber_serdes_generic;
+
+	hw->dev_spec_size = sizeof (struct e1000_dev_spec_82542);
+
+	/* Device-specific structure allocation */
+	ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+
+	return (ret_val);
+}
+
+/*
+ * e1000_init_function_pointers_82542 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * The only function explicitly called by the api module to initialize
+ * all function pointers and parameters.
+ */
+void
+e1000_init_function_pointers_82542(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82542");
+
+	hw->func.init_mac_params = e1000_init_mac_params_82542;
+	hw->func.init_nvm_params = e1000_init_nvm_params_82542;
+	hw->func.init_phy_params = e1000_init_phy_params_82542;
+}
+
+/*
+ * e1000_get_bus_info_82542 - Obtain bus information for adapter
+ * @hw: pointer to the HW structure
+ *
+ * This will obtain information about the HW bus for which the
+ * adaper is attached and stores it in the hw structure.  This is a function
+ * pointer entry point called by the api module.
+ */
+static s32
+e1000_get_bus_info_82542(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_get_bus_info_82542");
+
+	hw->bus.type = e1000_bus_type_pci;
+	hw->bus.speed = e1000_bus_speed_unknown;
+	hw->bus.width = e1000_bus_width_unknown;
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_reset_hw_82542 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.  This is a
+ * function pointer entry point called by the api module.
+ */
+static s32
+e1000_reset_hw_82542(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	s32 ret_val = E1000_SUCCESS;
+	u32 ctrl, icr;
+
+	DEBUGFUNC("e1000_reset_hw_82542");
+
+	if (hw->revision_id == E1000_REVISION_2) {
+		DEBUGOUT("Disabling MWI on 82542 rev 2\n");
+		e1000_pci_clear_mwi(hw);
+	}
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	/*
+	 * Delay to allow any outstanding PCI transactions to complete before
+	 * resetting the device
+	 */
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGOUT("Issuing a global reset to 82542/82543 MAC\n");
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+	e1000_reload_nvm(hw);
+	msec_delay(2);
+
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	icr = E1000_READ_REG(hw, E1000_ICR);
+
+	if (hw->revision_id == E1000_REVISION_2) {
+		if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
+	return (ret_val);
+}
+
+/*
+ * e1000_init_hw_82542 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.  This is a
+ * function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_hw_82542(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_dev_spec_82542 *dev_spec;
+	s32 ret_val = E1000_SUCCESS;
+	u32 ctrl;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_hw_82542");
+
+	dev_spec = (struct e1000_dev_spec_82542 *)hw->dev_spec;
+
+	/* Disabling VLAN filtering */
+	E1000_WRITE_REG(hw, E1000_VET, 0);
+	e1000_clear_vfta(hw);
+
+	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+	if (hw->revision_id == E1000_REVISION_2) {
+		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+		e1000_pci_clear_mwi(hw);
+		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
+		E1000_WRITE_FLUSH(hw);
+		msec_delay(5);
+	}
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+	if (hw->revision_id == E1000_REVISION_2) {
+		E1000_WRITE_REG(hw, E1000_RCTL, 0);
+		E1000_WRITE_FLUSH(hw);
+		msec_delay(1);
+		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/*
+	 * Set the PCI priority bit correctly in the CTRL register.  This
+	 * determines if the adapter gives priority to receives, or if it
+	 * gives equal priority to transmits and receives.
+	 */
+	if (dev_spec->dma_fairness) {
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
+	}
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link_82542(hw);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82542(hw);
+
+	return (ret_val);
+}
+
+/*
+ * e1000_setup_link_82542 - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control.  Calls the appropriate media-specific link configuration
+ * function.  Assuming the adapter has a valid link partner, a valid link
+ * should be established.  Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.  This is a function
+ * pointer entry point called by the api module.
+ */
+static s32
+e1000_setup_link_82542(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_link_82542");
+
+	ret_val = e1000_set_default_fc_generic(hw);
+	if (ret_val)
+		goto out;
+
+	mac->fc &= ~e1000_fc_tx_pause;
+
+	if (mac->report_tx_early == 1)
+		mac->fc &= ~e1000_fc_rx_pause;
+
+	/*
+	 * We want to save off the original Flow Control configuration just in
+	 * case we get disconnected and then reconnected into a different hub
+	 * or switch with different Flow Control capabilities.
+	 */
+	mac->original_fc = mac->fc;
+
+	DEBUGOUT1("After fix-ups FlowControl is now = %x\n", mac->fc);
+
+	/* Call the necessary subroutine to configure the link. */
+	ret_val = func->setup_physical_interface(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Initialize the flow control address, type, and PAUSE timer
+	 * registers to their default values.  This is done even if flow
+	 * control is disabled, because it does not hurt anything to
+	 * initialize these registers.
+	 */
+	DEBUGOUT("Initializing Flow Control address, type and timer regs\n");
+
+	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+
+	E1000_WRITE_REG(hw, E1000_FCTTV, mac->fc_pause_time);
+
+	ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_led_on_82542 - Turn on SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED on.  This is a function pointer entry point
+ * called by the api module.
+ */
+static s32
+e1000_led_on_82542(struct e1000_hw *hw)
+{
+	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGFUNC("e1000_led_on_82542");
+
+	ctrl |= E1000_CTRL_SWDPIN0;
+	ctrl |= E1000_CTRL_SWDPIO0;
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_led_off_82542 - Turn off SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED off.  This is a function pointer entry point
+ * called by the api module.
+ */
+static s32
+e1000_led_off_82542(struct e1000_hw *hw)
+{
+	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGFUNC("e1000_led_off_82542");
+
+	ctrl &= ~E1000_CTRL_SWDPIN0;
+	ctrl |= E1000_CTRL_SWDPIO0;
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_translate_register_82542 - Translate the proper regiser offset
+ * @reg: e1000 register to be read
+ *
+ * Registers in 82542 are located in different offsets than other adapters
+ * even though they function in the same manner.  This function takes in
+ * the name of the register to read and returns the correct offset for
+ * 82542 silicon.
+ */
+u32
+e1000_translate_register_82542(u32 reg)
+{
+	/*
+	 * Some of the 82542 registers are located at different
+	 * offsets than they are in newer adapters.
+	 * Despite the difference in location, the registers
+	 * function in the same manner.
+	 */
+	switch (reg) {
+		case E1000_RA:
+		reg = 0x00040;
+		break;
+	case E1000_RDTR:
+		reg = 0x00108;
+		break;
+	case E1000_RDBAL:
+		reg = 0x00110;
+		break;
+	case E1000_RDBAH:
+		reg = 0x00114;
+		break;
+	case E1000_RDLEN:
+		reg = 0x00118;
+		break;
+	case E1000_RDH:
+		reg = 0x00120;
+		break;
+	case E1000_RDT:
+		reg = 0x00128;
+		break;
+	case E1000_RDBAL1:
+		reg = 0x00138;
+		break;
+	case E1000_RDBAH1:
+		reg = 0x0013C;
+		break;
+	case E1000_RDLEN1:
+		reg = 0x00140;
+		break;
+	case E1000_RDH1:
+		reg = 0x00148;
+		break;
+	case E1000_RDT1:
+		reg = 0x00150;
+		break;
+	case E1000_FCRTH:
+		reg = 0x00160;
+		break;
+	case E1000_FCRTL:
+		reg = 0x00168;
+		break;
+	case E1000_MTA:
+		reg = 0x00200;
+		break;
+	case E1000_TDBAL:
+		reg = 0x00420;
+		break;
+	case E1000_TDBAH:
+		reg = 0x00424;
+		break;
+	case E1000_TDLEN:
+		reg = 0x00428;
+		break;
+	case E1000_TDH:
+		reg = 0x00430;
+		break;
+	case E1000_TDT:
+		reg = 0x00438;
+		break;
+	case E1000_TIDV:
+		reg = 0x00440;
+		break;
+	case E1000_VFTA:
+		reg = 0x00600;
+		break;
+	case E1000_TDFH:
+		reg = 0x08010;
+		break;
+	case E1000_TDFT:
+		reg = 0x08018;
+		break;
+	default:
+		break;
+	}
+
+	return (reg);
+}
+
+/*
+ * e1000_clear_hw_cntrs_82542 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ */
+static void
+e1000_clear_hw_cntrs_82542(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_82542");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	temp = E1000_READ_REG(hw, E1000_PRC64);
+	temp = E1000_READ_REG(hw, E1000_PRC127);
+	temp = E1000_READ_REG(hw, E1000_PRC255);
+	temp = E1000_READ_REG(hw, E1000_PRC511);
+	temp = E1000_READ_REG(hw, E1000_PRC1023);
+	temp = E1000_READ_REG(hw, E1000_PRC1522);
+	temp = E1000_READ_REG(hw, E1000_PTC64);
+	temp = E1000_READ_REG(hw, E1000_PTC127);
+	temp = E1000_READ_REG(hw, E1000_PTC255);
+	temp = E1000_READ_REG(hw, E1000_PTC511);
+	temp = E1000_READ_REG(hw, E1000_PTC1023);
+	temp = E1000_READ_REG(hw, E1000_PTC1522);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_82543.c	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,1691 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+/*
+ * e1000_82543
+ * e1000_82544
+ */
+
+#include "e1000_api.h"
+#include "e1000_82543.h"
+
+void e1000_init_function_pointers_82543(struct e1000_hw *hw);
+
+static s32 e1000_init_phy_params_82543(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_82543(struct e1000_hw *hw);
+static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
+    u16 *data);
+static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
+    u16 data);
+static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
+static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw);
+static s32 e1000_reset_hw_82543(struct e1000_hw *hw);
+static s32 e1000_init_hw_82543(struct e1000_hw *hw);
+static s32 e1000_setup_link_82543(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw);
+static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw);
+static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw);
+static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
+static s32 e1000_led_on_82543(struct e1000_hw *hw);
+static s32 e1000_led_off_82543(struct e1000_hw *hw);
+static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
+    u32 value);
+static void e1000_mta_set_82543(struct e1000_hw *hw, u32 hash_value);
+static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
+static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
+static boolean_t e1000_init_phy_disabled_82543(struct e1000_hw *hw);
+static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
+static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
+static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
+static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
+static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
+    u16 count);
+static boolean_t e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
+static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, boolean_t state);
+
+struct e1000_dev_spec_82543 {
+	u32 tbi_compatibility;
+	boolean_t dma_fairness;
+	boolean_t init_phy_disabled;
+};
+
+/*
+ * e1000_init_phy_params_82543 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_phy_params_82543(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_phy_params_82543");
+
+	if (hw->media_type != e1000_media_type_copper) {
+		phy->type = e1000_phy_none;
+		goto out;
+	}
+
+	phy->addr = 1;
+	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us = 10000;
+	phy->type = e1000_phy_m88;
+
+	/* Function Pointers */
+	func->check_polarity = e1000_check_polarity_m88;
+	func->commit_phy = e1000_phy_sw_reset_generic;
+	func->force_speed_duplex = e1000_phy_force_speed_duplex_82543;
+	func->get_cable_length = e1000_get_cable_length_m88;
+	func->get_cfg_done = e1000_get_cfg_done_generic;
+	func->read_phy_reg = (hw->mac.type == e1000_82543)
+	    ? e1000_read_phy_reg_82543
+	    : e1000_read_phy_reg_m88;
+	func->reset_phy = (hw->mac.type == e1000_82543)
+	    ? e1000_phy_hw_reset_82543
+	    : e1000_phy_hw_reset_generic;
+	func->write_phy_reg = (hw->mac.type == e1000_82543)
+	    ? e1000_write_phy_reg_82543
+	    : e1000_write_phy_reg_m88;
+	func->get_phy_info = e1000_get_phy_info_m88;
+
+	/*
+	 * The external PHY of the 82543 can be in a funky state.
+	 * Resetting helps us read the PHY registers for acquiring
+	 * the PHY ID.
+	 */
+	if (!e1000_init_phy_disabled_82543(hw)) {
+		ret_val = e1000_phy_hw_reset(hw);
+		if (ret_val) {
+			DEBUGOUT("Resetting PHY during init failed.\n");
+			goto out;
+		}
+		msec_delay(20);
+	}
+
+	ret_val = e1000_get_phy_id(hw);
+	if (ret_val)
+		goto out;
+
+	/* Verify phy id */
+	switch (hw->mac.type) {
+	case e1000_82543:
+		if (phy->id != M88E1000_E_PHY_ID) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+		break;
+	case e1000_82544:
+		if (phy->id != M88E1000_I_PHY_ID) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_nvm_params_82543 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_nvm_params_82543(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_functions *func = &hw->func;
+
+	DEBUGFUNC("e1000_init_nvm_params_82543");
+
+	nvm->type = e1000_nvm_eeprom_microwire;
+	nvm->word_size = 64;
+	nvm->delay_usec = 50;
+	nvm->address_bits = 6;
+	nvm->opcode_bits = 3;
+
+	/* Function Pointers */
+	func->read_nvm = e1000_read_nvm_microwire;
+	func->update_nvm = e1000_update_nvm_checksum_generic;
+	func->valid_led_default = e1000_valid_led_default_generic;
+	func->validate_nvm = e1000_validate_nvm_checksum_generic;
+	func->write_nvm = e1000_write_nvm_microwire;
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_init_mac_params_82543 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_mac_params_82543(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_init_mac_params_82543");
+
+	/* Set media type */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82543GC_FIBER:
+	case E1000_DEV_ID_82544EI_FIBER:
+		hw->media_type = e1000_media_type_fiber;
+		break;
+	default:
+		hw->media_type = e1000_media_type_copper;
+		break;
+	}
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	func->get_bus_info = e1000_get_bus_info_pci_generic;
+	/* reset */
+	func->reset_hw = e1000_reset_hw_82543;
+	/* hw initialization */
+	func->init_hw = e1000_init_hw_82543;
+	/* link setup */
+	func->setup_link = e1000_setup_link_82543;
+	/* physical interface setup */
+	func->setup_physical_interface =
+	    (hw->media_type == e1000_media_type_copper)
+	    ? e1000_setup_copper_link_82543
+	    : e1000_setup_fiber_link_82543;
+	/* check for link */
+	func->check_for_link =
+	    (hw->media_type == e1000_media_type_copper)
+	    ? e1000_check_for_copper_link_82543
+	    : e1000_check_for_fiber_link_82543;
+	/* link info */
+	func->get_link_up_info =
+	    (hw->media_type == e1000_media_type_copper)
+	    ? e1000_get_speed_and_duplex_copper_generic
+	    : e1000_get_speed_and_duplex_fiber_serdes_generic;
+	/* multicast address update */
+	func->mc_addr_list_update = e1000_mc_addr_list_update_generic;
+	/* writing VFTA */
+	func->write_vfta = e1000_write_vfta_82543;
+	/* clearing VFTA */
+	func->clear_vfta = e1000_clear_vfta_generic;
+	/* setting MTA */
+	func->mta_set = e1000_mta_set_82543;
+	/* turn on/off LED */
+	func->led_on = e1000_led_on_82543;
+	func->led_off = e1000_led_off_82543;
+	/* remove device */
+	func->remove_device = e1000_remove_device_generic;
+	/* clear hardware counters */
+	func->clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
+
+	hw->dev_spec_size = sizeof (struct e1000_dev_spec_82543);
+
+	/* Device-specific structure allocation */
+	ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+	if (ret_val)
+		goto out;
+
+	/* Set tbi compatibility */
+	if ((hw->mac.type != e1000_82543) ||
+	    (hw->media_type == e1000_media_type_fiber))
+		e1000_set_tbi_compatibility_82543(hw, FALSE);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_function_pointers_82543 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * The only function explicitly called by the api module to initialize
+ * all function pointers and parameters.
+ */
+void
+e1000_init_function_pointers_82543(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82543");
+
+	hw->func.init_mac_params = e1000_init_mac_params_82543;
+	hw->func.init_nvm_params = e1000_init_nvm_params_82543;
+	hw->func.init_phy_params = e1000_init_phy_params_82543;
+}
+
+/*
+ * e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
+ * @hw: pointer to the HW structure
+ *
+ * Returns the curent status of 10-bit Interface (TBI) compatibility
+ * (enabled/disabled).
+ */
+static boolean_t
+e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82543 *dev_spec;
+	boolean_t state = FALSE;
+
+	DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
+
+	if (hw->mac.type != e1000_82543) {
+		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+		goto out;
+	}
+
+	dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		goto out;
+	}
+
+	state = (dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED)
+	    ? TRUE : FALSE;
+
+out:
+	return (state);
+}
+
+/*
+ * e1000_set_tbi_compatibility_82543 - Set TBI compatibility
+ * @hw: pointer to the HW structure
+ * @state: enable/disable TBI compatibility
+ *
+ * Enables or disabled 10-bit Interface (TBI) compatibility.
+ */
+void
+e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, boolean_t state)
+{
+	struct e1000_dev_spec_82543 *dev_spec;
+
+	DEBUGFUNC("e1000_set_tbi_compatibility_82543");
+
+	if (hw->mac.type != e1000_82543) {
+		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+		return;
+	}
+
+	dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		return;
+	}
+
+	if (state)
+		dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
+	else
+		dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
+}
+
+/*
+ * e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
+ * @hw: pointer to the HW structure
+ *
+ * Returns the curent status of 10-bit Interface (TBI) store bad packet (SBP)
+ * (enabled/disabled).
+ */
+boolean_t
+e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82543 *dev_spec;
+	boolean_t state = FALSE;
+
+	DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
+
+	if (hw->mac.type != e1000_82543) {
+		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+		goto out;
+	}
+
+	dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		goto out;
+	}
+
+	state = (dev_spec->tbi_compatibility & TBI_SBP_ENABLED)
+	    ? TRUE : FALSE;
+
+out:
+	return (state);
+}
+
+/*
+ * e1000_set_tbi_sbp_82543 - Set TBI SBP
+ * @hw: pointer to the HW structure
+ * @state: enable/disable TBI store bad packet
+ *
+ * Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
+ */
+static void
+e1000_set_tbi_sbp_82543(struct e1000_hw *hw, boolean_t state)
+{
+	struct e1000_dev_spec_82543 *dev_spec;
+
+	DEBUGFUNC("e1000_set_tbi_sbp_82543");
+
+	dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+	if (state && e1000_tbi_compatibility_enabled_82543(hw))
+		dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
+	else
+		dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
+}
+
+/*
+ * e1000_init_phy_disabled_82543 - Returns init PHY status
+ * @hw: pointer to the HW structure
+ *
+ * Returns the current status of whether PHY initialization is disabled.
+ * True if PHY initialization is disabled else false.
+ */
+static boolean_t
+e1000_init_phy_disabled_82543(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82543 *dev_spec;
+	boolean_t ret_val;
+
+	DEBUGFUNC("e1000_init_phy_disabled_82543");
+
+	if (hw->mac.type != e1000_82543) {
+		ret_val = FALSE;
+		goto out;
+	}
+
+	dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		ret_val = FALSE;
+		goto out;
+	}
+
+	ret_val = dev_spec->init_phy_disabled;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
+ * @hw: pointer to the HW structure
+ * @stats: Struct containing statistic register values
+ * @frame_len: The length of the frame in question
+ * @mac_addr: The Ethernet destination address of the frame in question
+ *
+ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ */
+void
+e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
+    struct e1000_hw_stats *stats, u32 frame_len, u8 *mac_addr)
+{
+	u64 carry_bit;
+
+	if (!(e1000_tbi_sbp_enabled_82543(hw)))
+		return;
+
+	/* First adjust the frame length. */
+	frame_len--;
+	/*
+	 * We need to adjust the statistics counters, since the hardware
+	 * counters overcount this packet as a CRC error and undercount
+	 * the packet as a good packet
+	 */
+	/* This packet should not be counted as a CRC error. */
+	stats->crcerrs--;
+	/* This packet does count as a Good Packet Received. */
+	stats->gprc++;
+
+	/* Adjust the Good Octets received counters */
+	carry_bit = 0x80000000 & stats->gorcl;
+	stats->gorcl += frame_len;
+	/*
+	 * If the high bit of Gorcl (the low 32 bits of the Good Octets
+	 * Received Count) was one before the addition,
+	 * AND it is zero after, then we lost the carry out,
+	 * need to add one to Gorch (Good Octets Received Count High).
+	 * This could be simplified if all environments supported
+	 * 64-bit integers.
+	 */
+	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
+		stats->gorch++;
+	/*
+	 * Is this a broadcast or multicast?  Check broadcast first,
+	 * since the test for a multicast frame will test positive on
+	 * a broadcast frame.
+	 */
+	if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
+		/* Broadcast packet */
+		stats->bprc++;
+	else if (*mac_addr & 0x01)
+		/* Multicast packet */
+		stats->mprc++;
+
+	/*
+	 * In this case, the hardware has overcounted the number of
+	 * oversize frames.
+	 */
+	if ((frame_len == hw->mac.max_frame_size) && (stats->roc > 0))
+		stats->roc--;
+
+	/*
+	 * Adjust the bin counters when the extra byte put the frame in the
+	 * wrong bin. Remember that the frame_len was adjusted above.
+	 */
+	if (frame_len == 64) {
+		stats->prc64++;
+		stats->prc127--;
+	} else if (frame_len == 127) {
+		stats->prc127++;
+		stats->prc255--;
+	} else if (frame_len == 255) {
+		stats->prc255++;
+		stats->prc511--;
+	} else if (frame_len == 511) {
+		stats->prc511++;
+		stats->prc1023--;
+	} else if (frame_len == 1023) {
+		stats->prc1023++;
+		stats->prc1522--;
+	} else if (frame_len == 1522) {
+		stats->prc1522++;
+	}
+}
+
+/*
+ * e1000_read_phy_reg_82543 - Read PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY at offset and stores the information read to data.
+ */
+static s32
+e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 * data)
+{
+	u32 mdic;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_read_phy_reg_82543");
+
+	if (offset > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", offset);
+		ret_val = -E1000_ERR_PARAM;
+		goto out;
+	}
+
+	/*
+	 * We must first send a preamble through the MDIO pin to signal the
+	 * beginning of an MII instruction.  This is done by sending 32
+	 * consecutive "1" bits.
+	 */
+	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+	/*
+	 * Now combine the next few fields that are required for a read
+	 * operation.  We use this method instead of calling the
+	 * e1000_shift_out_mdi_bits routine five different times.  The format
+	 * of an MII read instruction consists of a shift out of 14 bits and
+	 * is defined as follows:
+	 *	<Preamble><SOF><Op Code><Phy Addr><Offset>
+	 * followed by a shift in of 18 bits.  This first two bits shifted in
+	 * are TurnAround bits used to avoid contention on the MDIO pin when a
+	 * READ operation is performed.  These two bits are thrown away
+	 * followed by a shift in of 16 bits which contains the desired data.
+	 */
+	mdic = (offset | (hw->phy.addr << 5) |
+	    (PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+	e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
+
+	/*
+	 * Now that we've shifted out the read command to the MII, we need to
+	 * "shift in" the 16-bit value (18 total bits) of the requested PHY
+	 * register address.
+	 */
+	*data = e1000_shift_in_mdi_bits_82543(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_write_phy_reg_82543 - Write PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be written
+ * @data: pointer to the data to be written at offset
+ *
+ * Writes data to the PHY at offset.
+ */
+static s32
+e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	u32 mdic;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_write_phy_reg_82543");
+
+	if (offset > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", offset);
+		ret_val = -E1000_ERR_PARAM;
+		goto out;
+	}
+
+	/*
+	 * We'll need to use the SW defined pins to shift the write command
+	 * out to the PHY. We first send a preamble to the PHY to signal the
+	 * beginning of the MII instruction.  This is done by sending 32
+	 * consecutive "1" bits.
+	 */
+	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+	/*
+	 * Now combine the remaining required fields that will indicate a
+	 * write operation. We use this method instead of calling the
+	 * e1000_shift_out_mdi_bits routine for each field in the command. The
+	 * format of a MII write instruction is as follows:
+	 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+	 */
+	mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
+	    (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+	mdic <<= 16;
+	mdic |= (u32) data;
+
+	e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
+ * @hw: pointer to the HW structure
+ * @ctrl: pointer to the control register
+ *
+ * Raise the management data input clock by setting the MDC bit in the control
+ * register.
+ */
+static void
+e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 * ctrl)
+{
+	/*
+	 * Raise the clock input to the Management Data Clock (by setting the
+	 * MDC bit), and then delay a sufficient amount of time.
+	 */
+	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH(hw);
+	usec_delay(10);
+}
+
+/*
+ * e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
+ * @hw: pointer to the HW structure
+ * @ctrl: pointer to the control register
+ *
+ * Lower the management data input clock by clearing the MDC bit in the control
+ * register.
+ */
+static void
+e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 * ctrl)
+{
+	/*
+	 * Lower the clock input to the Management Data Clock (by clearing the
+	 * MDC bit), and then delay a sufficient amount of time.
+	 */
+	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH(hw);
+	usec_delay(10);
+}
+
+/*
+ * e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
+ * @hw: pointer to the HW structure
+ * @data: data to send to the PHY
+ * @count: number of bits to shift out
+ *
+ * We need to shift 'count' bits out to the PHY.  So, the value in the
+ * "data" parameter will be shifted out to the PHY one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ */
+static void
+e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
+    u16 count)
+{
+	u32 ctrl, mask;
+
+	/*
+	 * We need to shift "count" number of bits out to the PHY.  So, the
+	 * value in the "data" parameter will be shifted out to the PHY one
+	 * bit at a time.  In order to do this, "data" must be broken down
+	 * into bits.
+	 */
+	mask = 0x01;
+	mask <<= (count - 1);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+	while (mask) {
+		/*
+		 * A "1" is shifted out to the PHY by setting the MDIO bit to
+		 * "1" and then raising and lowering the Management Data Clock.
+		 * A "0" is shifted out to the PHY by setting the MDIO bit to
+		 * "0" and then raising and lowering the clock.
+		 */
+		if (data & mask)
+			ctrl |= E1000_CTRL_MDIO;
+		else
+			ctrl &= ~E1000_CTRL_MDIO;
+
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+		E1000_WRITE_FLUSH(hw);
+
+		usec_delay(10);
+
+		e1000_raise_mdi_clk_82543(hw, &ctrl);
+		e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+		mask >>= 1;
+	}
+}
+
+/*
+ * e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
+ * @hw: pointer to the HW structure
+ *
+ * In order to read a register from the PHY, we need to shift 18 bits
+ * in from the PHY.  Bits are "shifted in" by raising the clock input to
+ * the PHY (setting the MDC bit), and then reading the value of the data out
+ * MDIO bit.
+ */
+static u16
+e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u16 data = 0;
+	u8 i;
+
+	/*
+	 * In order to read a register from the PHY, we need to shift in a
+	 * total of 18 bits from the PHY.  The first two bit (turnaround)
+	 * times are used to avoid contention on the MDIO pin when a read
+	 * operation is performed.  These two bits are ignored by us and
+	 * thrown away.  Bits are "shifted in" by raising the input to the
+	 * Management Data Clock (setting the MDC bit) and then reading the
+	 * value of the MDIO bit.
+	 */
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/*
+	 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
+	 * input.
+	 */
+	ctrl &= ~E1000_CTRL_MDIO_DIR;
+	ctrl &= ~E1000_CTRL_MDIO;
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	E1000_WRITE_FLUSH(hw);
+
+	/*
+	 * Raise and lower the clock before reading in the data.  This accounts
+	 * for the turnaround bits.  The first clock occurred when we clocked
+	 * out the last bit of the Register Address.
+	 */
+	e1000_raise_mdi_clk_82543(hw, &ctrl);
+	e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+	for (data = 0, i = 0; i < 16; i++) {
+		data <<= 1;
+		e1000_raise_mdi_clk_82543(hw, &ctrl);
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		/* Check to see if we shifted in a "1". */
+		if (ctrl & E1000_CTRL_MDIO)
+			data |= 1;
+		e1000_lower_mdi_clk_82543(hw, &ctrl);
+	}
+
+	e1000_raise_mdi_clk_82543(hw, &ctrl);
+	e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+	return (data);
+}
+
+/*
+ * e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the function to force speed and duplex for the m88 PHY, and
+ * if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
+ * then call the function for polarity reversal workaround.
+ */
+static s32
+e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
+
+	ret_val = e1000_phy_force_speed_duplex_m88(hw);
+	if (ret_val)
+		goto out;
+
+	if (!hw->mac.autoneg &&
+	    (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED))
+		ret_val = e1000_polarity_reversal_workaround_82543(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
+ * @hw: pointer to the HW structure
+ *
+ * When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
+ * inadvertantly.  To workaround the issue, we disable the transmitter on
+ * the PHY until we have established the link partner's link parameters.
+ */
+static s32
+e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 mii_status_reg;
+	u16 i;
+	boolean_t link;
+
+	/* Polarity reversal workaround for forced 10F/10H links. */
+
+	/* Disable the transmitter on the PHY */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+	if (ret_val)
+		goto out;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * This loop will early-out if the NO link condition has been met.
+	 * In other words, DO NOT use e1000_phy_has_link_generic() here.
+	 */
+	for (i = PHY_FORCE_TIME; i > 0; i--) {
+		/*
+		 * Read the MII Status Register and wait for Link Status bit
+		 * to be clear.
+		 */
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			goto out;
+
+		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
+			break;
+		msec_delay_irq(100);
+	}
+
+	/* Recommended delay time after link has been lost */
+	msec_delay_irq(1000);
+
+	/* Now we will re-enable the transmitter on the PHY */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+	if (ret_val)
+		goto out;
+	msec_delay_irq(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
+	if (ret_val)
+		goto out;
+	msec_delay_irq(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
+	if (ret_val)
+		goto out;
+	msec_delay_irq(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Read the MII Status Register and wait for Link Status bit
+	 * to be set.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
+	if (ret_val)
+		goto out;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_phy_hw_reset_82543 - PHY hardware reset
+ * @hw: pointer to the HW structure
+ *
+ * Sets the PHY_RESET_DIR bit in the extended device control register
+ * to put the PHY into a reset and waits for completion.  Once the reset
+ * has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
+ * of reset.  This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_phy_hw_reset_82543(struct e1000_hw *hw)
+{
+	struct e1000_functions *func = &hw->func;
+	u32 ctrl_ext;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_phy_hw_reset_82543");
+
+	/*
+	 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
+	 * bit to put the PHY into reset...
+	 */
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+	ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	E1000_WRITE_FLUSH(hw);
+
+	msec_delay(10);
+
+	/* ...then take it out of reset. */
+	ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	E1000_WRITE_FLUSH(hw);
+
+	usec_delay(150);
+
+	ret_val = func->get_cfg_done(hw);
+
+	return (ret_val);
+}
+
+/*
+ * e1000_reset_hw_82543 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.  This is a
+ * function pointer entry point called by the api module.
+ */
+static s32
+e1000_reset_hw_82543(struct e1000_hw *hw)
+{
+	u32 ctrl, icr;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_reset_hw_82543");
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	e1000_set_tbi_sbp_82543(hw, FALSE);
+
+	/*
+	 * Delay to allow any outstanding PCI transactions to complete before
+	 * resetting the device
+	 */
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
+	if (hw->mac.type == e1000_82543) {
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+	} else {
+		/*
+		 * The 82544 can't ACK the 64-bit write when issuing the
+		 * reset, so use IO-mapping as a workaround.
+		 */
+		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+	}
+
+	/*
+	 * After MAC reset, force reload of NVM to restore power-on
+	 * settings to device.
+	 */
+	e1000_reload_nvm(hw);
+	msec_delay(2);
+
+	/* Masking off and clearing any pending interrupts */
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	icr = E1000_READ_REG(hw, E1000_ICR);
+
+	return (ret_val);
+}
+
+/*
+ * e1000_init_hw_82543 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ */
+static s32
+e1000_init_hw_82543(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_dev_spec_82543 *dev_spec;
+	u32 ctrl;
+	s32 ret_val;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_hw_82543");
+
+	dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/* Disabling VLAN filtering */
+	E1000_WRITE_REG(hw, E1000_VET, 0);
+	e1000_clear_vfta(hw);
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	/*
+	 * Set the PCI priority bit correctly in the CTRL register.  This
+	 * determines if the adapter gives priority to receives, or if it
+	 * gives equal priority to transmits and receives.
+	 */
+	if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
+	}
+
+	e1000_pcix_mmrbc_workaround_generic(hw);
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link(hw);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82543(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_setup_link_82543 - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Read the EEPROM to determine the initial polarity value and write the
+ * extended device control register with the information before calling
+ * the generic setup link function, which does the following:
+ * Determines which flow control settings to use, then configures flow
+ * control.  Calls the appropriate media-specific link configuration
+ * function.  Assuming the adapter has a valid link partner, a valid link
+ * should be established.  Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ */
+static s32
+e1000_setup_link_82543(struct e1000_hw *hw)
+{
+	u32 ctrl_ext;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_setup_link_82543");
+
+	/*
+	 * Take the 4 bits from NVM word 0xF that determine the initial
+	 * polarity value for the SW controlled pins, and setup the
+	 * Extended Device Control reg with that info.
+	 * This is needed because one of the SW controlled pins is used for
+	 * signal detection.  So this should be done before phy setup.
+	 */
+	if (hw->mac.type == e1000_82543) {
+		ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error\n");
+			ret_val = -E1000_ERR_NVM;
+			goto out;
+		}
+		ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
+		    NVM_SWDPIO_EXT_SHIFT);
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	}
+
+	ret_val = e1000_setup_link_generic(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_setup_copper_link_82543 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Configures the link for auto-neg or forced speed and duplex.  Then we check
+ * for link, once link is established calls to configure collision distance
+ * and flow control are called.
+ */
+static s32
+e1000_setup_copper_link_82543(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	boolean_t link;
+
+	DEBUGFUNC("e1000_setup_copper_link_82543");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
+	/*
+	 * With 82543, we need to force speed and duplex on the MAC
+	 * equal to what the PHY speed and duplex configuration is.
+	 * In addition, we need to perform a hardware reset on the
+	 * PHY to take it out of reset.
+	 */
+	if (hw->mac.type == e1000_82543) {
+		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+		ret_val = e1000_phy_hw_reset(hw);
+		if (ret_val)
+			goto out;
+		hw->phy.reset_disable = FALSE;
+	} else {
+		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	}
+
+	/* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
+	ret_val = e1000_copper_link_setup_m88(hw);
+	if (ret_val)
+		goto out;
+
+	if (hw->mac.autoneg) {
+		/*
+		 * Setup autoneg and flow control advertisement and perform
+		 * autonegotiation.
+		 */
+		ret_val = e1000_copper_link_autoneg(hw);
+		if (ret_val)
+			goto out;
+	} else {
+		/*
+		 * PHY will be set to 10H, 10F, 100H or 100F
+		 * depending on user settings.
+		 */
+		DEBUGOUT("Forcing Speed and Duplex\n");
+		ret_val = e1000_phy_force_speed_duplex_82543(hw);
+		if (ret_val) {
+			DEBUGOUT("Error Forcing Speed and Duplex\n");
+			goto out;
+		}
+	}
+
+	/*
+	 * Check link status. Wait up to 100 microseconds for link to become
+	 * valid.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw,
+	    COPPER_LINK_UP_LIMIT,
+	    10,
+	    &link);
+	if (ret_val)
+		goto out;
+
+
+	if (link) {
+		DEBUGOUT("Valid link established!!!\n");
+		/* Config the MAC and PHY after link is up */
+		if (hw->mac.type == e1000_82544) {
+			e1000_config_collision_dist_generic(hw);
+		} else {
+			ret_val = e1000_config_mac_to_phy_82543(hw);
+			if (ret_val)
+				goto out;
+		}
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+	} else {
+		DEBUGOUT("Unable to establish link!!!\n");
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_setup_fiber_link_82543 - Setup link for fiber
+ * @hw: pointer to the HW structure
+ *
+ * Configures collision distance and flow control for fiber links.  Upon
+ * successful setup, poll for link.
+ */
+static s32
+e1000_setup_fiber_link_82543(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_setup_fiber_link_82543");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/* Take the link out of reset */
+	ctrl &= ~E1000_CTRL_LRST;
+
+	e1000_config_collision_dist_generic(hw);
+
+	ret_val = e1000_commit_fc_settings_generic(hw);
+	if (ret_val)
+		goto out;
+
+	DEBUGOUT("Auto-negotiation enabled\n");
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	E1000_WRITE_FLUSH(hw);
+	msec_delay(1);
+
+	/*
+	 * For these adapters, the SW defineable pin 1 is cleared when the
+	 * optics detect a signal.  If we have a signal, then poll for a
+	 * "Link-Up" indication.
+	 */
+	if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
+		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+	} else {
+		DEBUGOUT("No signal detected\n");
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_check_for_copper_link_82543 - Check for link (Copper)
+ * @hw: pointer to the HW structure
+ *
+ * Checks the phy for link, if link exists, do the following:
+ *  - check for downshift
+ *  - do polarity workaround (if necessary)
+ *  - configure collision distance
+ *  - configure flow control after link up
+ *  - configure tbi compatibility
+ */
+static s32
+e1000_check_for_copper_link_82543(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 icr, rctl;
+	s32 ret_val;
+	u16 speed, duplex;
+	boolean_t link;
+
+	DEBUGFUNC("e1000_check_for_copper_link_82543");
+
+	if (!mac->get_link_status) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link)
+		goto out;	/* No link detected */
+
+	mac->get_link_status = FALSE;
+
+	e1000_check_downshift_generic(hw);
+
+	/*
+	 * If we are forcing speed/duplex, then we can return since
+	 * we have already determined whether we have link or not.
+	 */
+	if (!mac->autoneg) {
+		/*
+		 * If speed and duplex are forced to 10H or 10F, then we will
+		 * implement the polarity reversal workaround.  We disable
+		 * interrupts first, and upon returning, place the devices
+		 * interrupt state to its previous value except for the link
+		 * status change interrupt which will happened due to the
+		 * execution of this workaround.
+		 */
+		if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
+			E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+			ret_val = e1000_polarity_reversal_workaround_82543(hw);
+			icr = E1000_READ_REG(hw, E1000_ICR);
+			E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
+			E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
+		}
+
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/*
+	 * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
+	 * have Si on board that is 82544 or newer, Auto
+	 * Speed Detection takes care of MAC speed/duplex
+	 * configuration.  So we only need to configure Collision
+	 * Distance in the MAC.  Otherwise, we need to force
+	 * speed/duplex on the MAC to the current PHY speed/duplex
+	 * settings.
+	 */
+	if (mac->type == e1000_82544)
+		e1000_config_collision_dist_generic(hw);
+	else {
+		ret_val = e1000_config_mac_to_phy_82543(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring MAC to PHY settings\n");
+			goto out;
+		}
+	}
+
+	/*
+	 * Configure Flow Control now that Auto-Neg has completed.
+	 * First, we need to restore the desired flow control
+	 * settings because we may have had to re-autoneg with a
+	 * different link partner.
+	 */
+	ret_val = e1000_config_fc_after_link_up_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error configuring flow control\n");
+	}
+
+	/*
+	 * At this point we know that we are on copper and we have
+	 * auto-negotiated link.  These are conditions for checking the link
+	 * partner capability register.  We use the link speed to determine if
+	 * TBI compatibility needs to be turned on or off.  If the link is not
+	 * at gigabit speed, then TBI compatibility is not needed.  If we are
+	 * at gigabit speed, we turn on TBI compatibility.
+	 */
+	if (e1000_tbi_compatibility_enabled_82543(hw)) {
+		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+		if (ret_val) {
+			DEBUGOUT("Error getting link speed and duplex\n");
+			return (ret_val);
+		}
+		if (speed != SPEED_1000) {
+			/*
+			 * If link speed is not set to gigabit speed,
+			 * we do not need to enable TBI compatibility.
+			 */
+			if (e1000_tbi_sbp_enabled_82543(hw)) {
+				/*
+				 * If we previously were in the mode,
+				 * turn it off.
+				 */
+				e1000_set_tbi_sbp_82543(hw, FALSE);
+				rctl = E1000_READ_REG(hw, E1000_RCTL);
+				rctl &= ~E1000_RCTL_SBP;
+				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+			}
+		} else {
+			/*
+			 * If TBI compatibility is was previously off,
+			 * turn it on. For compatibility with a TBI link
+			 * partner, we will store bad packets. Some
+			 * frames have an additional byte on the end and
+			 * will look like CRC errors to to the hardware.
+			 */
+			if (!e1000_tbi_sbp_enabled_82543(hw)) {
+				e1000_set_tbi_sbp_82543(hw, TRUE);
+				rctl = E1000_READ_REG(hw, E1000_RCTL);
+				rctl |= E1000_RCTL_SBP;
+				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+			}
+		}
+	}
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_check_for_fiber_link_82543 - Check for link (Fiber)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware.  If link is not up and we have
+ * a signal, then we need to force link up.
+ */
+static s32
+e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw, ctrl, status;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_check_for_fiber_link_82543");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+	/*
+	 * If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), the cable is plugged in (we have signal),
+	 * and our link partner is not trying to auto-negotiate with us (we
+	 * are receiving idles or data), we need to force link up. We also
+	 * need to give auto-negotiation time to complete, in case the cable
+	 * was just plugged in. The autoneg_failed flag does this.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
+	if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
+	    (!(status & E1000_STATUS_LU)) &&
+	    (!(rxcw & E1000_RXCW_C))) {
+		if (mac->autoneg_failed == 0) {
+			mac->autoneg_failed = 1;
+			ret_val = 0;
+			goto out;
+		}
+		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			goto out;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/*
+		 * If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		mac->serdes_has_link = TRUE;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
+ * @hw: pointer to the HW structure
+ *
+ * For the 82543 silicon, we need to set the MAC to match the settings
+ * of the PHY, even if the PHY is auto-negotiating.
+ */
+static s32
+e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_config_mac_to_phy_82543");
+
+	/* Set the bits to force speed and duplex */
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+	/*
+	 * Set up duplex in the Device Control and Transmit Control
+	 * registers depending on negotiated values.
+	 */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		goto out;
+
+	ctrl &= ~E1000_CTRL_FD;
+	if (phy_data & M88E1000_PSSR_DPLX)
+		ctrl |= E1000_CTRL_FD;
+
+	e1000_config_collision_dist_generic(hw);
+
+	/*
+	 * Set up speed in the Device Control register depending on
+	 * negotiated values.
+	 */
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+		ctrl |= E1000_CTRL_SPD_1000;
+	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+		ctrl |= E1000_CTRL_SPD_100;
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_write_vfta_82543 - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: the 32-bit offset in which to write the value to.
+ * @value: the 32-bit value to write at location offset.
+ *
+ * This writes a 32-bit value to a 32-bit offset in the VLAN filter
+ * table.
+ */
+static void
+e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	u32 temp;
+
+	DEBUGFUNC("e1000_write_vfta_82543");
+
+	if ((hw->mac.type == e1000_82544) && (offset & 1)) {
+		temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+		E1000_WRITE_FLUSH(hw);
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
+		E1000_WRITE_FLUSH(hw);
+	} else {
+		e1000_write_vfta_generic(hw, offset, value);
+	}
+}
+
+/*
+ * e1000_mta_set_82543 - Set multicast filter table address
+ * @hw: pointer to the HW structure
+ * @hash_value: determines the MTA register and bit to set
+ *
+ * The multicast table address is a register array of 32-bit registers.
+ * The hash_value is used to determine what register the bit is in, the
+ * current value is read, the new bit is OR'd in and the new value is
+ * written back into the register.
+ */
+static void
+e1000_mta_set_82543(struct e1000_hw *hw, u32 hash_value)
+{
+	u32 hash_bit, hash_reg, mta, temp;
+
+	DEBUGFUNC("e1000_mta_set_82543");
+
+	hash_reg = (hash_value >> 5);
+
+	/*
+	 * If we are on an 82544 and we are trying to write an odd offset
+	 * in the MTA, save off the previous entry before writing and
+	 * restore the old value after writing.
+	 */
+	if ((hw->mac.type == e1000_82544) && (hash_reg & 1)) {
+		hash_reg &= (hw->mac.mta_reg_count - 1);
+		hash_bit = hash_value & 0x1F;
+		mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
+		mta |= (1 << hash_bit);
+		temp = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg - 1);
+
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
+		E1000_WRITE_FLUSH(hw);
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg - 1, temp);
+		E1000_WRITE_FLUSH(hw);
+	} else {
+		e1000_mta_set_generic(hw, hash_value);
+	}
+}
+
+/*
+ * e1000_led_on_82543 - Turn on SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED on.  This is a function pointer entry point
+ * called by the api module.
+ */
+static s32
+e1000_led_on_82543(struct e1000_hw *hw)
+{
+	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGFUNC("e1000_led_on_82543");
+
+	if (hw->mac.type == e1000_82544 &&
+	    hw->media_type == e1000_media_type_copper) {
+		/* Clear SW-defineable Pin 0 to turn on the LED */
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+	} else {
+		/* Fiber 82544 and all 82543 use this method */
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+	}
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_led_off_82543 - Turn off SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED off.  This is a function pointer entry point
+ * called by the api module.
+ */
+static s32
+e1000_led_off_82543(struct e1000_hw *hw)
+{
+	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGFUNC("e1000_led_off_82543");
+
+	if (hw->mac.type == e1000_82544 &&
+	    hw->media_type == e1000_media_type_copper) {
+		/* Set SW-defineable Pin 0 to turn off the LED */
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+	} else {
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+	}
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ */
+static void
+e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_82543");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	temp = E1000_READ_REG(hw, E1000_PRC64);
+	temp = E1000_READ_REG(hw, E1000_PRC127);
+	temp = E1000_READ_REG(hw, E1000_PRC255);
+	temp = E1000_READ_REG(hw, E1000_PRC511);
+	temp = E1000_READ_REG(hw, E1000_PRC1023);
+	temp = E1000_READ_REG(hw, E1000_PRC1522);
+	temp = E1000_READ_REG(hw, E1000_PTC64);
+	temp = E1000_READ_REG(hw, E1000_PTC127);
+	temp = E1000_READ_REG(hw, E1000_PTC255);
+	temp = E1000_READ_REG(hw, E1000_PTC511);
+	temp = E1000_READ_REG(hw, E1000_PTC1023);
+	temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+	temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+	temp = E1000_READ_REG(hw, E1000_RXERRC);
+	temp = E1000_READ_REG(hw, E1000_TNCRS);
+	temp = E1000_READ_REG(hw, E1000_CEXTERR);
+	temp = E1000_READ_REG(hw, E1000_TSCTC);
+	temp = E1000_READ_REG(hw, E1000_TSCTFC);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_82543.h	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,53 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#ifndef _E1000_82543_H_
+#define	_E1000_82543_H_
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define	PHY_PREAMBLE		0xFFFFFFFF
+#define	PHY_PREAMBLE_SIZE	32
+#define	PHY_SOF			0x1
+#define	PHY_OP_READ		0x2
+#define	PHY_OP_WRITE		0x1
+#define	PHY_TURNAROUND		0x2
+
+#define	TBI_COMPAT_ENABLED	0x1	/* Global "knob" for the workaround */
+/* If TBI_COMPAT_ENABLED, then this is the current state (on/off) */
+#define	TBI_SBP_ENABLED		0x2
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif	/* _E1000_82543_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_82571.c	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,1417 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+/*
+ * e1000_82571
+ * e1000_82572
+ * e1000_82573
+ */
+
+#include "e1000_api.h"
+#include "e1000_82571.h"
+
+void e1000_init_function_pointers_82571(struct e1000_hw *hw);
+
+static s32 e1000_init_phy_params_82571(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_82571(struct e1000_hw *hw);
+static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw);
+static void e1000_release_nvm_82571(struct e1000_hw *hw);
+static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset,
+    u16 words, u16 *data);
+static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw);
+static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw);
+static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw);
+static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw,
+    boolean_t active);
+static s32 e1000_reset_hw_82571(struct e1000_hw *hw);
+static s32 e1000_init_hw_82571(struct e1000_hw *hw);
+static void e1000_clear_vfta_82571(struct e1000_hw *hw);
+static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw,
+    u8 *mc_addr_list, u32 mc_addr_count,
+    u32 rar_used_count, u32 rar_count);
+static s32 e1000_setup_link_82571(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
+static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
+static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data);
+static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
+static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw);
+static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
+static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
+static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
+static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+    u16 words, u16 *data);
+
+struct e1000_dev_spec_82571 {
+	boolean_t laa_is_present;
+};
+
+/*
+ * e1000_init_phy_params_82571 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_phy_params_82571(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_phy_params_82571");
+
+	if (hw->media_type != e1000_media_type_copper) {
+		phy->type = e1000_phy_none;
+		goto out;
+	}
+
+	phy->addr = 1;
+	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us = 100;
+
+	func->acquire_phy = e1000_get_hw_semaphore_82571;
+	func->check_polarity = e1000_check_polarity_igp;
+	func->check_reset_block = e1000_check_reset_block_generic;
+	func->release_phy = e1000_put_hw_semaphore_82571;
+	func->reset_phy = e1000_phy_hw_reset_generic;
+	func->set_d0_lplu_state = e1000_set_d0_lplu_state_82571;
+	func->set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		phy->type = e1000_phy_igp_2;
+		func->get_cfg_done = e1000_get_cfg_done_82571;
+		func->get_phy_info = e1000_get_phy_info_igp;
+		func->force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+		func->get_cable_length = e1000_get_cable_length_igp_2;
+		func->read_phy_reg = e1000_read_phy_reg_igp;
+		func->write_phy_reg = e1000_write_phy_reg_igp;
+		break;
+	case e1000_82573:
+		phy->type = e1000_phy_m88;
+		func->get_cfg_done = e1000_get_cfg_done_generic;
+		func->get_phy_info = e1000_get_phy_info_m88;
+		func->commit_phy = e1000_phy_sw_reset_generic;
+		func->force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+		func->get_cable_length = e1000_get_cable_length_m88;
+		func->read_phy_reg = e1000_read_phy_reg_m88;
+		func->write_phy_reg = e1000_write_phy_reg_m88;
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+	/* This can only be done after all function pointers are setup. */
+	ret_val = e1000_get_phy_id_82571(hw);
+
+	/* Verify phy id */
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		if (phy->id != IGP01E1000_I_PHY_ID) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+		break;
+	case e1000_82573:
+		if (phy->id != M88E1111_I_PHY_ID) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_nvm_params_82571 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_nvm_params_82571(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_functions *func = &hw->func;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	u16 size;
+
+	DEBUGFUNC("e1000_init_nvm_params_82571");
+
+	nvm->opcode_bits = 8;
+	nvm->delay_usec = 1;
+	switch (nvm->override) {
+	case e1000_nvm_override_spi_large:
+		nvm->page_size = 32;
+		nvm->address_bits = 16;
+		break;
+	case e1000_nvm_override_spi_small:
+		nvm->page_size = 8;
+		nvm->address_bits = 8;
+		break;
+	default:
+		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+		break;
+	}
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+		if (((eecd >> 15) & 0x3) == 0x3) {
+			nvm->type = e1000_nvm_flash_hw;
+			nvm->word_size = 2048;
+			/*
+			 * Autonomous Flash update bit must be cleared due
+			 * to Flash update issue.
+			 */
+			eecd &= ~E1000_EECD_AUPDEN;
+			E1000_WRITE_REG(hw, E1000_EECD, eecd);
+			break;
+		}
+		/* Fall Through */
+	default:
+		nvm->type = e1000_nvm_eeprom_spi;
+		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+		    E1000_EECD_SIZE_EX_SHIFT);
+		/*
+		 * Added to a constant, "size" becomes the left-shift value
+		 * for setting word_size.
+		 */
+		size += NVM_WORD_SIZE_BASE_SHIFT;
+		nvm->word_size = 1 << size;
+		break;
+	}
+
+	/* Function Pointers */
+	func->acquire_nvm = e1000_acquire_nvm_82571;
+	func->read_nvm = (hw->mac.type == e1000_82573)
+	    ? e1000_read_nvm_eerd
+	    : e1000_read_nvm_spi;
+	func->release_nvm = e1000_release_nvm_82571;
+	func->update_nvm = e1000_update_nvm_checksum_82571;
+	func->validate_nvm = e1000_validate_nvm_checksum_82571;
+	func->valid_led_default = e1000_valid_led_default_82571;
+	func->write_nvm = e1000_write_nvm_82571;
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_init_mac_params_82571 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_mac_params_82571(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_mac_params_82571");
+
+	/* Set media type */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82571EB_FIBER:
+	case E1000_DEV_ID_82572EI_FIBER:
+	case E1000_DEV_ID_82571EB_QUAD_FIBER:
+		hw->media_type = e1000_media_type_fiber;
+		break;
+	case E1000_DEV_ID_82571EB_SERDES:
+	case E1000_DEV_ID_82571EB_SERDES_DUAL:
+	case E1000_DEV_ID_82571EB_SERDES_QUAD:
+	case E1000_DEV_ID_82572EI_SERDES:
+		hw->media_type = e1000_media_type_internal_serdes;
+		break;
+	default:
+		hw->media_type = e1000_media_type_copper;
+		break;
+	}
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+	/* Set if part includes ASF firmware */
+	mac->asf_firmware_present = TRUE;
+	/* Set if manageability features are enabled. */
+	mac->arc_subsystem_valid =
+	    (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
+	    ? TRUE : FALSE;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	func->get_bus_info = e1000_get_bus_info_pcie_generic;
+	/* reset */
+	func->reset_hw = e1000_reset_hw_82571;
+	/* hw initialization */
+	func->init_hw = e1000_init_hw_82571;
+	/* link setup */
+	func->setup_link = e1000_setup_link_82571;
+	/* physical interface link setup */
+	func->setup_physical_interface =
+	    (hw->media_type == e1000_media_type_copper)
+	    ? e1000_setup_copper_link_82571
+	    : e1000_setup_fiber_serdes_link_82571;
+	/* check for link */
+	switch (hw->media_type) {
+	case e1000_media_type_copper:
+		func->check_for_link = e1000_check_for_copper_link_generic;
+		break;
+	case e1000_media_type_fiber:
+		func->check_for_link = e1000_check_for_fiber_link_generic;
+		break;
+	case e1000_media_type_internal_serdes:
+		func->check_for_link = e1000_check_for_serdes_link_generic;
+		break;
+	default:
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+	/* check management mode */
+	func->check_mng_mode = e1000_check_mng_mode_generic;
+	/* multicast address update */
+	func->mc_addr_list_update = e1000_mc_addr_list_update_82571;
+	/* writing VFTA */
+	func->write_vfta = e1000_write_vfta_generic;
+	/* clearing VFTA */
+	func->clear_vfta = e1000_clear_vfta_82571;
+	/* setting MTA */
+	func->mta_set = e1000_mta_set_generic;
+	/* blink LED */
+	func->blink_led = e1000_blink_led_generic;
+	/* setup LED */
+	func->setup_led = e1000_setup_led_generic;
+	/* cleanup LED */
+	func->cleanup_led = e1000_cleanup_led_generic;
+	/* turn on/off LED */
+	func->led_on = e1000_led_on_generic;
+	func->led_off = e1000_led_off_generic;
+	/* remove device */
+	func->remove_device = e1000_remove_device_generic;
+	/* clear hardware counters */
+	func->clear_hw_cntrs = e1000_clear_hw_cntrs_82571;
+	/* link info */
+	func->get_link_up_info =
+	    (hw->media_type == e1000_media_type_copper)
+	    ? e1000_get_speed_and_duplex_copper_generic
+	    : e1000_get_speed_and_duplex_fiber_serdes_generic;
+
+	hw->dev_spec_size = sizeof (struct e1000_dev_spec_82571);
+
+	/* Device-specific structure allocation */
+	ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_function_pointers_82571 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * The only function explicitly called by the api module to initialize
+ * all function pointers and parameters.
+ */
+void
+e1000_init_function_pointers_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82571");
+
+	hw->func.init_mac_params = e1000_init_mac_params_82571;
+	hw->func.init_nvm_params = e1000_init_nvm_params_82571;
+	hw->func.init_phy_params = e1000_init_phy_params_82571;
+}
+
+/*
+ * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY registers and stores the PHY ID and possibly the PHY
+ * revision in the hardware structure.
+ */
+static s32
+e1000_get_phy_id_82571(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_get_phy_id_82571");
+
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		/*
+		 * The 82571 firmware may still be configuring the PHY.
+		 * In this case, we cannot access the PHY until the
+		 * configuration is done.  So we explicitly set the
+		 * PHY ID.
+		 */
+		phy->id = IGP01E1000_I_PHY_ID;
+		break;
+	case e1000_82573:
+		ret_val = e1000_get_phy_id(hw);
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		break;
+	}
+
+	return (ret_val);
+}
+
+/*
+ * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the HW semaphore to access the PHY or NVM
+ */
+s32
+e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
+{
+	u32 swsm;
+	s32 ret_val = E1000_SUCCESS;
+	s32 timeout = hw->nvm.word_size + 1;
+	s32 i = 0;
+
+	DEBUGFUNC("e1000_get_hw_semaphore_82571");
+
+	/* Get the FW semaphore. */
+	for (i = 0; i < timeout; i++) {
+		swsm = E1000_READ_REG(hw, E1000_SWSM);
+		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+		/* Semaphore acquired if bit latched */
+		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+			break;
+
+		usec_delay(50);
+	}
+
+	if (i == timeout) {
+		/* Release semaphores */
+		e1000_put_hw_semaphore_generic(hw);
+		DEBUGOUT("Driver can't access the NVM\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_put_hw_semaphore_82571 - Release hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Release hardware semaphore used to access the PHY or NVM
+ */
+void
+e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
+{
+	u32 swsm;
+
+	DEBUGFUNC("e1000_put_hw_semaphore_82571");
+
+	swsm = E1000_READ_REG(hw, E1000_SWSM);
+
+	swsm &= ~E1000_SWSM_SWESMBI;
+
+	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
+}
+
+/*
+ * e1000_acquire_nvm_82571 - Request for access to the EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * To gain access to the EEPROM, first we must obtain a hardware semaphore.
+ * Then for non-82573 hardware, set the EEPROM access request bit and wait
+ * for EEPROM access grant bit.  If the access grant bit is not set, release
+ * hardware semaphore.
+ */
+static s32
+e1000_acquire_nvm_82571(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_acquire_nvm_82571");
+
+	ret_val = e1000_get_hw_semaphore_82571(hw);
+	if (ret_val)
+		goto out;
+
+	if (hw->mac.type != e1000_82573)
+		ret_val = e1000_acquire_nvm_generic(hw);
+
+	if (ret_val)
+		e1000_put_hw_semaphore_82571(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_release_nvm_82571 - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ */
+static void
+e1000_release_nvm_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_release_nvm_82571");
+
+	e1000_release_nvm_generic(hw);
+	e1000_put_hw_semaphore_82571(hw);
+}
+
+/*
+ * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function, the
+ * EEPROM will most likley contain an invalid checksum.
+ */
+static s32
+e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_write_nvm_82571");
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
+		break;
+	case e1000_82571:
+	case e1000_82572:
+		ret_val = e1000_write_nvm_spi(hw, offset, words, data);
+		break;
+	default:
+		ret_val = -E1000_ERR_NVM;
+		break;
+	}
+
+	return (ret_val);
+}
+
+/*
+ * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ * up to the checksum.  Then calculates the EEPROM checksum and writes the
+ * value to the EEPROM.
+ */
+static s32
+e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
+{
+	u32 eecd;
+	s32 ret_val;
+	u16 i;
+
+	DEBUGFUNC("e1000_update_nvm_checksum_82571");
+
+	ret_val = e1000_update_nvm_checksum_generic(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * If our nvm is an EEPROM, then we're done
+	 * otherwise, commit the checksum to the flash NVM.
+	 */
+	if (hw->nvm.type != e1000_nvm_flash_hw)
+		goto out;
+
+	/* Check for pending operations. */
+	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+		msec_delay(1);
+		if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0)
+			break;
+	}
+
+	if (i == E1000_FLASH_UPDATES) {
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	/* Reset the firmware if using STM opcode. */
+	if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) {
+		/*
+		 * The enabling of and the actual reset must be done
+		 * in two write cycles.
+		 */
+		E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE);
+		E1000_WRITE_FLUSH(hw);
+		E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET);
+	}
+
+	/* Commit the write to flash */
+	eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD;
+	E1000_WRITE_REG(hw, E1000_EECD, eecd);
+
+	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+		msec_delay(1);
+		if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0)
+			break;
+	}
+
+	if (i == E1000_FLASH_UPDATES) {
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ */
+static s32
+e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_validate_nvm_checksum_82571");
+
+	if (hw->nvm.type == e1000_nvm_flash_hw)
+		e1000_fix_nvm_checksum_82571(hw);
+
+	return (e1000_validate_nvm_checksum_generic(hw));
+}
+
+/*
+ * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * After checking for invalid values, poll the EEPROM to ensure the previous
+ * command has completed before trying to write the next word.  After write
+ * poll for completion.
+ *
+ * If e1000_update_nvm_checksum is not called after this function, the
+ * EEPROM will most likley contain an invalid checksum.
+ */
+static s32
+e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+    u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i, eewr = 0;
+	s32 ret_val = 0;
+
+	DEBUGFUNC("e1000_write_nvm_eewr_82571");
+
+	/*
+	 * A check for invalid values:  offset too large, too many words,
+	 * and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	for (i = 0; i < words; i++) {
+		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
+		    ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
+		    E1000_NVM_RW_REG_START;
+
+		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+		if (ret_val)
+			break;
+
+		E1000_WRITE_REG(hw, E1000_EEWR, eewr);
+
+		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+		if (ret_val)
+			break;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_get_cfg_done_82571 - Poll for configuration done
+ * @hw: pointer to the HW structure
+ *
+ * Reads the management control register for the config done bit to be set.
+ */
+static s32
+e1000_get_cfg_done_82571(struct e1000_hw *hw)
+{
+	s32 timeout = PHY_CFG_TIMEOUT;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_get_cfg_done_82571");
+
+	while (timeout) {
+		if (E1000_READ_REG(hw, E1000_EEMNGCTL) &
+		    E1000_NVM_CFG_DONE_PORT_0)
+			break;
+		msec_delay(1);
+		timeout--;
+	}
+	if (!timeout) {
+		DEBUGOUT("MNG configuration cycle has not completed.\n");
+		ret_val = -E1000_ERR_RESET;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU D0 state according to the active flag.  When activating LPLU
+ * this function also disables smart speed and vice versa.  LPLU will not be
+ * activated unless the device autonegotiation advertisement meets standards
+ * of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
+ * pointer entry point only called by PHY setup routines.
+ */
+static s32
+e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, boolean_t active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d0_lplu_state_82571");
+
+	ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+	if (ret_val)
+		goto out;
+
+	if (active) {
+		data |= IGP02E1000_PM_D0_LPLU;
+		ret_val = e1000_write_phy_reg(hw,
+		    IGP02E1000_PHY_POWER_MGMT,
+		    data);
+		if (ret_val)
+			goto out;
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1000_read_phy_reg(hw,
+		    IGP01E1000_PHY_PORT_CONFIG,
+		    &data);
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1000_write_phy_reg(hw,
+		    IGP01E1000_PHY_PORT_CONFIG,
+		    data);
+		if (ret_val)
+			goto out;
+	} else {
+		data &= ~IGP02E1000_PM_D0_LPLU;
+		ret_val = e1000_write_phy_reg(hw,
+		    IGP02E1000_PHY_POWER_MGMT,
+		    data);
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1000_read_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    &data);
+			if (ret_val)
+				goto out;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    data);
+			if (ret_val)
+				goto out;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1000_read_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    data);
+			if (ret_val)
+				goto out;
+		}
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_reset_hw_82571 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.  This is a
+ * function pointer entry point called by the api module.
+ */
+static s32
+e1000_reset_hw_82571(struct e1000_hw *hw)
+{
+	u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
+	s32 ret_val;
+	u16 i = 0;
+
+	DEBUGFUNC("e1000_reset_hw_82571");
+
+	/*
+	 * Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000_disable_pcie_master_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("PCI-E Master disable polling has failed.\n");
+	}
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	msec_delay(10);
+
+	/*
+	 * Must acquire the MDIO ownership before MAC reset.
+	 * Ownership defaults to firmware after a reset.
+	 */
+	if (hw->mac.type == e1000_82573) {
+		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+		do {
+			E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+			extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+
+			if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
+				break;
+
+			extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+			msec_delay(2);
+			i++;
+		} while (i < MDIO_OWNERSHIP_TIMEOUT);
+	}
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGOUT("Issuing a global reset to MAC\n");
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+	if (hw->nvm.type == e1000_nvm_flash_hw) {
+		usec_delay(10);
+		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	ret_val = e1000_get_auto_rd_done_generic(hw);
+	if (ret_val)
+		/* We don't want to continue accessing MAC registers. */
+		goto out;
+
+	/*
+	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
+	 * Need to wait for Phy configuration completion before accessing
+	 * NVM and Phy.
+	 */
+	if (hw->mac.type == e1000_82573)
+		msec_delay(25);
+
+	/* Clear any pending interrupt events. */
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	icr = E1000_READ_REG(hw, E1000_ICR);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_hw_82571 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ */
+static s32
+e1000_init_hw_82571(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 reg_data;
+	s32 ret_val;
+	u16 i, rar_count = mac->rar_entry_count;
+
+	DEBUGFUNC("e1000_init_hw_82571");
+
+	e1000_initialize_hw_bits_82571(hw);
+
+	/* Initialize identification LED */
+	ret_val = e1000_id_led_init_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error initializing identification LED\n");
+		goto out;
+	}
+
+	/* Disabling VLAN filtering */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	e1000_clear_vfta(hw);
+
+	/* Setup the receive address. */
+	/*
+	 * If, however, a locally administered address was assigned to the
+	 * 82571, we must reserve a RAR for it to work around an issue where
+	 * resetting one port will reload the MAC on the other port.
+	 */
+	if (e1000_get_laa_state_82571(hw))
+		rar_count--;
+	e1000_init_rx_addrs_generic(hw, rar_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link(hw);
+
+	/* Set the transmit descriptor write-back policy */
+	reg_data = E1000_READ_REG(hw, E1000_TXDCTL);
+	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+	    E1000_TXDCTL_FULL_TX_DESC_WB |
+	    E1000_TXDCTL_COUNT_DESC;
+	E1000_WRITE_REG(hw, E1000_TXDCTL, reg_data);
+
+	/* ...for both queues. */
+	if (mac->type != e1000_82573) {
+		reg_data = E1000_READ_REG(hw, E1000_TXDCTL1);
+		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+		    E1000_TXDCTL_FULL_TX_DESC_WB |
+		    E1000_TXDCTL_COUNT_DESC;
+		E1000_WRITE_REG(hw, E1000_TXDCTL1, reg_data);
+	} else {
+		e1000_enable_tx_pkt_filtering(hw);
+		reg_data = E1000_READ_REG(hw, E1000_GCR);
+		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
+		E1000_WRITE_REG(hw, E1000_GCR, reg_data);
+	}
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82571(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
+ * @hw: pointer to the HW structure
+ *
+ * Initializes required hardware-dependent bits needed for normal operation.
+ */
+static void
+e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	DEBUGFUNC("e1000_initialize_hw_bits_82571");
+
+	if (hw->mac.disable_hw_init_bits)
+		return;
+
+	/* Transmit Descriptor Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL);
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL, reg);
+
+	/* Transmit Descriptor Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL1);
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL1, reg);
+
+	/* Transmit Arbitration Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TARC0);
+	reg &= ~(0xF << 27);	/* 30:27 */
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
+		break;
+	default:
+		break;
+	}
+	E1000_WRITE_REG(hw, E1000_TARC0, reg);
+
+	/* Transmit Arbitration Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TARC1);
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		reg &= ~((1 << 29) | (1 << 30));
+		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
+		if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+			reg &= ~(1 << 28);
+		else
+			reg |= (1 << 28);
+		E1000_WRITE_REG(hw, E1000_TARC1, reg);
+		break;
+	default:
+		break;
+	}
+
+	/* Device Control */
+	if (hw->mac.type == e1000_82573) {
+		reg = E1000_READ_REG(hw, E1000_CTRL);
+		reg &= ~(1 << 29);
+		E1000_WRITE_REG(hw, E1000_CTRL, reg);
+	}
+
+	/* Extended Device Control */
+	if (hw->mac.type == e1000_82573) {
+		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		reg &= ~(1 << 23);
+		reg |= (1 << 22);
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+	}
+}
+
+/*
+ * e1000_clear_vfta_82571 - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * Clears the register array which contains the VLAN filter table by
+ * setting all the values to 0.
+ */
+static void
+e1000_clear_vfta_82571(struct e1000_hw *hw)
+{
+	u32 offset;
+	u32 vfta_value = 0;
+	u32 vfta_offset = 0;
+	u32 vfta_bit_in_reg = 0;
+
+	DEBUGFUNC("e1000_clear_vfta_82571");
+
+	if (hw->mac.type == e1000_82573) {
+		if (hw->mng_cookie.vlan_id != 0) {
+			/*
+			 * The VFTA is a 4096b bit-field, each identifying
+			 * a single VLAN ID.  The following operations
+			 * determine which 32b entry (i.e. offset) into the
+			 * array we want to set the VLAN ID (i.e. bit) of
+			 * the manageability unit.
+			 */
+			vfta_offset = (hw->mng_cookie.vlan_id >>
+			    E1000_VFTA_ENTRY_SHIFT) &
+			    E1000_VFTA_ENTRY_MASK;
+			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
+			    E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
+		}
+	}
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		/*
+		 * If the offset we want to clear is the same offset of the
+		 * manageability VLAN ID, then clear all bits except that of
+		 * the manageability unit.
+		 */
+		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
+		E1000_WRITE_FLUSH(hw);
+	}
+}
+
+/*
+ * e1000_mc_addr_list_update_82571 - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ * @rar_used_count: the first RAR register free to program
+ * @rar_count: total number of supported Receive Address Registers
+ *
+ * Updates the Receive Address Registers and Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ * The parameter rar_count will usually be hw->mac.rar_entry_count
+ * unless there are workarounds that change this.
+ */
+static void
+e1000_mc_addr_list_update_82571(struct e1000_hw *hw,
+    u8 *mc_addr_list, u32 mc_addr_count,
+    u32 rar_used_count, u32 rar_count)
+{
+	DEBUGFUNC("e1000_mc_addr_list_update_82571");
+
+	if (e1000_get_laa_state_82571(hw))
+		rar_count--;
+
+	e1000_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count,
+	    rar_used_count, rar_count);
+}
+
+/*
+ * e1000_setup_link_82571 - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control.  Calls the appropriate media-specific link configuration
+ * function.  Assuming the adapter has a valid link partner, a valid link
+ * should be established.  Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ */
+static s32
+e1000_setup_link_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_setup_link_82571");
+
+	/*
+	 * 82573 does not have a word in the NVM to determine
+	 * the default flow control setting, so we explicitly
+	 * set it to full.
+	 */
+	if (hw->mac.type == e1000_82573)
+		hw->mac.fc = e1000_fc_full;
+
+	return (e1000_setup_link_generic(hw));
+}
+
+/*
+ * e1000_setup_copper_link_82571 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Configures the link for auto-neg or forced speed and duplex.  Then we check
+ * for link, once link is established calls to configure collision distance
+ * and flow control are called.
+ */
+static s32
+e1000_setup_copper_link_82571(struct e1000_hw *hw)
+{
+	u32 ctrl, led_ctrl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_setup_copper_link_82571");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	switch (hw->phy.type) {
+	case e1000_phy_m88:
+		ret_val = e1000_copper_link_setup_m88(hw);
+		break;
+	case e1000_phy_igp_2:
+		ret_val = e1000_copper_link_setup_igp(hw);
+		/* Setup activity LED */
+		led_ctrl = E1000_READ_REG(hw, E1000_LEDCTL);
+		led_ctrl &= IGP_ACTIVITY_LED_MASK;
+		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		E1000_WRITE_REG(hw, E1000_LEDCTL, led_ctrl);
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		break;
+	}
+
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
+ * @hw: pointer to the HW structure
+ *
+ * Configures collision distance and flow control for fiber and serdes links.
+ * Upon successful setup, poll for link.
+ */
+static s32
+e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_setup_fiber_serdes_link_82571");
+
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		/*
+		 * If SerDes loopback mode is entered, there is no form
+		 * of reset to take the adapter out of that mode.  So we
+		 * have to explicitly take the adapter out of loopback
+		 * mode.  This prevents drivers from twidling their thumbs
+		 * if another tool failed to take it out of loopback mode.
+		 */
+		E1000_WRITE_REG(hw, E1000_SCTL,
+		    E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+		break;
+	default:
+		break;
+	}
+
+	return (e1000_setup_fiber_serdes_link_generic(hw));
+}
+
+/*
+ * e1000_valid_led_default_82571 - Verify a valid default LED config
+ * @hw: pointer to the HW structure
+ * @data: pointer to the NVM (EEPROM)
+ *
+ * Read the EEPROM for the current default LED configuration.  If the
+ * LED configuration is not valid, set to a valid LED configuration.
+ */
+static s32
+e1000_valid_led_default_82571(struct e1000_hw *hw, u16 * data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_valid_led_default_82571");
+
+	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+
+	if (hw->mac.type == e1000_82573 &&
+	    *data == ID_LED_RESERVED_F746)
+		*data = ID_LED_DEFAULT_82573;
+	else if (*data == ID_LED_RESERVED_0000 ||
+	    *data == ID_LED_RESERVED_FFFF)
+		*data = ID_LED_DEFAULT;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_get_laa_state_82571 - Get locally administered address state
+ * @hw: pointer to the HW structure
+ *
+ * Retrieve and return the current locally administed address state.
+ */
+boolean_t
+e1000_get_laa_state_82571(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82571 *dev_spec;
+	boolean_t state = FALSE;
+
+	DEBUGFUNC("e1000_get_laa_state_82571");
+
+	if (hw->mac.type != e1000_82571)
+		goto out;
+
+	dev_spec = (struct e1000_dev_spec_82571 *)hw->dev_spec;
+
+	state = dev_spec->laa_is_present;
+
+out:
+	return (state);
+}
+
+/*
+ * e1000_set_laa_state_82571 - Set locally administered address state
+ * @hw: pointer to the HW structure
+ * @state: enable/disable locally administered address
+ *
+ * Enable/Disable the current locally administed address state.
+ */
+void
+e1000_set_laa_state_82571(struct e1000_hw *hw, boolean_t state)
+{
+	struct e1000_dev_spec_82571 *dev_spec;
+
+	DEBUGFUNC("e1000_set_laa_state_82571");
+
+	if (hw->mac.type != e1000_82571)
+		return;
+
+	dev_spec = (struct e1000_dev_spec_82571 *)hw->dev_spec;
+
+	dev_spec->laa_is_present = state;
+
+	/* If workaround is activated... */
+	if (state) {
+		/*
+		 * Hold a copy of the LAA in RAR[14] This is done so that
+		 * between the time RAR[0] gets clobbered and the time it
+		 * gets fixed, the actual LAA is in one of the RARs and no
+		 * incoming packets directed to this port are dropped.
+		 * Eventually the LAA will be in RAR[0] and RAR[14].
+		 */
+		e1000_rar_set_generic(hw, hw->mac.addr,
+		    hw->mac.rar_entry_count - 1);
+	}
+}
+
+/*
+ * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Verifies that the EEPROM has completed the update.  After updating the
+ * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
+ * the checksum fix is not implemented, we need to set the bit and update
+ * the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
+ * we need to return bad checksum.
+ */
+static s32
+e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	s32 ret_val = E1000_SUCCESS;
+	u16 data;
+
+	DEBUGFUNC("e1000_fix_nvm_checksum_82571");
+
+	if (nvm->type != e1000_nvm_flash_hw)
+		goto out;
+
+	/*
+	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
+	 * 10h-12h.  Checksum may need to be fixed.
+	 */
+	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
+	if (ret_val)
+		goto out;
+
+	if (!(data & 0x10)) {
+		/*
+		 * Read 0x23 and check bit 15.  This bit is a 1
+		 * when the checksum has already been fixed.  If
+		 * the checksum is still wrong and this bit is a
+		 * 1, we need to return bad checksum. Otherwise,
+		 * we need to set this bit to a 1 and update the
+		 * checksum.
+		 */
+		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
+		if (ret_val)
+			goto out;
+
+		if (!(data & 0x8000)) {
+			data |= 0x8000;
+			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
+			if (ret_val)
+				goto out;
+			ret_val = e1000_update_nvm_checksum(hw);
+		}
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ */
+static void
+e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_82571");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+	temp = E1000_READ_REG(hw, E1000_PRC64);
+	temp = E1000_READ_REG(hw, E1000_PRC127);
+	temp = E1000_READ_REG(hw, E1000_PRC255);
+	temp = E1000_READ_REG(hw, E1000_PRC511);
+	temp = E1000_READ_REG(hw, E1000_PRC1023);
+	temp = E1000_READ_REG(hw, E1000_PRC1522);
+	temp = E1000_READ_REG(hw, E1000_PTC64);
+	temp = E1000_READ_REG(hw, E1000_PTC127);
+	temp = E1000_READ_REG(hw, E1000_PTC255);
+	temp = E1000_READ_REG(hw, E1000_PTC511);
+	temp = E1000_READ_REG(hw, E1000_PTC1023);
+	temp = E1000_READ_REG(hw, E1000_PTC1522);
+
+	temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+	temp = E1000_READ_REG(hw, E1000_RXERRC);
+	temp = E1000_READ_REG(hw, E1000_TNCRS);
+	temp = E1000_READ_REG(hw, E1000_CEXTERR);
+	temp = E1000_READ_REG(hw, E1000_TSCTC);
+	temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+	temp = E1000_READ_REG(hw, E1000_MGTPRC);
+	temp = E1000_READ_REG(hw, E1000_MGTPDC);
+	temp = E1000_READ_REG(hw, E1000_MGTPTC);
+
+	temp = E1000_READ_REG(hw, E1000_IAC);
+	temp = E1000_READ_REG(hw, E1000_ICRXOC);
+
+	temp = E1000_READ_REG(hw, E1000_ICRXPTC);
+	temp = E1000_READ_REG(hw, E1000_ICRXATC);
+	temp = E1000_READ_REG(hw, E1000_ICTXPTC);
+	temp = E1000_READ_REG(hw, E1000_ICTXATC);
+	temp = E1000_READ_REG(hw, E1000_ICTXQEC);
+	temp = E1000_READ_REG(hw, E1000_ICTXQMTC);
+	temp = E1000_READ_REG(hw, E1000_ICRXDMTC);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_82571.h	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,50 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#ifndef _E1000_82571_H_
+#define	_E1000_82571_H_
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define	ID_LED_RESERVED_F746	0xF746
+#define	ID_LED_DEFAULT_82573	((ID_LED_DEF1_DEF2 << 12) | \
+				(ID_LED_OFF1_ON2  <<  8) | \
+				(ID_LED_DEF1_DEF2 <<  4) | \
+				(ID_LED_DEF1_DEF2))
+
+#define	E1000_GCR_L1_ACT_WITHOUT_L0S_RX	0x08000000
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif	/* _E1000_82571_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_api.c	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,1194 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#include "e1000_api.h"
+#include "e1000_mac.h"
+#include "e1000_nvm.h"
+#include "e1000_phy.h"
+
+extern void e1000_init_function_pointers_82542(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82543(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82540(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82571(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82541(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_vf(struct e1000_hw *hw);
+
+/*
+ * e1000_init_mac_params - Initialize MAC function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the MAC
+ * set of functions.  Called by drivers or by e1000_setup_init_funcs.
+ */
+s32
+e1000_init_mac_params(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	if (hw->func.init_mac_params) {
+		ret_val = hw->func.init_mac_params(hw);
+		if (ret_val) {
+			DEBUGOUT("MAC Initialization Error\n");
+			goto out;
+		}
+	} else {
+		DEBUGOUT("mac.init_mac_params was NULL\n");
+		ret_val = -E1000_ERR_CONFIG;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_nvm_params - Initialize NVM function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the NVM
+ * set of functions.  Called by drivers or by e1000_setup_init_funcs.
+ */
+s32
+e1000_init_nvm_params(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	if (hw->func.init_nvm_params) {
+		ret_val = hw->func.init_nvm_params(hw);
+		if (ret_val) {
+			DEBUGOUT("NVM Initialization Error\n");
+			goto out;
+		}
+	} else {
+		DEBUGOUT("nvm.init_nvm_params was NULL\n");
+		ret_val = -E1000_ERR_CONFIG;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_phy_params - Initialize PHY function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the PHY
+ * set of functions.  Called by drivers or by e1000_setup_init_funcs.
+ */
+s32
+e1000_init_phy_params(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	if (hw->func.init_phy_params) {
+		ret_val = hw->func.init_phy_params(hw);
+		if (ret_val) {
+			DEBUGOUT("PHY Initialization Error\n");
+			goto out;
+		}
+	} else {
+		DEBUGOUT("phy.init_phy_params was NULL\n");
+		ret_val = -E1000_ERR_CONFIG;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_set_mac_type - Sets MAC type
+ * @hw: pointer to the HW structure
+ *
+ * This function sets the mac type of the adapter based on the
+ * device ID stored in the hw structure.
+ * MUST BE FIRST FUNCTION CALLED (explicitly or through
+ * e1000_setup_init_funcs()).
+ */
+s32
+e1000_set_mac_type(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_set_mac_type");
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82542:
+		mac->type = e1000_82542;
+		break;
+	case E1000_DEV_ID_82543GC_FIBER:
+	case E1000_DEV_ID_82543GC_COPPER:
+		mac->type = e1000_82543;
+		break;
+	case E1000_DEV_ID_82544EI_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82544GC_COPPER:
+	case E1000_DEV_ID_82544GC_LOM:
+		mac->type = e1000_82544;
+		break;
+	case E1000_DEV_ID_82540EM:
+	case E1000_DEV_ID_82540EM_LOM:
+	case E1000_DEV_ID_82540EP:
+	case E1000_DEV_ID_82540EP_LOM:
+	case E1000_DEV_ID_82540EP_LP:
+		mac->type = e1000_82540;
+		break;
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+		mac->type = e1000_82545;
+		break;
+	case E1000_DEV_ID_82545GM_COPPER:
+	case E1000_DEV_ID_82545GM_FIBER:
+	case E1000_DEV_ID_82545GM_SERDES:
+		mac->type = e1000_82545_rev_3;
+		break;
+	case E1000_DEV_ID_82546EB_COPPER:
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+		mac->type = e1000_82546;
+		break;
+	case E1000_DEV_ID_82546GB_COPPER:
+	case E1000_DEV_ID_82546GB_FIBER:
+	case E1000_DEV_ID_82546GB_SERDES:
+	case E1000_DEV_ID_82546GB_PCIE:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		mac->type = e1000_82546_rev_3;
+		break;
+	case E1000_DEV_ID_82541EI:
+	case E1000_DEV_ID_82541EI_MOBILE:
+	case E1000_DEV_ID_82541ER_LOM:
+		mac->type = e1000_82541;
+		break;
+	case E1000_DEV_ID_82541ER:
+	case E1000_DEV_ID_82541GI:
+	case E1000_DEV_ID_82541GI_LF:
+	case E1000_DEV_ID_82541GI_MOBILE:
+		mac->type = e1000_82541_rev_2;
+		break;
+	case E1000_DEV_ID_82547EI:
+	case E1000_DEV_ID_82547EI_MOBILE:
+		mac->type = e1000_82547;
+		break;
+	case E1000_DEV_ID_82547GI:
+		mac->type = e1000_82547_rev_2;
+		break;
+	case E1000_DEV_ID_82571EB_COPPER:
+	case E1000_DEV_ID_82571EB_FIBER:
+	case E1000_DEV_ID_82571EB_SERDES:
+	case E1000_DEV_ID_82571EB_SERDES_DUAL:
+	case E1000_DEV_ID_82571EB_SERDES_QUAD:
+	case E1000_DEV_ID_82571EB_QUAD_COPPER:
+	case E1000_DEV_ID_82571PT_QUAD_COPPER:
+	case E1000_DEV_ID_82571EB_QUAD_FIBER:
+	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
+		mac->type = e1000_82571;
+		break;
+	case E1000_DEV_ID_82572EI:
+	case E1000_DEV_ID_82572EI_COPPER:
+	case E1000_DEV_ID_82572EI_FIBER:
+	case E1000_DEV_ID_82572EI_SERDES:
+		mac->type = e1000_82572;
+		break;
+	case E1000_DEV_ID_82573E:
+	case E1000_DEV_ID_82573E_IAMT:
+	case E1000_DEV_ID_82573L:
+		mac->type = e1000_82573;
+		break;
+	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
+	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
+	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
+		mac->type = e1000_80003es2lan;
+		break;
+	case E1000_DEV_ID_ICH8_IFE:
+	case E1000_DEV_ID_ICH8_IFE_GT:
+	case E1000_DEV_ID_ICH8_IFE_G:
+	case E1000_DEV_ID_ICH8_IGP_M:
+	case E1000_DEV_ID_ICH8_IGP_M_AMT:
+	case E1000_DEV_ID_ICH8_IGP_AMT:
+	case E1000_DEV_ID_ICH8_IGP_C:
+		mac->type = e1000_ich8lan;
+		break;
+	case E1000_DEV_ID_ICH9_IFE:
+	case E1000_DEV_ID_ICH9_IFE_GT:
+	case E1000_DEV_ID_ICH9_IFE_G:
+	case E1000_DEV_ID_ICH9_IGP_AMT:
+	case E1000_DEV_ID_ICH9_IGP_C:
+		mac->type = e1000_ich9lan;
+		break;
+	default:
+		/* Should never have loaded on this device */
+		ret_val = -E1000_ERR_MAC_INIT;
+		break;
+	}
+
+	return (ret_val);
+}
+
+/*
+ * e1000_setup_init_funcs - Initializes function pointers
+ * @hw: pointer to the HW structure
+ * @init_device: TRUE will initialize the rest of the function pointers
+ *                getting the device ready for use.  FALSE will only set
+ *                MAC type and the function pointers for the other init
+ *                functions.  Passing FALSE will not generate any hardware
+ *                reads or writes.
+ *
+ * This function must be called by a driver in order to use the rest
+ * of the 'shared' code files. Called by drivers only.
+ */
+s32
+e1000_setup_init_funcs(struct e1000_hw *hw, boolean_t init_device)
+{
+	s32 ret_val;
+
+	/* Can't do much good without knowing the MAC type. */
+	ret_val = e1000_set_mac_type(hw);
+	if (ret_val) {
+		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
+		goto out;
+	}
+	if (!hw->hw_addr) {
+		DEBUGOUT("ERROR: Registers not mapped\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/*
+	 * Init some generic function pointers that are currently all pointing
+	 * to generic implementations. We do this first allowing a driver
+	 * module to override it afterwards.
+	 */
+	hw->func.config_collision_dist = e1000_config_collision_dist_generic;
+	hw->func.rar_set = e1000_rar_set_generic;
+	hw->func.validate_mdi_setting = e1000_validate_mdi_setting_generic;
+	hw->func.mng_host_if_write = e1000_mng_host_if_write_generic;
+	hw->func.mng_write_cmd_header = e1000_mng_write_cmd_header_generic;
+	hw->func.mng_enable_host_if = e1000_mng_enable_host_if_generic;
+	hw->func.wait_autoneg = e1000_wait_autoneg_generic;
+	hw->func.reload_nvm = e1000_reload_nvm_generic;
+
+	/*
+	 * Set up the init function pointers. These are functions within the
+	 * adapter family file that sets up function pointers for the rest of
+	 * the functions in that family.
+	 */
+	switch (hw->mac.type) {
+	case e1000_82542:
+		e1000_init_function_pointers_82542(hw);
+		break;
+	case e1000_82543:
+	case e1000_82544:
+		e1000_init_function_pointers_82543(hw);
+		break;
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		e1000_init_function_pointers_82540(hw);
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		e1000_init_function_pointers_82541(hw);
+		break;
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_82573:
+		e1000_init_function_pointers_82571(hw);
+		break;
+	case e1000_80003es2lan:
+		e1000_init_function_pointers_80003es2lan(hw);
+		break;
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+		e1000_init_function_pointers_ich8lan(hw);
+		break;
+	default:
+		DEBUGOUT("Hardware not supported\n");
+		ret_val = -E1000_ERR_CONFIG;
+		break;
+	}
+
+	/*
+	 * Initialize the rest of the function pointers. These require some
+	 * register reads/writes in some cases.
+	 */
+	if (!(ret_val) && init_device) {
+		ret_val = e1000_init_mac_params(hw);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_init_nvm_params(hw);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_init_phy_params(hw);
+		if (ret_val)
+			goto out;
+
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_remove_device - Free device specific structure
+ * @hw: pointer to the HW structure
+ *
+ * If a device specific structure was allocated, this function will
+ * free it. This is a function pointer entry point called by drivers.
+ */
+void
+e1000_remove_device(struct e1000_hw *hw)
+{
+	if (hw->func.remove_device)
+		hw->func.remove_device(hw);
+}
+
+/*
+ * e1000_get_bus_info - Obtain bus information for adapter
+ * @hw: pointer to the HW structure
+ *
+ * This will obtain information about the HW bus for which the
+ * adaper is attached and stores it in the hw structure. This is a
+ * function pointer entry point called by drivers.
+ */
+s32
+e1000_get_bus_info(struct e1000_hw *hw)
+{
+	if (hw->func.get_bus_info)
+		return (hw->func.get_bus_info(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_clear_vfta - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * This clears the VLAN filter table on the adapter. This is a function
+ * pointer entry point called by drivers.
+ */
+void
+e1000_clear_vfta(struct e1000_hw *hw)
+{
+	if (hw->func.clear_vfta)
+		hw->func.clear_vfta(hw);
+}
+
+/*
+ * e1000_write_vfta - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: the 32-bit offset in which to write the value to.
+ * @value: the 32-bit value to write at location offset.
+ *
+ * This writes a 32-bit value to a 32-bit offset in the VLAN filter
+ * table. This is a function pointer entry point called by drivers.
+ */
+void
+e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	if (hw->func.write_vfta)
+		hw->func.write_vfta(hw, offset, value);
+}
+
+/*
+ * e1000_mc_addr_list_update - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ * @rar_used_count: the first RAR register free to program
+ * @rar_count: total number of supported Receive Address Registers
+ *
+ * Updates the Receive Address Registers and Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ * The parameter rar_count will usually be hw->mac.rar_entry_count
+ * unless there are workarounds that change this.  Currently no func pointer
+ * exists and all implementations are handled in the generic version of this
+ * function.
+ */
+void
+e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list,
+    u32 mc_addr_count, u32 rar_used_count, u32 rar_count)
+{
+	if (hw->func.mc_addr_list_update)
+		hw->func.mc_addr_list_update(hw,
+		    mc_addr_list,
+		    mc_addr_count,
+		    rar_used_count,
+		    rar_count);
+}
+
+/*
+ * e1000_force_mac_fc - Force MAC flow control
+ * @hw: pointer to the HW structure
+ *
+ * Force the MAC's flow control settings. Currently no func pointer exists
+ * and all implementations are handled in the generic version of this
+ * function.
+ */
+s32
+e1000_force_mac_fc(struct e1000_hw *hw)
+{
+	return (e1000_force_mac_fc_generic(hw));
+}
+
+/*
+ * e1000_check_for_link - Check/Store link connection
+ * @hw: pointer to the HW structure
+ *
+ * This checks the link condition of the adapter and stores the
+ * results in the hw->mac structure. This is a function pointer entry
+ * point called by drivers.
+ */
+s32
+e1000_check_for_link(struct e1000_hw *hw)
+{
+	if (hw->func.check_for_link)
+		return (hw->func.check_for_link(hw));
+
+	return (-E1000_ERR_CONFIG);
+}
+
+/*
+ * e1000_check_mng_mode - Check management mode
+ * @hw: pointer to the HW structure
+ *
+ * This checks if the adapter has manageability enabled.
+ * This is a function pointer entry point called by drivers.
+ */
+boolean_t
+e1000_check_mng_mode(struct e1000_hw *hw)
+{
+	if (hw->func.check_mng_mode)
+		return (hw->func.check_mng_mode(hw));
+
+	return (FALSE);
+}
+
+/*
+ * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface
+ * @length: size of the buffer
+ *
+ * Writes the DHCP information to the host interface.
+ */
+s32
+e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 * buffer, u16 length)
+{
+	return (e1000_mng_write_dhcp_info_generic(hw, buffer, length));
+}
+
+/*
+ * e1000_reset_hw - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state. This is a function pointer
+ * entry point called by drivers.
+ */
+s32
+e1000_reset_hw(struct e1000_hw *hw)
+{
+	if (hw->func.reset_hw)
+		return (hw->func.reset_hw(hw));
+
+	return (-E1000_ERR_CONFIG);
+}
+
+/*
+ * e1000_init_hw - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation. This is a function
+ * pointer entry point called by drivers.
+ */
+s32
+e1000_init_hw(struct e1000_hw *hw)
+{
+	if (hw->func.init_hw)
+		return (hw->func.init_hw(hw));
+
+	return (-E1000_ERR_CONFIG);
+}
+
+/*
+ * e1000_setup_link - Configures link and flow control
+ * @hw: pointer to the HW structure
+ *
+ * This configures link and flow control settings for the adapter. This
+ * is a function pointer entry point called by drivers. While modules can
+ * also call this, they probably call their own version of this function.
+ */
+s32
+e1000_setup_link(struct e1000_hw *hw)
+{
+	if (hw->func.setup_link)
+		return (hw->func.setup_link(hw));
+
+	return (-E1000_ERR_CONFIG);
+}
+
+/*
+ * e1000_get_speed_and_duplex - Returns current speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to a 16-bit value to store the speed
+ * @duplex: pointer to a 16-bit value to store the duplex.
+ *
+ * This returns the speed and duplex of the adapter in the two 'out'
+ * variables passed in. This is a function pointer entry point called
+ * by drivers.
+ */
+s32
+e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 * speed, u16 * duplex)
+{
+	if (hw->func.get_link_up_info)
+		return (hw->func.get_link_up_info(hw, speed, duplex));
+
+	return (-E1000_ERR_CONFIG);
+}
+
+/*
+ * e1000_setup_led - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use and saves the current state
+ * of the LED so it can be later restored. This is a function pointer entry
+ * point called by drivers.
+ */
+s32
+e1000_setup_led(struct e1000_hw *hw)
+{
+	if (hw->func.setup_led)
+		return (hw->func.setup_led(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_cleanup_led - Restores SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This restores the SW controllable LED to the value saved off by
+ * e1000_setup_led. This is a function pointer entry point called by drivers.
+ */
+s32
+e1000_cleanup_led(struct e1000_hw *hw)
+{
+	if (hw->func.cleanup_led)
+		return (hw->func.cleanup_led(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_blink_led - Blink SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This starts the adapter LED blinking. Request the LED to be setup first
+ * and cleaned up after. This is a function pointer entry point called by
+ * drivers.
+ */
+s32
+e1000_blink_led(struct e1000_hw *hw)
+{
+	if (hw->func.blink_led)
+		return (hw->func.blink_led(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_led_on - Turn on SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED on. This is a function pointer entry point
+ * called by drivers.
+ */
+s32
+e1000_led_on(struct e1000_hw *hw)
+{
+	if (hw->func.led_on)
+		return (hw->func.led_on(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_led_off - Turn off SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED off. This is a function pointer entry point
+ * called by drivers.
+ */
+s32
+e1000_led_off(struct e1000_hw *hw)
+{
+	if (hw->func.led_off)
+		return (hw->func.led_off(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_reset_adaptive - Reset adaptive IFS
+ * @hw: pointer to the HW structure
+ *
+ * Resets the adaptive IFS. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ */
+void
+e1000_reset_adaptive(struct e1000_hw *hw)
+{
+	e1000_reset_adaptive_generic(hw);
+}
+
+/*
+ * e1000_update_adaptive - Update adaptive IFS
+ * @hw: pointer to the HW structure
+ *
+ * Updates adapter IFS. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ */
+void
+e1000_update_adaptive(struct e1000_hw *hw)
+{
+	e1000_update_adaptive_generic(hw);
+}
+
+/*
+ * e1000_disable_pcie_master - Disable PCI-Express master access
+ * @hw: pointer to the HW structure
+ *
+ * Disables PCI-Express master access and verifies there are no pending
+ * requests. Currently no func pointer exists and all implementations are
+ * handled in the generic version of this function.
+ */
+s32
+e1000_disable_pcie_master(struct e1000_hw *hw)
+{
+	return (e1000_disable_pcie_master_generic(hw));
+}
+
+/*
+ * e1000_config_collision_dist - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup.
+ */
+void
+e1000_config_collision_dist(struct e1000_hw *hw)
+{
+	if (hw->func.config_collision_dist)
+		hw->func.config_collision_dist(hw);
+}
+
+/*
+ * e1000_rar_set - Sets a receive address register
+ * @hw: pointer to the HW structure
+ * @addr: address to set the RAR to
+ * @index: the RAR to set
+ *
+ * Sets a Receive Address Register (RAR) to the specified address.
+ */
+void
+e1000_rar_set(struct e1000_hw *hw, u8 * addr, u32 index)
+{
+	if (hw->func.rar_set)
+		hw->func.rar_set(hw, addr, index);
+}
+
+/*
+ * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
+ * @hw: pointer to the HW structure
+ *
+ * Ensures that the MDI/MDIX SW state is valid.
+ */
+s32
+e1000_validate_mdi_setting(struct e1000_hw *hw)
+{
+	if (hw->func.validate_mdi_setting)
+		return (hw->func.validate_mdi_setting(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_mta_set - Sets multicast table bit
+ * @hw: pointer to the HW structure
+ * @hash_value: Multicast hash value.
+ *
+ * This sets the bit in the multicast table corresponding to the
+ * hash value.  This is a function pointer entry point called by drivers.
+ */
+void
+e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
+{
+	if (hw->func.mta_set)
+		hw->func.mta_set(hw, hash_value);
+}
+
+/*
+ * e1000_hash_mc_addr - Determines address location in multicast table
+ * @hw: pointer to the HW structure
+ * @mc_addr: Multicast address to hash.
+ *
+ * This hashes an address to determine its location in the multicast
+ * table. Currently no func pointer exists and all implementations
+ * are handled in the generic version of this function.
+ */
+u32
+e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+{
+	return (e1000_hash_mc_addr_generic(hw, mc_addr));
+}
+
+/*
+ * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
+ * @hw: pointer to the HW structure
+ *
+ * Enables packet filtering on transmit packets if manageability is enabled
+ * and host interface is enabled.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ */
+boolean_t
+e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
+{
+	return (e1000_enable_tx_pkt_filtering_generic(hw));
+}
+
+/*
+ * e1000_mng_host_if_write - Writes to the manageability host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface buffer
+ * @length: size of the buffer
+ * @offset: location in the buffer to write to
+ * @sum: sum of the data (not checksum)
+ *
+ * This function writes the buffer content at the offset given on the host if.
+ * It also does alignment considerations to do the writes in most efficient
+ * way.  Also fills up the sum of the buffer in *buffer parameter.
+ */
+s32
+e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
+    u16 offset, u8 *sum)
+{
+	if (hw->func.mng_host_if_write)
+		return (hw->func.mng_host_if_write(hw, buffer, length, offset,
+		    sum));
+
+	return (E1000_NOT_IMPLEMENTED);
+}
+
+/*
+ * e1000_mng_write_cmd_header - Writes manageability command header
+ * @hw: pointer to the HW structure
+ * @hdr: pointer to the host interface command header
+ *
+ * Writes the command header after does the checksum calculation.
+ */
+s32
+e1000_mng_write_cmd_header(struct e1000_hw *hw,
+    struct e1000_host_mng_command_header *hdr)
+{
+	if (hw->func.mng_write_cmd_header)
+		return (hw->func.mng_write_cmd_header(hw, hdr));
+
+	return (E1000_NOT_IMPLEMENTED);
+}
+
+/*
+ * e1000_mng_enable_host_if - Checks host interface is enabled
+ * @hw: pointer to the HW structure
+ *
+ * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ * This function checks whether the HOST IF is enabled for command operaton
+ * and also checks whether the previous command is completed.  It busy waits
+ * in case of previous command is not completed.
+ */
+s32
+e1000_mng_enable_host_if(struct e1000_hw *hw)
+{
+	if (hw->func.mng_enable_host_if)
+		return (hw->func.mng_enable_host_if(hw));
+
+	return (E1000_NOT_IMPLEMENTED);
+}
+
+/*
+ * e1000_wait_autoneg - Waits for autonegotiation completion
+ * @hw: pointer to the HW structure
+ *
+ * Waits for autoneg to complete. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ */
+s32
+e1000_wait_autoneg(struct e1000_hw *hw)
+{
+	if (hw->func.wait_autoneg)
+		return (hw->func.wait_autoneg(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_check_reset_block - Verifies PHY can be reset
+ * @hw: pointer to the HW structure
+ *
+ * Checks if the PHY is in a state that can be reset or if manageability
+ * has it tied up. This is a function pointer entry point called by drivers.
+ */
+s32
+e1000_check_reset_block(struct e1000_hw *hw)
+{
+	if (hw->func.check_reset_block)
+		return (hw->func.check_reset_block(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_read_phy_reg - Reads PHY register
+ * @hw: pointer to the HW structure
+ * @offset: the register to read
+ * @data: the buffer to store the 16-bit read.
+ *
+ * Reads the PHY register and returns the value in data.
+ * This is a function pointer entry point called by drivers.
+ */
+s32
+e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	if (hw->func.read_phy_reg)
+		return (hw->func.read_phy_reg(hw, offset, data));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_write_phy_reg - Writes PHY register
+ * @hw: pointer to the HW structure
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes the PHY register at offset with the value in data.
+ * This is a function pointer entry point called by drivers.
+ */
+s32
+e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	if (hw->func.write_phy_reg)
+		return (hw->func.write_phy_reg(hw, offset, data));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_read_kmrn_reg - Reads register using Kumeran interface
+ * @hw: pointer to the HW structure
+ * @offset: the register to read
+ * @data: the location to store the 16-bit value read.
+ *
+ * Reads a register out of the Kumeran interface. Currently no func pointer
+ * exists and all implementations are handled in the generic version of
+ * this function.
+ */
+s32
+e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return (e1000_read_kmrn_reg_generic(hw, offset, data));
+}
+
+/*
+ * e1000_write_kmrn_reg - Writes register using Kumeran interface
+ * @hw: pointer to the HW structure
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes a register to the Kumeran interface. Currently no func pointer
+ * exists and all implementations are handled in the generic version of
+ * this function.
+ */
+s32
+e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return (e1000_write_kmrn_reg_generic(hw, offset, data));
+}
+
+/*
+ * e1000_get_cable_length - Retrieves cable length estimation
+ * @hw: pointer to the HW structure
+ *
+ * This function estimates the cable length and stores them in
+ * hw->phy.min_length and hw->phy.max_length. This is a function pointer
+ * entry point called by drivers.
+ */
+s32
+e1000_get_cable_length(struct e1000_hw *hw)
+{
+	if (hw->func.get_cable_length)
+		return (hw->func.get_cable_length(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_get_phy_info - Retrieves PHY information from registers
+ * @hw: pointer to the HW structure
+ *
+ * This function gets some information from various PHY registers and
+ * populates hw->phy values with it. This is a function pointer entry
+ * point called by drivers.
+ */
+s32
+e1000_get_phy_info(struct e1000_hw *hw)
+{
+	if (hw->func.get_phy_info)
+		return (hw->func.get_phy_info(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_phy_hw_reset - Hard PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Performs a hard PHY reset. This is a function pointer entry point called
+ * by drivers.
+ */
+s32
+e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+	if (hw->func.reset_phy)
+		return (hw->func.reset_phy(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_phy_commit - Soft PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Performs a soft PHY reset on those that apply. This is a function pointer
+ * entry point called by drivers.
+ */
+s32
+e1000_phy_commit(struct e1000_hw *hw)
+{
+	if (hw->func.commit_phy)
+		return (hw->func.commit_phy(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_set_d3_lplu_state - Sets low power link up state for D0
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D0
+ * and SmartSpeed is disabled when active is true, else clear lplu for D0
+ * and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.  This is a function pointer entry point called by drivers.
+ */
+s32
+e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
+{
+	if (hw->func.set_d0_lplu_state)
+		return (hw->func.set_d0_lplu_state(hw, active));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_set_d3_lplu_state - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is true, else clear lplu for D3
+ * and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.  This is a function pointer entry point called by drivers.
+ */
+s32
+e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
+{
+	if (hw->func.set_d3_lplu_state)
+		return (hw->func.set_d3_lplu_state(hw, active));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_read_mac_addr - Reads MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the MAC address out of the adapter and stores it in the HW structure.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ */
+s32
+e1000_read_mac_addr(struct e1000_hw *hw)
+{
+	return (e1000_read_mac_addr_generic(hw));
+}
+
+/*
+ * e1000_read_part_num - Read device part number
+ * @hw: pointer to the HW structure
+ * @part_num: pointer to device part number
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in part_num.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ */
+s32
+e1000_read_part_num(struct e1000_hw *hw, u32 * part_num)
+{
+	return (e1000_read_part_num_generic(hw, part_num));
+}
+
+/*
+ * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
+ * @hw: pointer to the HW structure
+ *
+ * Validates the NVM checksum is correct. This is a function pointer entry
+ * point called by drivers.
+ */
+s32
+e1000_validate_nvm_checksum(struct e1000_hw *hw)
+{
+	if (hw->func.validate_nvm)
+		return (hw->func.validate_nvm(hw));
+
+	return (-E1000_ERR_CONFIG);
+}
+
+/*
+ * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the NVM checksum. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ */
+s32
+e1000_update_nvm_checksum(struct e1000_hw *hw)
+{
+	if (hw->func.update_nvm)
+		return (hw->func.update_nvm(hw));
+
+	return (-E1000_ERR_CONFIG);
+}
+
+/*
+ * e1000_reload_nvm - Reloads EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ * extended control register.
+ */
+void
+e1000_reload_nvm(struct e1000_hw *hw)
+{
+	if (hw->func.reload_nvm)
+		hw->func.reload_nvm(hw);
+}
+
+/*
+ * e1000_read_nvm - Reads NVM (EEPROM)
+ * @hw: pointer to the HW structure
+ * @offset: the word offset to read
+ * @words: number of 16-bit words to read
+ * @data: pointer to the properly sized buffer for the data.
+ *
+ * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
+ * pointer entry point called by drivers.
+ */
+s32
+e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	if (hw->func.read_nvm)
+		return (hw->func.read_nvm(hw, offset, words, data));
+
+	return (-E1000_ERR_CONFIG);
+}
+
+/*
+ * e1000_write_nvm - Writes to NVM (EEPROM)
+ * @hw: pointer to the HW structure
+ * @offset: the word offset to read
+ * @words: number of 16-bit words to write
+ * @data: pointer to the properly sized buffer for the data.
+ *
+ * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
+ * pointer entry point called by drivers.
+ */
+s32
+e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	if (hw->func.write_nvm)
+		return (hw->func.write_nvm(hw, offset, words, data));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
+ * @hw: pointer to the HW structure
+ * @reg: 32bit register offset
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes the PHY register at offset with the value in data.
+ * This is a function pointer entry point called by drivers.
+ */
+s32
+e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, u8 data)
+{
+	return (e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data));
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_api.h	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,187 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#ifndef _E1000_API_H_
+#define	_E1000_API_H_
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "e1000_hw.h"
+
+s32 e1000_set_mac_type(struct e1000_hw *hw);
+s32 e1000_setup_init_funcs(struct e1000_hw *hw, boolean_t init_device);
+s32 e1000_init_mac_params(struct e1000_hw *hw);
+s32 e1000_init_nvm_params(struct e1000_hw *hw);
+s32 e1000_init_phy_params(struct e1000_hw *hw);
+void e1000_remove_device(struct e1000_hw *hw);
+s32 e1000_get_bus_info(struct e1000_hw *hw);
+void e1000_clear_vfta(struct e1000_hw *hw);
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
+s32 e1000_force_mac_fc(struct e1000_hw *hw);
+s32 e1000_check_for_link(struct e1000_hw *hw);
+s32 e1000_reset_hw(struct e1000_hw *hw);
+s32 e1000_init_hw(struct e1000_hw *hw);
+s32 e1000_setup_link(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex);
+s32 e1000_disable_pcie_master(struct e1000_hw *hw);
+void e1000_config_collision_dist(struct e1000_hw *hw);
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
+void e1000_mta_set(struct e1000_hw *hw, u32 hash_value);
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr);
+void e1000_mc_addr_list_update(struct e1000_hw *hw,
+    u8 *mc_addr_list, u32 mc_addr_count,
+    u32 rar_used_count, u32 rar_count);
+s32 e1000_setup_led(struct e1000_hw *hw);
+s32 e1000_cleanup_led(struct e1000_hw *hw);
+s32 e1000_check_reset_block(struct e1000_hw *hw);
+s32 e1000_blink_led(struct e1000_hw *hw);
+s32 e1000_led_on(struct e1000_hw *hw);
+s32 e1000_led_off(struct e1000_hw *hw);
+void e1000_reset_adaptive(struct e1000_hw *hw);
+void e1000_update_adaptive(struct e1000_hw *hw);
+s32 e1000_get_cable_length(struct e1000_hw *hw);
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
+    u32 offset, u8 data);
+s32 e1000_get_phy_info(struct e1000_hw *hw);
+s32 e1000_phy_hw_reset(struct e1000_hw *hw);
+s32 e1000_phy_commit(struct e1000_hw *hw);
+s32 e1000_read_mac_addr(struct e1000_hw *hw);
+s32 e1000_read_part_num(struct e1000_hw *hw, u32 *part_num);
+void e1000_reload_nvm(struct e1000_hw *hw);
+s32 e1000_update_nvm_checksum(struct e1000_hw *hw);
+s32 e1000_validate_nvm_checksum(struct e1000_hw *hw);
+s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_wait_autoneg(struct e1000_hw *hw);
+s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
+s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
+boolean_t e1000_check_mng_mode(struct e1000_hw *hw);
+boolean_t e1000_enable_mng_pass_thru(struct e1000_hw *hw);
+boolean_t e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
+s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
+s32 e1000_mng_host_if_write(struct e1000_hw *hw,
+    u8 *buffer, u16 length, u16 offset, u8 *sum);
+s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+    struct e1000_host_mng_command_header *hdr);
+s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw,
+    u8 *buffer, u16 length);
+void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
+    struct e1000_hw_stats *stats,
+    u32 frame_len, u8 *mac_addr);
+void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw,
+    boolean_t state);
+boolean_t e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw);
+u32 e1000_translate_register_82542(u32 reg);
+void e1000_init_script_state_82541(struct e1000_hw *hw, boolean_t state);
+boolean_t e1000_get_laa_state_82571(struct e1000_hw *hw);
+void e1000_set_laa_state_82571(struct e1000_hw *hw, boolean_t state);
+void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+    boolean_t state);
+void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
+void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
+
+#ifndef FIFO_WORKAROUND
+s32 e1000_fifo_workaround_82547(struct e1000_hw *hw, u16 length);
+void e1000_update_tx_fifo_head_82547(struct e1000_hw *hw, u32 length);
+void e1000_set_ttl_workaround_state_82541(struct e1000_hw *hw,
+    boolean_t state);
+boolean_t e1000_ttl_workaround_enabled_82541(struct e1000_hw *hw);
+s32 e1000_igp_ttl_workaround_82547(struct e1000_hw *hw);
+#endif
+
+s32 e1000_send_mail_to_pf_vf(struct e1000_hw *hw, u32 *msg, s16 size);
+s32 e1000_receive_mail_from_pf_vf(struct e1000_hw *hw,
+    u32 *msg, s16 size);
+s32 e1000_send_mail_to_vf(struct e1000_hw *hw, u32 *msg,
+    u32 vf_number, s16 size);
+s32 e1000_receive_mail_from_vf(struct e1000_hw *hw, u32 *msg,
+    u32 vf_number, s16 size);
+void e1000_vmdq_loopback_enable_vf(struct e1000_hw *hw);
+void e1000_vmdq_loopback_disable_vf(struct e1000_hw *hw);
+void e1000_vmdq_replication_enable_vf(struct e1000_hw *hw, u32 enables);
+void e1000_vmdq_replication_disable_vf(struct e1000_hw *hw);
+void e1000_init_vfnumber_index_vf(struct e1000_hw *hw, u32 vf_number);
+boolean_t e1000_check_for_pf_ack_vf(struct e1000_hw *hw);
+boolean_t e1000_check_for_pf_mail_vf(struct e1000_hw *hw);
+
+
+/*
+ * TBI_ACCEPT macro definition:
+ *
+ * This macro requires:
+ *	adapter = a pointer to struct e1000_hw
+ *	status = the 8 bit status field of the RX descriptor with EOP set
+ *	error = the 8 bit error field of the RX descriptor with EOP set
+ *	length = the sum of all the length fields of the RX descriptors that
+ *		make up the current frame
+ *	last_byte = the last byte of the frame DMAed by the hardware
+ *	max_frame_length = the maximum frame length we want to accept.
+ *	min_frame_length = the minimum frame length we want to accept.
+ *
+ * This macro is a conditional that should be used in the interrupt
+ * handler's Rx processing routine when RxErrors have been detected.
+ *
+ * Typical use:
+ *  ...
+ *  if (TBI_ACCEPT) {
+ *	accept_frame = TRUE;
+ *	e1000_tbi_adjust_stats(adapter, MacAddress);
+ *	frame_length--;
+ *  } else {
+ *	accept_frame = FALSE;
+ *  }
+ *  ...
+ */
+
+/* The carrier extension symbol, as received by the NIC. */
+#define	CARRIER_EXTENSION	0x0F
+
+#define	TBI_ACCEPT(a, status, errors, length, last_byte)	\
+	(e1000_tbi_sbp_enabled_82543(a) && \
+	(((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
+	((last_byte) == CARRIER_EXTENSION) && \
+	(((status) & E1000_RXD_STAT_VP) ? \
+		(((length) > ((a)->mac.min_frame_size - VLAN_TAG_SIZE)) && \
+		((length) <= ((a)->mac.max_frame_size + 1))) : \
+		(((length) > (a)->mac.min_frame_size) && \
+		((length) <= ((a)->mac.max_frame_size + VLAN_TAG_SIZE + 1)))))
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif	/* _E1000_API_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_defines.h	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,1445 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#ifndef _E1000_DEFINES_H_
+#define	_E1000_DEFINES_H_
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define	REQ_TX_DESCRIPTOR_MULTIPLE	8
+#define	REQ_RX_DESCRIPTOR_MULTIPLE	8
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define	E1000_WUC_APME		0x00000001	/* APM Enable */
+#define	E1000_WUC_PME_EN	0x00000002	/* PME Enable */
+#define	E1000_WUC_PME_STATUS	0x00000004	/* PME Status */
+#define	E1000_WUC_APMPME	0x00000008	/* Assert PME on APM Wakeup */
+#define	E1000_WUC_SPM		0x80000000	/* Enable SPM */
+
+/* Wake Up Filter Control */
+#define	E1000_WUFC_LNKC	0x00000001	/* Link Status Change Wakeup Enable */
+#define	E1000_WUFC_MAG	0x00000002	/* Magic Packet Wakeup Enable */
+#define	E1000_WUFC_EX	0x00000004	/* Directed Exact Wakeup Enable */
+#define	E1000_WUFC_MC	0x00000008	/* Directed Multicast Wakeup Enable */
+#define	E1000_WUFC_BC	0x00000010	/* Broadcast Wakeup Enable */
+#define	E1000_WUFC_ARP	0x00000020	/* ARP Request Packet Wakeup Enable */
+#define	E1000_WUFC_IPV4	0x00000040	/* Directed IPv4 Packet Wakeup Enable */
+#define	E1000_WUFC_IPV6	0x00000080	/* Directed IPv6 Packet Wakeup Enable */
+#define	E1000_WUFC_IGNORE_TCO	0x00008000 /* Ignore WakeOn TCO packets */
+#define	E1000_WUFC_FLX0	0x00010000	/* Flexible Filter 0 Enable */
+#define	E1000_WUFC_FLX1	0x00020000	/* Flexible Filter 1 Enable */
+#define	E1000_WUFC_FLX2	0x00040000	/* Flexible Filter 2 Enable */
+#define	E1000_WUFC_FLX3	0x00080000	/* Flexible Filter 3 Enable */
+#define	E1000_WUFC_ALL_FILTERS	0x000F00FF /* Mask for all wakeup filters */
+#define	E1000_WUFC_FLX_OFFSET	16	/* Offset to the Flexible Filter bits */
+#define	E1000_WUFC_FLX_FILTERS	0x000F0000 /* Mask for the 4 flexible filters */
+
+/* Wake Up Status */
+#define	E1000_WUS_LNKC		E1000_WUFC_LNKC
+#define	E1000_WUS_MAG		E1000_WUFC_MAG
+#define	E1000_WUS_EX		E1000_WUFC_EX
+#define	E1000_WUS_MC		E1000_WUFC_MC
+#define	E1000_WUS_BC		E1000_WUFC_BC
+#define	E1000_WUS_ARP		E1000_WUFC_ARP
+#define	E1000_WUS_IPV4		E1000_WUFC_IPV4
+#define	E1000_WUS_IPV6		E1000_WUFC_IPV6
+#define	E1000_WUS_FLX0		E1000_WUFC_FLX0
+#define	E1000_WUS_FLX1		E1000_WUFC_FLX1
+#define	E1000_WUS_FLX2		E1000_WUFC_FLX2
+#define	E1000_WUS_FLX3		E1000_WUFC_FLX3
+#define	E1000_WUS_FLX_FILTERS	E1000_WUFC_FLX_FILTERS
+
+/* Wake Up Packet Length */
+#define	E1000_WUPL_LENGTH_MASK	0x0FFF	/* Only the lower 12 bits are valid */
+
+/* Four Flexible Filters are supported */
+#define	E1000_FLEXIBLE_FILTER_COUNT_MAX	4
+
+/* Each Flexible Filter is at most 128 (0x80) bytes in length */
+#define	E1000_FLEXIBLE_FILTER_SIZE_MAX	128
+
+#define	E1000_FFLT_SIZE	E1000_FLEXIBLE_FILTER_COUNT_MAX
+#define	E1000_FFMT_SIZE	E1000_FLEXIBLE_FILTER_SIZE_MAX
+#define	E1000_FFVT_SIZE	E1000_FLEXIBLE_FILTER_SIZE_MAX
+
+/* Extended Device Control */
+#define	E1000_CTRL_EXT_GPI0_EN	0x00000001  /* Maps SDP4 to GPI0 */
+#define	E1000_CTRL_EXT_GPI1_EN	0x00000002  /* Maps SDP5 to GPI1 */
+#define	E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
+#define	E1000_CTRL_EXT_GPI2_EN	0x00000004  /* Maps SDP6 to GPI2 */
+#define	E1000_CTRL_EXT_GPI3_EN	0x00000008  /* Maps SDP7 to GPI3 */
+#define	E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */
+#define	E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */
+#define	E1000_CTRL_EXT_PHY_INT	E1000_CTRL_EXT_SDP5_DATA
+#define	E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */
+#define	E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
+#define	E1000_CTRL_EXT_SDP4_DIR  0x00000100 /* Direction of SDP4 0=in 1=out */
+#define	E1000_CTRL_EXT_SDP5_DIR  0x00000200 /* Direction of SDP5 0=in 1=out */
+#define	E1000_CTRL_EXT_SDP6_DIR  0x00000400 /* Direction of SDP6 0=in 1=out */
+#define	E1000_CTRL_EXT_SDP7_DIR  0x00000800 /* Direction of SDP7 0=in 1=out */
+#define	E1000_CTRL_EXT_ASDCHK	0x00001000  /* Initiate an ASD sequence */
+#define	E1000_CTRL_EXT_EE_RST	0x00002000  /* Reinitialize from EEPROM */
+#define	E1000_CTRL_EXT_IPS	0x00004000  /* Invert Power State */
+/* Physical Func Reset Done Indication */
+#define	E1000_CTRL_EXT_PFRSTD	0x00004000
+#define	E1000_CTRL_EXT_SPD_BYPS	0x00008000  /* Speed Select Bypass */
+#define	E1000_CTRL_EXT_RO_DIS	0x00020000  /* Relaxed Ordering disable */
+#define	E1000_CTRL_EXT_LINK_MODE_MASK	0x00C00000
+#define	E1000_CTRL_EXT_LINK_MODE_GMII	0x00000000
+#define	E1000_CTRL_EXT_LINK_MODE_TBI	0x00C00000
+#define	E1000_CTRL_EXT_LINK_MODE_KMRN	0x00000000
+#define	E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES	0x00C00000
+#define	E1000_CTRL_EXT_LINK_MODE_PCIX_SERDES	0x00800000
+#define	E1000_CTRL_EXT_LINK_MODE_SGMII	0x00800000
+#define	E1000_CTRL_EXT_EIAME		0x01000000
+#define	E1000_CTRL_EXT_IRCA		0x00000001
+#define	E1000_CTRL_EXT_WR_WMARK_MASK	0x03000000
+#define	E1000_CTRL_EXT_WR_WMARK_256	0x00000000
+#define	E1000_CTRL_EXT_WR_WMARK_320	0x01000000
+#define	E1000_CTRL_EXT_WR_WMARK_384	0x02000000
+#define	E1000_CTRL_EXT_WR_WMARK_448	0x03000000
+#define	E1000_CTRL_EXT_CANC	0x04000000 /* Interrupt delay cancellation */
+#define	E1000_CTRL_EXT_DRV_LOAD	0x10000000 /* Driver loaded bit for FW */
+#define	E1000_CTRL_EXT_IAME	0x08000000 /* Interrupt acknowledge Auto-mask */
+/* Clear Interrupt timers after IMS clear */
+#define	E1000_CTRL_EXT_INT_TIMER_CLR	0x20000000
+/* packet buffer parity error detection enabled */
+#define	E1000_CRTL_EXT_PB_PAREN		0x01000000
+/* descriptor FIFO parity error detection enable */
+#define	E1000_CTRL_EXT_DF_PAREN		0x02000000
+#define	E1000_CTRL_EXT_GHOST_PAREN	0x40000000
+#define	E1000_CTRL_EXT_PBA_CLR		0x80000000	/* PBA Clear */
+#define	E1000_I2CCMD_REG_ADDR_SHIFT	16
+#define	E1000_I2CCMD_REG_ADDR		0x00FF0000
+#define	E1000_I2CCMD_PHY_ADDR_SHIFT	24
+#define	E1000_I2CCMD_PHY_ADDR		0x07000000
+#define	E1000_I2CCMD_OPCODE_READ	0x08000000
+#define	E1000_I2CCMD_OPCODE_WRITE	0x00000000
+#define	E1000_I2CCMD_RESET		0x10000000
+#define	E1000_I2CCMD_READY		0x20000000
+#define	E1000_I2CCMD_INTERRUPT_ENA	0x40000000
+#define	E1000_I2CCMD_ERROR		0x80000000
+#define	E1000_MAX_SGMII_PHY_REG_ADDR	255
+#define	E1000_I2CCMD_PHY_TIMEOUT	200
+#define	E1000_IVAR_VALID	0x80
+#define	E1000_GPIE_NSICR	0x00000001
+#define	E1000_GPIE_MSIX_MODE	0x00000010
+#define	E1000_GPIE_EIAME	0x40000000
+#define	E1000_GPIE_PBA		0x80000000
+
+/* Receive Decriptor bit definitions */
+#define	E1000_RXD_STAT_DD	0x01	/* Descriptor Done */
+#define	E1000_RXD_STAT_EOP	0x02	/* End of Packet */
+#define	E1000_RXD_STAT_IXSM	0x04	/* Ignore checksum */
+#define	E1000_RXD_STAT_VP	0x08	/* IEEE VLAN Packet */
+#define	E1000_RXD_STAT_UDPCS	0x10	/* UDP xsum caculated */
+#define	E1000_RXD_STAT_TCPCS	0x20	/* TCP xsum calculated */
+#define	E1000_RXD_STAT_IPCS	0x40	/* IP xsum calculated */
+#define	E1000_RXD_STAT_PIF	0x80	/* passed in-exact filter */
+#define	E1000_RXD_STAT_CRCV	0x100	/* Speculative CRC Valid */
+#define	E1000_RXD_STAT_IPIDV	0x200	/* IP identification valid */
+#define	E1000_RXD_STAT_UDPV	0x400	/* Valid UDP checksum */
+#define	E1000_RXD_STAT_DYNINT	0x800	/* Pkt caused INT via DYNINT */
+#define	E1000_RXD_STAT_ACK	0x8000	/* ACK Packet indication */
+#define	E1000_RXD_ERR_CE	0x01	/* CRC Error */
+#define	E1000_RXD_ERR_SE	0x02	/* Symbol Error */
+#define	E1000_RXD_ERR_SEQ	0x04	/* Sequence Error */
+#define	E1000_RXD_ERR_CXE	0x10	/* Carrier Extension Error */
+#define	E1000_RXD_ERR_TCPE	0x20	/* TCP/UDP Checksum Error */
+#define	E1000_RXD_ERR_IPE	0x40	/* IP Checksum Error */
+#define	E1000_RXD_ERR_RXE	0x80	/* Rx Data Error */
+#define	E1000_RXD_SPC_VLAN_MASK	0x0FFF	/* VLAN ID is in lower 12 bits */
+#define	E1000_RXD_SPC_PRI_MASK	0xE000	/* Priority is in upper 3 bits */
+#define	E1000_RXD_SPC_PRI_SHIFT	13
+#define	E1000_RXD_SPC_CFI_MASK	0x1000	/* CFI is bit 12 */
+#define	E1000_RXD_SPC_CFI_SHIFT	12
+
+#define	E1000_RXDEXT_STATERR_CE		0x01000000
+#define	E1000_RXDEXT_STATERR_SE		0x02000000
+#define	E1000_RXDEXT_STATERR_SEQ	0x04000000
+#define	E1000_RXDEXT_STATERR_CXE	0x10000000
+#define	E1000_RXDEXT_STATERR_TCPE	0x20000000
+#define	E1000_RXDEXT_STATERR_IPE	0x40000000
+#define	E1000_RXDEXT_STATERR_RXE	0x80000000
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define	E1000_RXD_ERR_FRAME_ERR_MASK ( \
+    E1000_RXD_ERR_CE  | \
+    E1000_RXD_ERR_SE  | \
+    E1000_RXD_ERR_SEQ | \
+    E1000_RXD_ERR_CXE | \
+    E1000_RXD_ERR_RXE)
+
+/* Same mask, but for extended and packet split descriptors */
+#define	E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
+    E1000_RXDEXT_STATERR_CE  | \
+    E1000_RXDEXT_STATERR_SE  | \
+    E1000_RXDEXT_STATERR_SEQ | \
+    E1000_RXDEXT_STATERR_CXE | \
+    E1000_RXDEXT_STATERR_RXE)
+
+#define	E1000_MRQC_ENABLE_MASK			0x00000007
+#define	E1000_MRQC_ENABLE_RSS_2Q		0x00000001
+#define	E1000_MRQC_ENABLE_RSS_INT		0x00000004
+#define	E1000_MRQC_RSS_FIELD_MASK		0xFFFF0000
+#define	E1000_MRQC_RSS_FIELD_IPV4_TCP		0x00010000
+#define	E1000_MRQC_RSS_FIELD_IPV4		0x00020000
+#define	E1000_MRQC_RSS_FIELD_IPV6_TCP_EX	0x00040000
+#define	E1000_MRQC_RSS_FIELD_IPV6_EX		0x00080000
+#define	E1000_MRQC_RSS_FIELD_IPV6		0x00100000
+#define	E1000_MRQC_RSS_FIELD_IPV6_TCP		0x00200000
+
+#define	E1000_RXDPS_HDRSTAT_HDRSP		0x00008000
+#define	E1000_RXDPS_HDRSTAT_HDRLEN_MASK		0x000003FF
+
+/* Management Control */
+#define	E1000_MANC_SMBUS_EN	0x00000001 /* SMBus Enabled - RO */
+#define	E1000_MANC_ASF_EN	0x00000002 /* ASF Enabled - RO */
+#define	E1000_MANC_R_ON_FORCE	0x00000004 /* Reset on Force TCO - RO */
+#define	E1000_MANC_RMCP_EN	0x00000100 /* Enable RCMP 026Fh Filtering */
+#define	E1000_MANC_0298_EN	0x00000200 /* Enable RCMP 0298h Filtering */
+#define	E1000_MANC_IPV4_EN	0x00000400 /* Enable IPv4 */
+#define	E1000_MANC_IPV6_EN	0x00000800 /* Enable IPv6 */
+#define	E1000_MANC_SNAP_EN	0x00001000 /* Accept LLC/SNAP */
+#define	E1000_MANC_ARP_EN	0x00002000 /* Enable ARP Request Filtering */
+/* Enable Neighbor Discovery Filtering */
+#define	E1000_MANC_NEIGHBOR_EN	0x00004000
+#define	E1000_MANC_ARP_RES_EN	0x00008000 /* Enable ARP response Filtering */
+#define	E1000_MANC_TCO_RESET	0x00010000 /* TCO Reset Occurred */
+#define	E1000_MANC_RCV_TCO_EN	0x00020000 /* Receive TCO Packets Enabled */
+#define	E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
+#define	E1000_MANC_RCV_ALL	0x00080000 /* Receive All Enabled */
+#define	E1000_MANC_BLK_PHY_RST_ON_IDE	0x00040000 /* Block phy resets */
+/* Enable MAC address filtering */
+#define	E1000_MANC_EN_MAC_ADDR_FILTER	0x00100000
+/* Enable MNG packets to host memory */
+#define	E1000_MANC_EN_MNG2HOST		0x00200000
+/* Enable IP address filtering */
+#define	E1000_MANC_EN_IP_ADDR_FILTER	0x00400000
+#define	E1000_MANC_EN_XSUM_FILTER	0x00800000 /* Enable cksum filtering */
+#define	E1000_MANC_BR_EN	0x01000000	/* Enable broadcast filtering */
+#define	E1000_MANC_SMB_REQ	0x01000000	/* SMBus Request */
+#define	E1000_MANC_SMB_GNT	0x02000000	/* SMBus Grant */
+#define	E1000_MANC_SMB_CLK_IN	0x04000000	/* SMBus Clock In */
+#define	E1000_MANC_SMB_DATA_IN	0x08000000	/* SMBus Data In */
+#define	E1000_MANC_SMB_DATA_OUT	0x10000000	/* SMBus Data Out */
+#define	E1000_MANC_SMB_CLK_OUT	0x20000000	/* SMBus Clock Out */
+
+#define	E1000_MANC_SMB_DATA_OUT_SHIFT	28	/* SMBus Data Out Shift */
+#define	E1000_MANC_SMB_CLK_OUT_SHIFT	29	/* SMBus Clock Out Shift */
+
+/* Receive Control */
+#define	E1000_RCTL_RST		0x00000001	/* Software reset */
+#define	E1000_RCTL_EN		0x00000002	/* enable */
+#define	E1000_RCTL_SBP		0x00000004	/* store bad packet */
+#define	E1000_RCTL_UPE		0x00000008	/* unicast promiscuous enable */
+#define	E1000_RCTL_MPE		0x00000010	/* multicast promiscuous enab */
+#define	E1000_RCTL_LPE		0x00000020	/* long packet enable */
+#define	E1000_RCTL_LBM_NO	0x00000000	/* no loopback mode */
+#define	E1000_RCTL_LBM_MAC	0x00000040	/* MAC loopback mode */
+#define	E1000_RCTL_LBM_SLP	0x00000080	/* serial link loopback mode */
+#define	E1000_RCTL_LBM_TCVR	0x000000C0	/* tcvr loopback mode */
+#define	E1000_RCTL_DTYP_MASK	0x00000C00	/* Descriptor type mask */
+#define	E1000_RCTL_DTYP_PS	0x00000400	/* Packet Split descriptor */
+#define	E1000_RCTL_RDMTS_HALF	0x00000000	/* rx desc min threshold size */
+#define	E1000_RCTL_RDMTS_QUAT	0x00000100	/* rx desc min threshold size */
+#define	E1000_RCTL_RDMTS_EIGTH	0x00000200	/* rx desc min threshold size */
+#define	E1000_RCTL_MO_SHIFT	12		/* multicast offset shift */
+#define	E1000_RCTL_MO_0		0x00000000	/* multicast offset 11:0 */
+#define	E1000_RCTL_MO_1		0x00001000	/* multicast offset 12:1 */
+#define	E1000_RCTL_MO_2		0x00002000	/* multicast offset 13:2 */
+#define	E1000_RCTL_MO_3		0x00003000	/* multicast offset 15:4 */
+#define	E1000_RCTL_MDR		0x00004000	/* multicast desc ring 0 */
+#define	E1000_RCTL_BAM		0x00008000	/* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define	E1000_RCTL_SZ_2048	0x00000000	/* rx buffer size 2048 */
+#define	E1000_RCTL_SZ_1024	0x00010000	/* rx buffer size 1024 */
+#define	E1000_RCTL_SZ_512	0x00020000	/* rx buffer size 512 */
+#define	E1000_RCTL_SZ_256	0x00030000	/* rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define	E1000_RCTL_SZ_16384	0x00010000	/* rx buffer size 16384 */
+#define	E1000_RCTL_SZ_8192	0x00020000	/* rx buffer size 8192 */
+#define	E1000_RCTL_SZ_4096	0x00030000	/* rx buffer size 4096 */
+#define	E1000_RCTL_VFE		0x00040000	/* vlan filter enable */
+#define	E1000_RCTL_CFIEN	0x00080000	/* canonical form enable */
+#define	E1000_RCTL_CFI		0x00100000	/* canonical form indicator */
+#define	E1000_RCTL_DPF		0x00400000	/* discard pause frames */
+#define	E1000_RCTL_PMCF		0x00800000	/* pass MAC control frames */
+#define	E1000_RCTL_BSEX		0x02000000	/* Buffer size extension */
+#define	E1000_RCTL_SECRC	0x04000000	/* Strip Ethernet CRC */
+#define	E1000_RCTL_FLXBUF_MASK	0x78000000	/* Flexible buffer size */
+#define	E1000_RCTL_FLXBUF_SHIFT	27		/* Flexible buffer shift */
+
+/*
+ * Use byte values for the following shift parameters
+ * Usage:
+ *	psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
+ *		E1000_PSRCTL_BSIZE0_MASK) |
+ *		((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
+ *		E1000_PSRCTL_BSIZE1_MASK) |
+ *		((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
+ *		E1000_PSRCTL_BSIZE2_MASK) |
+ *		((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
+ *		E1000_PSRCTL_BSIZE3_MASK))
+ * where value0 = [128..16256],	default=256
+ *	value1 = [1024..64512],	default=4096
+ *	value2 = [0..64512],	default=4096
+ *	value3 = [0..64512],	default=0
+ */
+
+#define	E1000_PSRCTL_BSIZE0_MASK	0x0000007F
+#define	E1000_PSRCTL_BSIZE1_MASK	0x00003F00
+#define	E1000_PSRCTL_BSIZE2_MASK	0x003F0000
+#define	E1000_PSRCTL_BSIZE3_MASK	0x3F000000
+
+#define	E1000_PSRCTL_BSIZE0_SHIFT	7	/* Shift _right_ 7 */
+#define	E1000_PSRCTL_BSIZE1_SHIFT	2	/* Shift _right_ 2 */
+#define	E1000_PSRCTL_BSIZE2_SHIFT	6	/* Shift _left_ 6 */
+#define	E1000_PSRCTL_BSIZE3_SHIFT	14	/* Shift _left_ 14 */
+
+/* SWFW_SYNC Definitions */
+#define	E1000_SWFW_EEP_SM	0x1
+#define	E1000_SWFW_PHY0_SM	0x2
+#define	E1000_SWFW_PHY1_SM	0x4
+
+/* Device Control */
+#define	E1000_CTRL_FD	0x00000001	/* Full duplex.0=half; 1=full */
+#define	E1000_CTRL_BEM	0x00000002	/* Endian Mode.0=little,1=big */
+#define	E1000_CTRL_PRIOR 0x00000004	/* Priority on PCI. 0=rx,1=fair */
+#define	E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /* Block new Master requests */
+#define	E1000_CTRL_LRST	0x00000008	/* Link reset. 0=normal,1=reset */
+#define	E1000_CTRL_TME	0x00000010	/* Test mode. 0=normal,1=test */
+#define	E1000_CTRL_SLE	0x00000020	/* Serial Link on 0=dis,1=en */
+#define	E1000_CTRL_ASDE	0x00000020	/* Auto-speed detect enable */
+#define	E1000_CTRL_SLU	0x00000040	/* Set link up (Force Link) */
+#define	E1000_CTRL_ILOS	0x00000080	/* Invert Loss-Of Signal */
+#define	E1000_CTRL_SPD_SEL	0x00000300 /* Speed Select Mask */
+#define	E1000_CTRL_SPD_10	0x00000000 /* Force 10Mb */
+#define	E1000_CTRL_SPD_100	0x00000100 /* Force 100Mb */
+#define	E1000_CTRL_SPD_1000	0x00000200 /* Force 1Gb */
+#define	E1000_CTRL_BEM32	0x00000400 /* Big Endian 32 mode */
+#define	E1000_CTRL_FRCSPD	0x00000800 /* Force Speed */
+#define	E1000_CTRL_FRCDPX	0x00001000 /* Force Duplex */
+#define	E1000_CTRL_D_UD_EN	0x00002000 /* Dock/Undock enable */
+/* Defined polarity of Dock/Undock indication in SDP[0] */
+#define	E1000_CTRL_D_UD_POLARITY	0x00004000
+/* Reset both PHY ports, through PHYRST_N pin */
+#define	E1000_CTRL_FORCE_PHY_RESET	0x00008000
+/* enable link status from external LINK_0 and LINK_1 pins */
+#define	E1000_CTRL_EXT_LINK_EN		0x00010000
+#define	E1000_CTRL_SWDPIN0	0x00040000 /* SWDPIN 0 value */
+#define	E1000_CTRL_SWDPIN1	0x00080000 /* SWDPIN 1 value */
+#define	E1000_CTRL_SWDPIN2	0x00100000 /* SWDPIN 2 value */
+#define	E1000_CTRL_SWDPIN3	0x00200000 /* SWDPIN 3 value */
+#define	E1000_CTRL_SWDPIO0	0x00400000 /* SWDPIN 0 Input or output */
+#define	E1000_CTRL_SWDPIO1	0x00800000 /* SWDPIN 1 input or output */
+#define	E1000_CTRL_SWDPIO2	0x01000000 /* SWDPIN 2 input or output */
+#define	E1000_CTRL_SWDPIO3	0x02000000 /* SWDPIN 3 input or output */
+#define	E1000_CTRL_RST		0x04000000 /* Global reset */
+#define	E1000_CTRL_RFCE		0x08000000 /* Receive Flow Control enable */
+#define	E1000_CTRL_TFCE		0x10000000 /* Transmit flow control enable */
+#define	E1000_CTRL_RTE		0x20000000 /* Routing tag enable */
+#define	E1000_CTRL_VME		0x40000000 /* IEEE VLAN mode enable */
+#define	E1000_CTRL_PHY_RST	0x80000000 /* PHY Reset */
+/* Initiate an interrupt to manageability engine */
+#define	E1000_CTRL_SW2FW_INT	0x02000000
+#define	E1000_CTRL_I2C_ENA	0x02000000 /* I2C enable */
+
+/*
+ * Bit definitions for the Management Data IO (MDIO) and Management Data
+ * Clock (MDC) pins in the Device Control Register.
+ */
+#define	E1000_CTRL_PHY_RESET_DIR	E1000_CTRL_SWDPIO0
+#define	E1000_CTRL_PHY_RESET		E1000_CTRL_SWDPIN0
+#define	E1000_CTRL_MDIO_DIR		E1000_CTRL_SWDPIO2
+#define	E1000_CTRL_MDIO			E1000_CTRL_SWDPIN2
+#define	E1000_CTRL_MDC_DIR		E1000_CTRL_SWDPIO3
+#define	E1000_CTRL_MDC			E1000_CTRL_SWDPIN3
+#define	E1000_CTRL_PHY_RESET_DIR4	E1000_CTRL_EXT_SDP4_DIR
+#define	E1000_CTRL_PHY_RESET4		E1000_CTRL_EXT_SDP4_DATA
+
+#define	E1000_CONNSW_ENRGSRC		0x4
+#define	E1000_PCS_LCTL_FLV_LINK_UP	1
+#define	E1000_PCS_LCTL_FSV_10		0
+#define	E1000_PCS_LCTL_FSV_100		2
+#define	E1000_PCS_LCTL_FSV_1000		4
+#define	E1000_PCS_LCTL_FDV_FULL		8
+#define	E1000_PCS_LCTL_FSD		0x10
+#define	E1000_PCS_LCTL_FORCE_LINK	0x20
+#define	E1000_PCS_LCTL_LOW_LINK_LATCH	0x40
+#define	E1000_PCS_LCTL_AN_ENABLE	0x10000
+#define	E1000_PCS_LCTL_AN_RESTART	0x20000
+#define	E1000_PCS_LCTL_AN_TIMEOUT	0x40000
+#define	E1000_PCS_LCTL_AN_SGMII_BYPASS	0x80000
+#define	E1000_PCS_LCTL_AN_SGMII_TRIGGER	0x100000
+#define	E1000_PCS_LCTL_FAST_LINK_TIMER	0x1000000
+#define	E1000_PCS_LCTL_LINK_OK_FIX	0x2000000
+#define	E1000_PCS_LCTL_CRS_ON_NI	0x4000000
+#define	E1000_ENABLE_SERDES_LOOPBACK	0x0410
+
+#define	E1000_PCS_LSTS_LINK_OK		1
+#define	E1000_PCS_LSTS_SPEED_10		0
+#define	E1000_PCS_LSTS_SPEED_100	2
+#define	E1000_PCS_LSTS_SPEED_1000	4
+#define	E1000_PCS_LSTS_DUPLEX_FULL	8
+#define	E1000_PCS_LSTS_SYNK_OK		0x10
+#define	E1000_PCS_LSTS_AN_COMPLETE	0x10000
+#define	E1000_PCS_LSTS_AN_PAGE_RX	0x20000
+#define	E1000_PCS_LSTS_AN_TIMED_OUT	0x40000
+#define	E1000_PCS_LSTS_AN_REMOTE_FAULT	0x80000
+#define	E1000_PCS_LSTS_AN_ERROR_RWS	0x100000
+
+/* Device Status */
+#define	E1000_STATUS_FD		0x00000001	/* Full	duplex.0=half,1=full */
+#define	E1000_STATUS_LU		0x00000002	/* Link	up.0=no,1=link */
+#define	E1000_STATUS_FUNC_MASK	0x0000000C	/* PCI Function	Mask */
+#define	E1000_STATUS_FUNC_SHIFT	2
+#define	E1000_STATUS_FUNC_0	0x00000000	/* Function 0 */
+#define	E1000_STATUS_FUNC_1	0x00000004	/* Function 1 */
+#define	E1000_STATUS_TXOFF	0x00000010	/* transmission	paused */
+#define	E1000_STATUS_TBIMODE	0x00000020	/* TBI mode */
+#define	E1000_STATUS_SPEED_MASK	0x000000C0
+#define	E1000_STATUS_SPEED_10	0x00000000	/* Speed 10Mb/s	*/
+#define	E1000_STATUS_SPEED_100	0x00000040	/* Speed 100Mb/s */
+#define	E1000_STATUS_SPEED_1000	0x00000080	/* Speed 1000Mb/s */
+#define	E1000_STATUS_LAN_INIT_DONE 0x00000200	/* Lan Init Completion by NVM */
+#define	E1000_STATUS_ASDV	0x00000300	/* Auto	speed detect value */
+/* Change in Dock/Undock state. Clear on write '0'. */
+#define	E1000_STATUS_DOCK_CI	0x00000800
+/* Status of Master requests. */
+#define	E1000_STATUS_GIO_MASTER_ENABLE	0x00080000
+#define	E1000_STATUS_MTXCKOK	0x00000400	/* MTX clock running OK	*/
+#define	E1000_STATUS_PCI66	0x00000800	/* In 66Mhz slot */
+#define	E1000_STATUS_BUS64	0x00001000	/* In 64 bit slot */
+#define	E1000_STATUS_PCIX_MODE	0x00002000	/* PCI-X mode */
+#define	E1000_STATUS_PCIX_SPEED	0x0000C000	/* PCI-X bus speed */
+#define	E1000_STATUS_BMC_SKU_0	0x00100000	/* BMC USB redirect disabled */
+#define	E1000_STATUS_BMC_SKU_1	0x00200000	/* BMC SRAM disabled */
+#define	E1000_STATUS_BMC_SKU_2	0x00400000	/* BMC SDRAM disabled */
+#define	E1000_STATUS_BMC_CRYPTO	0x00800000	/* BMC crypto disabled */
+/* BMC external code execution disabled */
+#define	E1000_STATUS_BMC_LITE	  0x01000000
+#define	E1000_STATUS_RGMII_ENABLE 0x02000000	/* RGMII disabled */
+#define	E1000_STATUS_FUSE_8	  0x04000000
+#define	E1000_STATUS_FUSE_9	  0x08000000
+#define	E1000_STATUS_SERDES0_DIS  0x10000000	/* SERDES disabled on port 0 */
+#define	E1000_STATUS_SERDES1_DIS  0x20000000	/* SERDES disabled on port 1 */
+
+/* Constants used to intrepret the masked PCI-X bus speed. */
+/* PCI-X bus speed 50-66 MHz */
+#define	E1000_STATUS_PCIX_SPEED_66  0x00000000
+/* PCI-X bus speed 66-100 MHz */
+#define	E1000_STATUS_PCIX_SPEED_100 0x00004000
+/* PCI-X bus speed 100-133 MHz */
+#define	E1000_STATUS_PCIX_SPEED_133 0x00008000
+
+#define	SPEED_10	10
+#define	SPEED_100	100
+#define	SPEED_1000	1000
+#define	HALF_DUPLEX	1
+#define	FULL_DUPLEX	2
+
+#define	PHY_FORCE_TIME	20
+
+#define	ADVERTISE_10_HALF	0x0001
+#define	ADVERTISE_10_FULL	0x0002
+#define	ADVERTISE_100_HALF	0x0004
+#define	ADVERTISE_100_FULL	0x0008
+#define	ADVERTISE_1000_HALF	0x0010	/* Not used, just FYI */
+#define	ADVERTISE_1000_FULL	0x0020
+
+/* 1000/H is not supported, nor spec-compliant. */
+#define	E1000_ALL_SPEED_DUPLEX	(ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
+				ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
+						ADVERTISE_1000_FULL)
+#define	E1000_ALL_NOT_GIG	(ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
+				ADVERTISE_100_HALF | ADVERTISE_100_FULL)
+#define	E1000_ALL_100_SPEED	(ADVERTISE_100_HALF | ADVERTISE_100_FULL)
+#define	E1000_ALL_10_SPEED	(ADVERTISE_10_HALF | ADVERTISE_10_FULL)
+#define	E1000_ALL_FULL_DUPLEX	(ADVERTISE_10_FULL | ADVERTISE_100_FULL | \
+						ADVERTISE_1000_FULL)
+#define	E1000_ALL_HALF_DUPLEX	(ADVERTISE_10_HALF | ADVERTISE_100_HALF)
+
+#define	AUTONEG_ADVERTISE_SPEED_DEFAULT	E1000_ALL_SPEED_DUPLEX
+
+/* LED Control */
+#define	E1000_LEDCTL_LED0_MODE_MASK	0x0000000F
+#define	E1000_LEDCTL_LED0_MODE_SHIFT	0
+#define	E1000_LEDCTL_LED0_BLINK_RATE	0x00000020
+#define	E1000_LEDCTL_LED0_IVRT		0x00000040
+#define	E1000_LEDCTL_LED0_BLINK		0x00000080
+#define	E1000_LEDCTL_LED1_MODE_MASK	0x00000F00
+#define	E1000_LEDCTL_LED1_MODE_SHIFT	8
+#define	E1000_LEDCTL_LED1_BLINK_RATE	0x00002000
+#define	E1000_LEDCTL_LED1_IVRT		0x00004000
+#define	E1000_LEDCTL_LED1_BLINK		0x00008000
+#define	E1000_LEDCTL_LED2_MODE_MASK	0x000F0000
+#define	E1000_LEDCTL_LED2_MODE_SHIFT	16
+#define	E1000_LEDCTL_LED2_BLINK_RATE	0x00200000
+#define	E1000_LEDCTL_LED2_IVRT		0x00400000
+#define	E1000_LEDCTL_LED2_BLINK		0x00800000
+#define	E1000_LEDCTL_LED3_MODE_MASK	0x0F000000
+#define	E1000_LEDCTL_LED3_MODE_SHIFT	24
+#define	E1000_LEDCTL_LED3_BLINK_RATE	0x20000000
+#define	E1000_LEDCTL_LED3_IVRT		0x40000000
+#define	E1000_LEDCTL_LED3_BLINK		0x80000000
+
+#define	E1000_LEDCTL_MODE_LINK_10_1000	0x0
+#define	E1000_LEDCTL_MODE_LINK_100_1000	0x1
+#define	E1000_LEDCTL_MODE_LINK_UP	0x2
+#define	E1000_LEDCTL_MODE_ACTIVITY	0x3
+#define	E1000_LEDCTL_MODE_LINK_ACTIVITY	0x4
+#define	E1000_LEDCTL_MODE_LINK_10	0x5
+#define	E1000_LEDCTL_MODE_LINK_100	0x6
+#define	E1000_LEDCTL_MODE_LINK_1000	0x7
+#define	E1000_LEDCTL_MODE_PCIX_MODE	0x8
+#define	E1000_LEDCTL_MODE_FULL_DUPLEX	0x9
+#define	E1000_LEDCTL_MODE_COLLISION	0xA
+#define	E1000_LEDCTL_MODE_BUS_SPEED	0xB
+#define	E1000_LEDCTL_MODE_BUS_SIZE	0xC
+#define	E1000_LEDCTL_MODE_PAUSED	0xD
+#define	E1000_LEDCTL_MODE_LED_ON	0xE
+#define	E1000_LEDCTL_MODE_LED_OFF	0xF
+
+/* Transmit Descriptor bit definitions */
+#define	E1000_TXD_DTYP_D	0x00100000	/* Data	Descriptor */
+#define	E1000_TXD_DTYP_C	0x00000000	/* Context Descriptor */
+#define	E1000_TXD_POPTS_IXSM	0x01		/* Insert IP checksum */
+#define	E1000_TXD_POPTS_TXSM	0x02		/* Insert TCP/UDP checksum */
+#define	E1000_TXD_CMD_EOP	0x01000000	/* End of Packet */
+#define	E1000_TXD_CMD_IFCS	0x02000000	/* Insert FCS (Ethernet	CRC) */
+#define	E1000_TXD_CMD_IC	0x04000000	/* Insert Checksum */
+#define	E1000_TXD_CMD_RS	0x08000000	/* Report Status */
+#define	E1000_TXD_CMD_RPS	0x10000000	/* Report Packet Sent */
+/* Descriptor extension (0 = legacy) */
+#define	E1000_TXD_CMD_DEXT	0x20000000
+#define	E1000_TXD_CMD_VLE	0x40000000	/* Add VLAN tag	*/
+#define	E1000_TXD_CMD_IDE	0x80000000	/* Enable Tidv register	*/
+#define	E1000_TXD_STAT_DD	0x00000001	/* Descriptor Done */
+#define	E1000_TXD_STAT_EC	0x00000002	/* Excess Collisions */
+#define	E1000_TXD_STAT_LC	0x00000004	/* Late	Collisions */
+#define	E1000_TXD_STAT_TU	0x00000008	/* Transmit underrun */
+#define	E1000_TXD_CMD_TCP	0x01000000	/* TCP packet */
+#define	E1000_TXD_CMD_IP	0x02000000	/* IP packet */
+#define	E1000_TXD_CMD_TSE	0x04000000	/* TCP Seg enable */
+#define	E1000_TXD_STAT_TC	0x00000004	/* Tx Underrun */
+/* Extended desc bits for Linksec and timesync */
+
+/* Transmit Control */
+#define	E1000_TCTL_RST	0x00000001	/* software reset */
+#define	E1000_TCTL_EN	0x00000002	/* enable tx */
+#define	E1000_TCTL_BCE	0x00000004	/* busy check enable */
+#define	E1000_TCTL_PSP	0x00000008	/* pad short packets */
+#define	E1000_TCTL_CT	0x00000ff0	/* collision threshold */
+#define	E1000_TCTL_COLD	0x003ff000	/* collision distance */
+#define	E1000_TCTL_SWXOFF 0x00400000	/* SW Xoff transmission */
+#define	E1000_TCTL_PBE	0x00800000	/* Packet Burst Enable */
+#define	E1000_TCTL_RTLC	0x01000000	/* Re-transmit on late collision */
+#define	E1000_TCTL_NRTU	0x02000000	/* No Re-transmit on underrun */
+#define	E1000_TCTL_MULR	0x10000000	/* Multiple request support */
+
+/* Transmit Arbitration Count */
+#define	E1000_TARC0_ENABLE	0x00000400	/* Enable Tx Queue 0 */
+
+/* SerDes Control */
+#define	E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
+
+/* Receive Checksum Control */
+#define	E1000_RXCSUM_PCSS_MASK	0x000000FF	/* Packet Checksum Start */
+#define	E1000_RXCSUM_IPOFL	0x00000100	/* IPv4 checksum offload */
+#define	E1000_RXCSUM_TUOFL	0x00000200	/* TCP / UDP checksum offload */
+#define	E1000_RXCSUM_IPV6OFL	0x00000400	/* IPv6 checksum offload */
+#define	E1000_RXCSUM_CRCOFL	0x00000800	/* CRC32 offload enable */
+#define	E1000_RXCSUM_IPPCSE	0x00001000	/* IP payload checksum enable */
+#define	E1000_RXCSUM_PCSD	0x00002000	/* packet checksum disabled */
+
+/* Header split receive */
+#define	E1000_RFCTL_ISCSI_DIS		0x00000001
+#define	E1000_RFCTL_ISCSI_DWC_MASK	0x0000003E
+#define	E1000_RFCTL_ISCSI_DWC_SHIFT	1
+#define	E1000_RFCTL_NFSW_DIS		0x00000040
+#define	E1000_RFCTL_NFSR_DIS		0x00000080
+#define	E1000_RFCTL_NFS_VER_MASK	0x00000300
+#define	E1000_RFCTL_NFS_VER_SHIFT	8
+#define	E1000_RFCTL_IPV6_DIS		0x00000400
+#define	E1000_RFCTL_IPV6_XSUM_DIS	0x00000800
+#define	E1000_RFCTL_ACK_DIS		0x00001000
+#define	E1000_RFCTL_ACKD_DIS		0x00002000
+#define	E1000_RFCTL_IPFRSP_DIS		0x00004000
+#define	E1000_RFCTL_EXTEN		0x00008000
+#define	E1000_RFCTL_IPV6_EX_DIS		0x00010000
+#define	E1000_RFCTL_NEW_IPV6_EXT_DIS	0x00020000
+
+/* Collision related configuration parameters */
+#define	E1000_COLLISION_THRESHOLD	15
+#define	E1000_CT_SHIFT			4
+#define	E1000_COLLISION_DISTANCE	63
+#define	E1000_COLD_SHIFT		12
+
+/* Default values for the transmit IPG register */
+#define	DEFAULT_82542_TIPG_IPGT		10
+#define	DEFAULT_82543_TIPG_IPGT_FIBER	9
+#define	DEFAULT_82543_TIPG_IPGT_COPPER	8
+
+#define	E1000_TIPG_IPGT_MASK	0x000003FF
+#define	E1000_TIPG_IPGR1_MASK	0x000FFC00
+#define	E1000_TIPG_IPGR2_MASK	0x3FF00000
+
+#define	DEFAULT_82542_TIPG_IPGR1	2
+#define	DEFAULT_82543_TIPG_IPGR1	8
+#define	E1000_TIPG_IPGR1_SHIFT		10
+
+#define	DEFAULT_82542_TIPG_IPGR2	10
+#define	DEFAULT_82543_TIPG_IPGR2	6
+#define	DEFAULT_80003ES2LAN_TIPG_IPGR2	7
+#define	E1000_TIPG_IPGR2_SHIFT		20
+
+/* Ethertype field values */
+#define	ETHERNET_IEEE_VLAN_TYPE	0x8100	/* 802.3ac packet */
+
+#define	ETHERNET_FCS_SIZE	4
+#define	MAX_JUMBO_FRAME_SIZE	0x3F00
+
+/* Extended Configuration Control and Size */
+#define	E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP	0x00000020
+#define	E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE	0x00000001
+#define	E1000_EXTCNF_CTRL_SWFLAG		0x00000020
+#define	E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK	0x00FF0000
+#define	E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT	16
+#define	E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK	0x0FFF0000
+#define	E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT	16
+
+#define	E1000_PHY_CTRL_SPD_EN		0x00000001
+#define	E1000_PHY_CTRL_D0A_LPLU		0x00000002
+#define	E1000_PHY_CTRL_NOND0A_LPLU	0x00000004
+#define	E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
+#define	E1000_PHY_CTRL_GBE_DISABLE	0x00000040
+
+#define	E1000_KABGTXD_BGSQLBIAS		0x00050000
+
+/* PBA constants */
+#define	E1000_PBA_8K	0x0008	/* 8KB, default Rx allocation */
+#define	E1000_PBA_12K	0x000C	/* 12KB, default Rx allocation */
+#define	E1000_PBA_16K	0x0010	/* 16KB, default TX allocation */
+#define	E1000_PBA_20K	0x0014
+#define	E1000_PBA_22K	0x0016
+#define	E1000_PBA_24K	0x0018
+#define	E1000_PBA_30K	0x001E
+#define	E1000_PBA_32K	0x0020
+#define	E1000_PBA_34K	0x0022
+#define	E1000_PBA_38K	0x0026
+#define	E1000_PBA_40K	0x0028
+#define	E1000_PBA_48K	0x0030	/* 48KB, default RX allocation */
+
+#define	E1000_PBS_16K	E1000_PBA_16K
+#define	E1000_PBS_24K	E1000_PBA_24K
+
+#define	IFS_MAX		80
+#define	IFS_MIN		40
+#define	IFS_RATIO	4
+#define	IFS_STEP	10
+#define	MIN_NUM_XMITS	1000
+
+/* SW Semaphore Register */
+#define	E1000_SWSM_SMBI		0x00000001	/* Driver Semaphore bit */
+#define	E1000_SWSM_SWESMBI	0x00000002	/* FW Semaphore bit */
+#define	E1000_SWSM_WMNG		0x00000004	/* Wake MNG Clock */
+#define	E1000_SWSM_DRV_LOAD	0x00000008	/* Driver Loaded Bit */
+
+/* Interrupt Cause Read */
+#define	E1000_ICR_TXDW		0x00000001	/* Transmit desc written back */
+#define	E1000_ICR_TXQE		0x00000002	/* Transmit Queue empty */
+#define	E1000_ICR_LSC		0x00000004	/* Link Status Change */
+#define	E1000_ICR_RXSEQ		0x00000008	/* rx sequence error */
+#define	E1000_ICR_RXDMT0	0x00000010	/* rx desc min. threshold (0) */
+#define	E1000_ICR_RXO		0x00000040	/* rx overrun */
+#define	E1000_ICR_RXT0		0x00000080	/* rx timer intr (ring 0) */
+#define	E1000_ICR_MDAC		0x00000200	/* MDIO access complete */
+#define	E1000_ICR_RXCFG		0x00000400	/* RX /c/ ordered set */
+#define	E1000_ICR_GPI_EN0	0x00000800	/* GP Int 0 */
+#define	E1000_ICR_GPI_EN1	0x00001000	/* GP Int 1 */
+#define	E1000_ICR_GPI_EN2	0x00002000	/* GP Int 2 */
+#define	E1000_ICR_GPI_EN3	0x00004000	/* GP Int 3 */
+#define	E1000_ICR_TXD_LOW	0x00008000
+#define	E1000_ICR_SRPD		0x00010000
+#define	E1000_ICR_ACK		0x00020000	/* Receive Ack frame */
+#define	E1000_ICR_MNG		0x00040000	/* Manageability event */
+#define	E1000_ICR_DOCK		0x00080000	/* Dock/Undock */
+/* If this bit asserted, the driver should claim the interrupt */
+#define	E1000_ICR_INT_ASSERTED	0x80000000
+/* queue 0 Rx descriptor FIFO parity error */
+#define	E1000_ICR_RXD_FIFO_PAR0	0x00100000
+/* queue 0 Tx descriptor FIFO parity error */
+#define	E1000_ICR_TXD_FIFO_PAR0	0x00200000
+/* host arb read buffer parity error */
+#define	E1000_ICR_HOST_ARB_PAR	0x00400000
+/* packet buffer parity error */
+#define	E1000_ICR_PB_PAR	0x00800000
+/* queue 1 Rx descriptor FIFO parity error */
+#define	E1000_ICR_RXD_FIFO_PAR1	0x01000000
+/* queue 1 Tx descriptor FIFO parity error */
+#define	E1000_ICR_TXD_FIFO_PAR1	0x02000000
+/* all parity error bits */
+#define	E1000_ICR_ALL_PARITY	0x03F00000
+/* FW changed the status of DISSW bit in the FWSM */
+#define	E1000_ICR_DSW		0x00000020
+/* LAN connected device generates an interrupt */
+#define	E1000_ICR_PHYINT	0x00001000
+/* ME handware reset occurs */
+#define	E1000_ICR_EPRST		0x00100000
+
+/* Extended Interrupt Cause Read */
+#define	E1000_EICR_RX_QUEUE0	0x00000001	/* Rx Queue 0 Interrupt */
+#define	E1000_EICR_RX_QUEUE1	0x00000002	/* Rx Queue 1 Interrupt */
+#define	E1000_EICR_RX_QUEUE2	0x00000004	/* Rx Queue 2 Interrupt */
+#define	E1000_EICR_RX_QUEUE3	0x00000008	/* Rx Queue 3 Interrupt */
+#define	E1000_EICR_TX_QUEUE0	0x00000100	/* Tx Queue 0 Interrupt */
+#define	E1000_EICR_TX_QUEUE1	0x00000200	/* Tx Queue 1 Interrupt */
+#define	E1000_EICR_TX_QUEUE2	0x00000400	/* Tx Queue 2 Interrupt */
+#define	E1000_EICR_TX_QUEUE3	0x00000800	/* Tx Queue 3 Interrupt */
+#define	E1000_EICR_TCP_TIMER	0x40000000	/* TCP Timer */
+#define	E1000_EICR_OTHER	0x80000000	/* Interrupt Cause Active */
+/* TCP Timer */
+#define	E1000_TCPTIMER_KS	0x00000100	/* KickStart */
+#define	E1000_TCPTIMER_COUNT_ENABLE	0x00000200	/* Count Enable */
+#define	E1000_TCPTIMER_COUNT_FINISH	0x00000400	/* Count finish */
+#define	E1000_TCPTIMER_LOOP	0x00000800	/* Loop */
+
+/*
+ * This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register.  Each bit is documented below:
+ *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ *   o RXSEQ  = Receive Sequence Error
+ */
+#define	POLL_IMS_ENABLE_MASK	( \
+    E1000_IMS_RXDMT0 | \
+    E1000_IMS_RXSEQ)
+
+/*
+ * This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register.  Each bit is documented below:
+ *   o RXT0   = Receiver Timer Interrupt (ring 0)
+ *   o TXDW   = Transmit Descriptor Written Back
+ *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ *   o RXSEQ  = Receive Sequence Error
+ *   o LSC    = Link Status Change
+ */
+#define	IMS_ENABLE_MASK ( \
+    E1000_IMS_RXT0   | \
+    E1000_IMS_TXDW   | \
+    E1000_IMS_RXDMT0 | \
+    E1000_IMS_RXSEQ  | \
+    E1000_IMS_LSC)
+
+/* Interrupt Mask Set */
+#define	E1000_IMS_TXDW		E1000_ICR_TXDW	/* Transmit desc written back */
+#define	E1000_IMS_TXQE		E1000_ICR_TXQE	/* Transmit Queue empty */
+#define	E1000_IMS_LSC		E1000_ICR_LSC	/* Link Status Change */
+#define	E1000_IMS_RXSEQ		E1000_ICR_RXSEQ	/* rx sequence error */
+#define	E1000_IMS_RXDMT0	E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define	E1000_IMS_RXO		E1000_ICR_RXO	/* rx overrun */
+#define	E1000_IMS_RXT0		E1000_ICR_RXT0	/* rx timer intr */
+#define	E1000_IMS_MDAC		E1000_ICR_MDAC	/* MDIO access complete */
+#define	E1000_IMS_RXCFG		E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define	E1000_IMS_GPI_EN0	E1000_ICR_GPI_EN0	/* GP Int 0 */
+#define	E1000_IMS_GPI_EN1	E1000_ICR_GPI_EN1	/* GP Int 1 */
+#define	E1000_IMS_GPI_EN2	E1000_ICR_GPI_EN2	/* GP Int 2 */
+#define	E1000_IMS_GPI_EN3	E1000_ICR_GPI_EN3	/* GP Int 3 */
+#define	E1000_IMS_TXD_LOW	E1000_ICR_TXD_LOW
+#define	E1000_IMS_SRPD		E1000_ICR_SRPD
+#define	E1000_IMS_ACK		E1000_ICR_ACK	/* Receive Ack frame */
+#define	E1000_IMS_MNG		E1000_ICR_MNG	/* Manageability event */
+#define	E1000_IMS_DOCK		E1000_ICR_DOCK	/* Dock/Undock */
+/* queue 0 Rx descriptor FIFO parity error */
+#define	E1000_IMS_RXD_FIFO_PAR0	E1000_ICR_RXD_FIFO_PAR0
+/* queue 0 Tx descriptor FIFO parity error */
+#define	E1000_IMS_TXD_FIFO_PAR0	E1000_ICR_TXD_FIFO_PAR0
+/* host arb read buffer parity error */
+#define	E1000_IMS_HOST_ARB_PAR	E1000_ICR_HOST_ARB_PAR
+/* packet buffer parity error */
+#define	E1000_IMS_PB_PAR	E1000_ICR_PB_PAR
+/* queue 1 Rx descriptor FIFO parity error */
+#define	E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1
+/* queue 1 Tx descriptor FIFO parity error */
+#define	E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1
+#define	E1000_IMS_DSW		E1000_ICR_DSW
+#define	E1000_IMS_PHYINT	E1000_ICR_PHYINT
+#define	E1000_IMS_EPRST		E1000_ICR_EPRST
+
+/* Extended Interrupt Mask Set */
+#define	E1000_EIMS_RX_QUEUE0	E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define	E1000_EIMS_RX_QUEUE1	E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define	E1000_EIMS_RX_QUEUE2	E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define	E1000_EIMS_RX_QUEUE3	E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define	E1000_EIMS_TX_QUEUE0	E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define	E1000_EIMS_TX_QUEUE1	E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define	E1000_EIMS_TX_QUEUE2	E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define	E1000_EIMS_TX_QUEUE3	E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define	E1000_EIMS_TCP_TIMER	E1000_EICR_TCP_TIMER /* TCP Timer */
+#define	E1000_EIMS_OTHER	E1000_EICR_OTHER /* Interrupt Cause Active */
+
+/* Interrupt Cause Set */
+#define	E1000_ICS_TXDW		E1000_ICR_TXDW	/* Transmit desc written back */
+#define	E1000_ICS_TXQE		E1000_ICR_TXQE	/* Transmit Queue empty */
+#define	E1000_ICS_LSC		E1000_ICR_LSC	/* Link Status Change */
+#define	E1000_ICS_RXSEQ		E1000_ICR_RXSEQ	/* rx sequence error */
+#define	E1000_ICS_RXDMT0	E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define	E1000_ICS_RXO		E1000_ICR_RXO	/* rx overrun */
+#define	E1000_ICS_RXT0		E1000_ICR_RXT0	/* rx timer intr */
+#define	E1000_ICS_MDAC		E1000_ICR_MDAC	/* MDIO access complete */
+#define	E1000_ICS_RXCFG		E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define	E1000_ICS_GPI_EN0	E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define	E1000_ICS_GPI_EN1	E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define	E1000_ICS_GPI_EN2	E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define	E1000_ICS_GPI_EN3	E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define	E1000_ICS_TXD_LOW	E1000_ICR_TXD_LOW
+#define	E1000_ICS_SRPD		E1000_ICR_SRPD
+#define	E1000_ICS_ACK		E1000_ICR_ACK	/* Receive Ack frame */
+#define	E1000_ICS_MNG		E1000_ICR_MNG	/* Manageability event */
+#define	E1000_ICS_DOCK		E1000_ICR_DOCK	/* Dock/Undock */
+/* queue 0 Rx descriptor FIFO parity error */
+#define	E1000_ICS_RXD_FIFO_PAR0	E1000_ICR_RXD_FIFO_PAR0
+/* queue 0 Tx descriptor FIFO parity error */
+#define	E1000_ICS_TXD_FIFO_PAR0	E1000_ICR_TXD_FIFO_PAR0
+/* host arb read buffer parity error */
+#define	E1000_ICS_HOST_ARB_PAR	E1000_ICR_HOST_ARB_PAR
+/* packet buffer parity error */
+#define	E1000_ICS_PB_PAR	E1000_ICR_PB_PAR
+/* queue 1 Rx descriptor FIFO parity error */
+#define	E1000_ICS_RXD_FIFO_PAR1	E1000_ICR_RXD_FIFO_PAR1
+/* queue 1 Tx descriptor FIFO parity error */
+#define	E1000_ICS_TXD_FIFO_PAR1	E1000_ICR_TXD_FIFO_PAR1
+#define	E1000_ICS_DSW		E1000_ICR_DSW
+#define	E1000_ICS_PHYINT	E1000_ICR_PHYINT
+#define	E1000_ICS_EPRST		E1000_ICR_EPRST
+
+/* Extended Interrupt Cause Set */
+#define	E1000_EICS_RX_QUEUE0	E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define	E1000_EICS_RX_QUEUE1	E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define	E1000_EICS_RX_QUEUE2	E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define	E1000_EICS_RX_QUEUE3	E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define	E1000_EICS_TX_QUEUE0	E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define	E1000_EICS_TX_QUEUE1	E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define	E1000_EICS_TX_QUEUE2	E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define	E1000_EICS_TX_QUEUE3	E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define	E1000_EICS_TCP_TIMER	E1000_EICR_TCP_TIMER /* TCP Timer */
+#define	E1000_EICS_OTHER	E1000_EICR_OTHER /* Interrupt Cause Active */
+
+/* Transmit Descriptor Control */
+#define	E1000_TXDCTL_PTHRESH	0x0000003F	/* TXDCTL Prefetch Threshold */
+#define	E1000_TXDCTL_HTHRESH	0x00003F00	/* TXDCTL Host Threshold */
+#define	E1000_TXDCTL_WTHRESH	0x003F0000	/* TXDCTL Writeback Threshold */
+#define	E1000_TXDCTL_GRAN	0x01000000	/* TXDCTL Granularity */
+#define	E1000_TXDCTL_LWTHRESH	0xFE000000	/* TXDCTL Low Threshold */
+#define	E1000_TXDCTL_FULL_TX_DESC_WB	0x01010000	/* GRAN=1, WTHRESH=1 */
+#define	E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F	/* GRAN=1, PTHRESH=31 */
+/* Enable the counting of descriptors still to be processed. */
+#define	E1000_TXDCTL_COUNT_DESC	0x00400000
+
+/* Flow Control Constants */
+#define	FLOW_CONTROL_ADDRESS_LOW	0x00C28001
+#define	FLOW_CONTROL_ADDRESS_HIGH	0x00000100
+#define	FLOW_CONTROL_TYPE		0x8808
+
+/* 802.1q VLAN Packet Size */
+#define	VLAN_TAG_SIZE			4 /* 802.3ac tag (not DMA'd) */
+#define	E1000_VLAN_FILTER_TBL_SIZE	128 /* VLAN Filter Table (4096 bits) */
+
+/* Receive Address */
+/*
+ * Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * Technically, we have 16 spots.  However, we reserve one of these spots
+ * (RAR[15]) for our directed address used by controllers with
+ * manageability enabled, allowing us room for 15 multicast addresses.
+ */
+#define	E1000_RAR_ENTRIES	15
+#define	E1000_RAH_AV		0x80000000	/* Receive descriptor valid */
+
+/* Error Codes */
+#define	E1000_SUCCESS		0
+#define	E1000_ERR_NVM		1
+#define	E1000_ERR_PHY		2
+#define	E1000_ERR_CONFIG	3
+#define	E1000_ERR_PARAM		4
+#define	E1000_ERR_MAC_INIT	5
+#define	E1000_ERR_PHY_TYPE	6
+#define	E1000_ERR_RESET		9
+#define	E1000_ERR_MASTER_REQUESTS_PENDING	10
+#define	E1000_ERR_HOST_INTERFACE_COMMAND	11
+#define	E1000_BLK_PHY_RESET	12
+#define	E1000_ERR_SWFW_SYNC	13
+#define	E1000_NOT_IMPLEMENTED	14
+
+/* Loop limit on how long we wait for auto-negotiation to complete */
+#define	FIBER_LINK_UP_LIMIT	50
+#define	COPPER_LINK_UP_LIMIT	10
+#define	PHY_AUTO_NEG_LIMIT	45
+#define	PHY_FORCE_LIMIT		20
+/* Number of 100 microseconds we wait for PCI Express master disable */
+#define	MASTER_DISABLE_TIMEOUT	800
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define	PHY_CFG_TIMEOUT		100
+/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
+#define	MDIO_OWNERSHIP_TIMEOUT	10
+/* Number of milliseconds for NVM auto read done after MAC reset. */
+#define	AUTO_READ_DONE_TIMEOUT	10
+
+/* Flow Control */
+#define	E1000_FCRTH_RTH		0x0000FFF8 /* Mask Bits[15:3] for RTH */
+#define	E1000_FCRTH_XFCE	0x80000000 /* External Flow Control Enable */
+#define	E1000_FCRTL_RTL		0x0000FFF8 /* Mask Bits[15:3] for RTL */
+#define	E1000_FCRTL_XONE	0x80000000 /* Enable XON frame transmission */
+
+/* Transmit Configuration Word */
+#define	E1000_TXCW_FD		0x00000020 /* TXCW full duplex */
+#define	E1000_TXCW_HD		0x00000040 /* TXCW half duplex */
+#define	E1000_TXCW_PAUSE	0x00000080 /* TXCW sym pause request */
+#define	E1000_TXCW_ASM_DIR	0x00000100 /* TXCW astm pause direction */
+#define	E1000_TXCW_PAUSE_MASK	0x00000180 /* TXCW pause request mask */
+#define	E1000_TXCW_RF		0x00003000 /* TXCW remote fault */
+#define	E1000_TXCW_NP		0x00008000 /* TXCW next page */
+#define	E1000_TXCW_CW		0x0000ffff /* TxConfigWord mask */
+#define	E1000_TXCW_TXC		0x40000000 /* Transmit Config control */
+#define	E1000_TXCW_ANE		0x80000000 /* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define	E1000_RXCW_CW		0x0000ffff /* RxConfigWord mask */
+#define	E1000_RXCW_NC		0x04000000 /* Receive config no carrier */
+#define	E1000_RXCW_IV		0x08000000 /* Receive config invalid */
+#define	E1000_RXCW_CC		0x10000000 /* Receive config change */
+#define	E1000_RXCW_C		0x20000000 /* Receive config */
+#define	E1000_RXCW_SYNCH	0x40000000 /* Receive config synch */
+#define	E1000_RXCW_ANC		0x80000000 /* Auto-neg complete */
+
+/* PCI Express Control */
+#define	E1000_GCR_RXD_NO_SNOOP		0x00000001
+#define	E1000_GCR_RXDSCW_NO_SNOOP	0x00000002
+#define	E1000_GCR_RXDSCR_NO_SNOOP	0x00000004
+#define	E1000_GCR_TXD_NO_SNOOP		0x00000008
+#define	E1000_GCR_TXDSCW_NO_SNOOP	0x00000010
+#define	E1000_GCR_TXDSCR_NO_SNOOP	0x00000020
+
+#define	PCIE_NO_SNOOP_ALL	(E1000_GCR_RXD_NO_SNOOP	| \
+				E1000_GCR_RXDSCW_NO_SNOOP | \
+				E1000_GCR_RXDSCR_NO_SNOOP | \
+				E1000_GCR_TXD_NO_SNOOP	| \
+				E1000_GCR_TXDSCW_NO_SNOOP | \
+				E1000_GCR_TXDSCR_NO_SNOOP)
+
+/* PHY Control Register */
+#define	MII_CR_SPEED_SELECT_MSB	0x0040	/* bits 6,13: 10=1000, 01=100, 00=10 */
+#define	MII_CR_COLL_TEST_ENABLE	0x0080	/* Collision test enable */
+#define	MII_CR_FULL_DUPLEX	0x0100	/* FDX =1, half duplex =0 */
+#define	MII_CR_RESTART_AUTO_NEG	0x0200	/* Restart auto negotiation */
+#define	MII_CR_ISOLATE		0x0400	/* Isolate PHY from MII */
+#define	MII_CR_POWER_DOWN	0x0800	/* Power down */
+#define	MII_CR_AUTO_NEG_EN	0x1000	/* Auto Neg Enable */
+#define	MII_CR_SPEED_SELECT_LSB	0x2000	/* bits 6,13: 10=1000, 01=100, 00=10 */
+#define	MII_CR_LOOPBACK		0x4000	/* 0 = normal, 1 = loopback */
+#define	MII_CR_RESET		0x8000	/* 0 = normal, 1 = PHY reset */
+#define	MII_CR_SPEED_1000	0x0040
+#define	MII_CR_SPEED_100	0x2000
+#define	MII_CR_SPEED_10		0x0000
+
+/* PHY Status Register */
+#define	MII_SR_EXTENDED_CAPS	0x0001	/* Extended register capabilities */
+#define	MII_SR_JABBER_DETECT	0x0002	/* Jabber Detected */
+#define	MII_SR_LINK_STATUS	0x0004	/* Link Status 1 = link */
+#define	MII_SR_AUTONEG_CAPS	0x0008	/* Auto Neg Capable */
+#define	MII_SR_REMOTE_FAULT	0x0010	/* Remote Fault Detect */
+#define	MII_SR_AUTONEG_COMPLETE	0x0020	/* Auto Neg Complete */
+#define	MII_SR_PREAMBLE_SUPPRESS 0x0040	/* Preamble may be suppressed */
+#define	MII_SR_EXTENDED_STATUS	0x0100	/* Ext. status info in Reg 0x0F */
+#define	MII_SR_100T2_HD_CAPS	0x0200	/* 100T2 Half Duplex Capable */
+#define	MII_SR_100T2_FD_CAPS	0x0400	/* 100T2 Full Duplex Capable */
+#define	MII_SR_10T_HD_CAPS	0x0800	/* 10T   Half Duplex Capable */
+#define	MII_SR_10T_FD_CAPS	0x1000	/* 10T   Full Duplex Capable */
+#define	MII_SR_100X_HD_CAPS	0x2000	/* 100X  Half Duplex Capable */
+#define	MII_SR_100X_FD_CAPS	0x4000	/* 100X  Full Duplex Capable */
+#define	MII_SR_100T4_CAPS	0x8000	/* 100T4 Capable */
+
+/* Autoneg Advertisement Register */
+#define	NWAY_AR_SELECTOR_FIELD	0x0001	/* indicates IEEE 802.3 CSMA/CD */
+#define	NWAY_AR_10T_HD_CAPS	0x0020	/* 10T   Half Duplex Capable */
+#define	NWAY_AR_10T_FD_CAPS	0x0040	/* 10T   Full Duplex Capable */
+#define	NWAY_AR_100TX_HD_CAPS	0x0080	/* 100TX Half Duplex Capable */
+#define	NWAY_AR_100TX_FD_CAPS	0x0100	/* 100TX Full Duplex Capable */
+#define	NWAY_AR_100T4_CAPS	0x0200	/* 100T4 Capable */
+#define	NWAY_AR_PAUSE		0x0400	/* Pause operation desired */
+#define	NWAY_AR_ASM_DIR		0x0800	/* Asymmetric Pause Direction bit */
+#define	NWAY_AR_REMOTE_FAULT	0x2000	/* Remote Fault detected */
+#define	NWAY_AR_NEXT_PAGE	0x8000	/* Next Page ability supported */
+
+/* Link Partner Ability Register (Base Page) */
+#define	NWAY_LPAR_SELECTOR_FIELD 0x0000	/* LP protocol selector field */
+#define	NWAY_LPAR_10T_HD_CAPS	0x0020	/* LP is 10T   Half Duplex Capable */
+#define	NWAY_LPAR_10T_FD_CAPS	0x0040	/* LP is 10T   Full Duplex Capable */
+#define	NWAY_LPAR_100TX_HD_CAPS	0x0080	/* LP is 100TX Half Duplex Capable */
+#define	NWAY_LPAR_100TX_FD_CAPS	0x0100	/* LP is 100TX Full Duplex Capable */
+#define	NWAY_LPAR_100T4_CAPS	0x0200	/* LP is 100T4 Capable */
+#define	NWAY_LPAR_PAUSE		0x0400	/* LP Pause operation desired */
+#define	NWAY_LPAR_ASM_DIR	0x0800	/* LP Asymmetric Pause Direction bit */
+#define	NWAY_LPAR_REMOTE_FAULT	0x2000	/* LP has detected Remote Fault */
+#define	NWAY_LPAR_ACKNOWLEDGE	0x4000	/* LP has rx'd link code word */
+#define	NWAY_LPAR_NEXT_PAGE	0x8000	/* Next Page ability supported */
+
+/* Autoneg Expansion Register */
+#define	NWAY_ER_LP_NWAY_CAPS	0x0001	/* LP has Auto Neg Capability */
+#define	NWAY_ER_PAGE_RXD	0x0002	/* LP is 10T   Half Duplex Capable */
+#define	NWAY_ER_NEXT_PAGE_CAPS	0x0004	/* LP is 10T   Full Duplex Capable */
+#define	NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
+#define	NWAY_ER_PAR_DETECT_FAULT 0x0010	/* LP is 100TX Full Duplex Capable */
+
+/* 1000BASE-T Control Register */
+#define	CR_1000T_ASYM_PAUSE	0x0080	/* Advertise asymmetric pause bit */
+#define	CR_1000T_HD_CAPS	0x0100	/* Advertise 1000T HD capability */
+#define	CR_1000T_FD_CAPS	0x0200	/* Advertise 1000T FD capability  */
+#define	CR_1000T_REPEATER_DTE	0x0400	/* 1=Repeater/switch device port */
+					/* 0=DTE device */
+#define	CR_1000T_MS_VALUE	0x0800	/* 1=Configure PHY as Master */
+					/* 0=Configure PHY as Slave */
+#define	CR_1000T_MS_ENABLE	0x1000	/* 1=Master/Slave manual config value */
+					/* 0=Automatic Master/Slave config */
+#define	CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
+#define	CR_1000T_TEST_MODE_1	0x2000	/* Transmit Waveform test */
+#define	CR_1000T_TEST_MODE_2	0x4000	/* Master Transmit Jitter test */
+#define	CR_1000T_TEST_MODE_3	0x6000	/* Slave Transmit Jitter test */
+#define	CR_1000T_TEST_MODE_4	0x8000	/* Transmitter Distortion test */
+
+/* 1000BASE-T Status Register */
+#define	SR_1000T_IDLE_ERROR_CNT	0x00FF	/* Num idle errors since last read */
+#define	SR_1000T_ASYM_PAUSE_DIR	0x0100	/* LP asymmetric pause direction bit */
+#define	SR_1000T_LP_HD_CAPS	0x0400	/* LP is 1000T HD capable */
+#define	SR_1000T_LP_FD_CAPS	0x0800	/* LP is 1000T FD capable */
+#define	SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
+#define	SR_1000T_LOCAL_RX_STATUS 0x2000	/* Local receiver OK */
+#define	SR_1000T_MS_CONFIG_RES	0x4000	/* 1=Local TX is Master, 0=Slave */
+#define	SR_1000T_MS_CONFIG_FAULT 0x8000	/* Master/Slave config fault */
+
+#define	SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT	5
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define	PHY_CONTROL		0x00	/* Control Register */
+#define	PHY_STATUS		0x01	/* Status Regiser */
+#define	PHY_ID1			0x02	/* Phy Id Reg (word 1) */
+#define	PHY_ID2			0x03	/* Phy Id Reg (word 2) */
+#define	PHY_AUTONEG_ADV		0x04	/* Autoneg Advertisement */
+#define	PHY_LP_ABILITY		0x05	/* Link Partner Ability (Base Page) */
+#define	PHY_AUTONEG_EXP		0x06	/* Autoneg Expansion Reg */
+#define	PHY_NEXT_PAGE_TX	0x07	/* Next Page TX */
+#define	PHY_LP_NEXT_PAGE	0x08	/* Link Partner Next Page */
+#define	PHY_1000T_CTRL		0x09	/* 1000Base-T Control Reg */
+#define	PHY_1000T_STATUS	0x0A	/* 1000Base-T Status Reg */
+#define	PHY_EXT_STATUS		0x0F	/* Extended Status Reg */
+
+/* NVM Control */
+#define	E1000_EECD_SK		0x00000001 /* NVM Clock */
+#define	E1000_EECD_CS		0x00000002 /* NVM Chip Select */
+#define	E1000_EECD_DI		0x00000004 /* NVM Data In */
+#define	E1000_EECD_DO		0x00000008 /* NVM Data Out */
+#define	E1000_EECD_FWE_MASK	0x00000030
+#define	E1000_EECD_FWE_DIS	0x00000010 /* Disable FLASH writes */
+#define	E1000_EECD_FWE_EN	0x00000020 /* Enable FLASH writes */
+#define	E1000_EECD_FWE_SHIFT	4
+#define	E1000_EECD_REQ		0x00000040 /* NVM Access Request */
+#define	E1000_EECD_GNT		0x00000080 /* NVM Access Grant */
+#define	E1000_EECD_PRES		0x00000100 /* NVM Present */
+#define	E1000_EECD_SIZE		0x00000200 /* NVM Size (0=64 word 1=256 word) */
+/* NVM Addressing bits based on type 0=small, 1=large */
+#define	E1000_EECD_ADDR_BITS	0x00000400
+#define	E1000_EECD_TYPE		0x00002000 /* NVM Type (1-SPI, 0-Microwire) */
+#ifndef E1000_NVM_GRANT_ATTEMPTS
+#define	E1000_NVM_GRANT_ATTEMPTS	1000 /* NVM # attempts to gain grant */
+#endif
+#define	E1000_EECD_AUTO_RD	0x00000200 /* NVM Auto Read done */
+#define	E1000_EECD_SIZE_EX_MASK	0x00007800 /* NVM Size */
+#define	E1000_EECD_SIZE_EX_SHIFT	11
+#define	E1000_EECD_NVADDS	0x00018000 /* NVM Address Size */
+#define	E1000_EECD_SELSHAD	0x00020000 /* Select Shadow RAM */
+#define	E1000_EECD_INITSRAM	0x00040000 /* Initialize Shadow RAM */
+#define	E1000_EECD_FLUPD	0x00080000 /* Update FLASH */
+#define	E1000_EECD_AUPDEN	0x00100000 /* Enable Autonomous FLASH update */
+#define	E1000_EECD_SHADV	0x00200000 /* Shadow RAM Data Valid */
+#define	E1000_EECD_SEC1VAL	0x00400000 /* Sector One Valid */
+#define	E1000_EECD_SECVAL_SHIFT		22
+
+#define	E1000_NVM_SWDPIN0	0x0001	/* SWDPIN 0 NVM Value */
+#define	E1000_NVM_LED_LOGIC	0x0020	/* Led Logic Word */
+/* Offset to data in NVM read/write registers */
+#define	E1000_NVM_RW_REG_DATA	16
+#define	E1000_NVM_RW_REG_DONE	2 /* Offset to READ/WRITE done bit */
+#define	E1000_NVM_RW_REG_START	1 /* Start operation */
+#define	E1000_NVM_RW_ADDR_SHIFT	2 /* Shift to the address bits */
+#define	E1000_NVM_POLL_WRITE	1 /* Flag for polling for write complete */
+#define	E1000_NVM_POLL_READ	0 /* Flag for polling for read complete */
+#define	E1000_FLASH_UPDATES	2000
+
+/* NVM Word Offsets */
+#define	NVM_COMPAT			0x0003
+#define	NVM_ID_LED_SETTINGS		0x0004
+#define	NVM_VERSION			0x0005
+/* For SERDES output amplitude adjustment. */
+#define	NVM_SERDES_AMPLITUDE		0x0006
+#define	NVM_PHY_CLASS_WORD		0x0007
+#define	NVM_INIT_CONTROL1_REG		0x000A
+#define	NVM_INIT_CONTROL2_REG		0x000F
+#define	NVM_SWDEF_PINS_CTRL_PORT_1	0x0010
+#define	NVM_INIT_CONTROL3_PORT_B	0x0014
+#define	NVM_INIT_3GIO_3			0x001A
+#define	NVM_SWDEF_PINS_CTRL_PORT_0	0x0020
+#define	NVM_INIT_CONTROL3_PORT_A	0x0024
+#define	NVM_CFG				0x0012
+#define	NVM_FLASH_VERSION		0x0032
+#define	NVM_CHECKSUM_REG		0x003F
+
+#define	E1000_NVM_CFG_DONE_PORT_0	0x40000	/* MNG config cycle done */
+#define	E1000_NVM_CFG_DONE_PORT_1	0x80000	/* ...for second port */
+
+/* Mask bits for fields in Word 0x0f of the NVM */
+#define	NVM_WORD0F_PAUSE_MASK		0x3000
+#define	NVM_WORD0F_PAUSE		0x1000
+#define	NVM_WORD0F_ASM_DIR		0x2000
+#define	NVM_WORD0F_ANE			0x0800
+#define	NVM_WORD0F_SWPDIO_EXT_MASK	0x00F0
+#define	NVM_WORD0F_LPLU			0x0001
+
+/* Mask bits for fields in Word 0x1a of the NVM */
+#define	NVM_WORD1A_ASPM_MASK	0x000C
+
+/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
+#define	NVM_SUM			0xBABA
+
+#define	NVM_MAC_ADDR_OFFSET		0
+#define	NVM_PBA_OFFSET_0		8
+#define	NVM_PBA_OFFSET_1		9
+#define	NVM_RESERVED_WORD		0xFFFF
+#define	NVM_PHY_CLASS_A			0x8000
+#define	NVM_SERDES_AMPLITUDE_MASK	0x000F
+#define	NVM_SIZE_MASK			0x1C00
+#define	NVM_SIZE_SHIFT			10
+#define	NVM_WORD_SIZE_BASE_SHIFT	6
+#define	NVM_SWDPIO_EXT_SHIFT		4
+
+/* NVM Commands - Microwire */
+#define	NVM_READ_OPCODE_MICROWIRE	0x6	/* NVM read opcode */
+#define	NVM_WRITE_OPCODE_MICROWIRE	0x5	/* NVM write opcode */
+#define	NVM_ERASE_OPCODE_MICROWIRE	0x7	/* NVM erase opcode */
+#define	NVM_EWEN_OPCODE_MICROWIRE	0x13	/* NVM erase/write enable */
+#define	NVM_EWDS_OPCODE_MICROWIRE	0x10	/* NVM erast/write disable */
+
+/* NVM Commands - SPI */
+#define	NVM_MAX_RETRY_SPI	5000	/* Max wait of 5ms, for RDY signal */
+#define	NVM_READ_OPCODE_SPI	0x03	/* NVM read opcode */
+#define	NVM_WRITE_OPCODE_SPI	0x02	/* NVM write opcode */
+#define	NVM_A8_OPCODE_SPI	0x08	/* opcode bit-3 = address bit-8 */
+#define	NVM_WREN_OPCODE_SPI	0x06	/* NVM set Write Enable latch */
+#define	NVM_WRDI_OPCODE_SPI	0x04	/* NVM reset Write Enable latch */
+#define	NVM_RDSR_OPCODE_SPI	0x05	/* NVM read Status register */
+#define	NVM_WRSR_OPCODE_SPI	0x01	/* NVM write Status register */
+
+/* SPI NVM Status Register */
+#define	NVM_STATUS_RDY_SPI	0x01
+#define	NVM_STATUS_WEN_SPI	0x02
+#define	NVM_STATUS_BP0_SPI	0x04
+#define	NVM_STATUS_BP1_SPI	0x08
+#define	NVM_STATUS_WPEN_SPI	0x80
+
+/* Word definitions for ID LED Settings */
+#define	ID_LED_RESERVED_0000	0x0000
+#define	ID_LED_RESERVED_FFFF	0xFFFF
+#define	ID_LED_DEFAULT		((ID_LED_OFF1_ON2 << 12) | \
+				(ID_LED_OFF1_OFF2 <<  8) | \
+				(ID_LED_DEF1_DEF2 <<  4) | \
+				(ID_LED_DEF1_DEF2))
+#define	ID_LED_DEF1_DEF2	0x1
+#define	ID_LED_DEF1_ON2		0x2
+#define	ID_LED_DEF1_OFF2	0x3
+#define	ID_LED_ON1_DEF2		0x4
+#define	ID_LED_ON1_ON2		0x5
+#define	ID_LED_ON1_OFF2		0x6
+#define	ID_LED_OFF1_DEF2	0x7
+#define	ID_LED_OFF1_ON2		0x8
+#define	ID_LED_OFF1_OFF2	0x9
+
+#define	IGP_ACTIVITY_LED_MASK	0xFFFFF0FF
+#define	IGP_ACTIVITY_LED_ENABLE	0x0300
+#define	IGP_LED3_MODE		0x07000000
+
+/* PCI/PCI-X/PCI-EX Config space */
+#define	PCIX_COMMAND_REGISTER		0xE6
+#define	PCIX_STATUS_REGISTER_LO		0xE8
+#define	PCIX_STATUS_REGISTER_HI		0xEA
+#define	PCI_HEADER_TYPE_REGISTER	0x0E
+#define	PCIE_LINK_STATUS		0x12
+
+#define	PCIX_COMMAND_MMRBC_MASK		0x000C
+#define	PCIX_COMMAND_MMRBC_SHIFT	0x2
+#define	PCIX_STATUS_HI_MMRBC_MASK	0x0060
+#define	PCIX_STATUS_HI_MMRBC_SHIFT	0x5
+#define	PCIX_STATUS_HI_MMRBC_4K		0x3
+#define	PCIX_STATUS_HI_MMRBC_2K		0x2
+#define	PCIX_STATUS_LO_FUNC_MASK	0x7
+#define	PCI_HEADER_TYPE_MULTIFUNC	0x80
+#define	PCIE_LINK_WIDTH_MASK		0x3F0
+#define	PCIE_LINK_WIDTH_SHIFT		4
+
+#ifndef ETH_ADDR_LEN
+#define	ETH_ADDR_LEN		6
+#endif
+
+#define	PHY_REVISION_MASK	0xFFFFFFF0
+#define	MAX_PHY_REG_ADDRESS	0x1F	/* 5 bit address bus (0-0x1F) */
+#define	MAX_PHY_MULTI_PAGE_REG	0xF
+
+/* Bit definitions for valid PHY IDs. */
+/*
+ * I = Integrated
+ * E = External
+ */
+#define	M88E1000_E_PHY_ID	0x01410C50
+#define	M88E1000_I_PHY_ID	0x01410C30
+#define	M88E1011_I_PHY_ID	0x01410C20
+#define	IGP01E1000_I_PHY_ID	0x02A80380
+#define	M88E1011_I_REV_4	0x04
+#define	M88E1111_I_PHY_ID	0x01410CC0
+#define	GG82563_E_PHY_ID	0x01410CA0
+#define	IGP03E1000_E_PHY_ID	0x02A80390
+#define	IFE_E_PHY_ID		0x02A80330
+#define	IFE_PLUS_E_PHY_ID	0x02A80320
+#define	IFE_C_E_PHY_ID		0x02A80310
+#define	BME1000_E_PHY_ID	0x01410CB0
+#define	M88_VENDOR		0x0141
+
+/* M88E1000 Specific Registers */
+#define	M88E1000_PHY_SPEC_CTRL	0x10	/* PHY Specific Control Register */
+#define	M88E1000_PHY_SPEC_STATUS 0x11	/* PHY Specific Status Register */
+#define	M88E1000_INT_ENABLE	0x12	/* Interrupt Enable Register */
+#define	M88E1000_INT_STATUS	0x13	/* Interrupt Status Register */
+#define	M88E1000_EXT_PHY_SPEC_CTRL 0x14	/* Extended PHY Specific Control */
+#define	M88E1000_RX_ERR_CNTR	0x15	/* Receive Error Counter */
+
+#define	M88E1000_PHY_EXT_CTRL	0x1A	/* PHY extend control register */
+#define	M88E1000_PHY_PAGE_SELECT 0x1D	/* Reg 29 for page number setting */
+#define	M88E1000_PHY_GEN_CONTROL 0x1E	/* Its meaning depends on reg 29 */
+#define	M88E1000_PHY_VCO_REG_BIT8 0x100	/* Bits 8 & 11 are adjusted for */
+#define	M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */
+
+/* M88E1000 PHY Specific Control Register */
+#define	M88E1000_PSCR_JABBER_DISABLE	0x0001 /* 1=Jabber Function disabled */
+#define	M88E1000_PSCR_POLARITY_REVERSAL	0x0002 /* 1=Polarity Reversal enabled */
+#define	M88E1000_PSCR_SQE_TEST		0x0004 /* 1=SQE Test enabled */
+/* 1=CLK125 low, 0=CLK125 toggling */
+#define	M88E1000_PSCR_CLK125_DISABLE	0x0010
+#define	M88E1000_PSCR_MDI_MANUAL_MODE	0x0000 /* MDI Crossover Mode bits 6:5 */
+						/* Manual MDI configuration */
+#define	M88E1000_PSCR_MDIX_MANUAL_MODE	0x0020 /* Manual MDIX configuration */
+/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
+#define	M88E1000_PSCR_AUTO_X_1000T	0x0040
+/* Auto crossover enabled all speeds */
+#define	M88E1000_PSCR_AUTO_X_MODE	0x0060
+/*
+ * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T RX Threshold
+ * 0=Normal 10BASE-T RX Threshold
+ */
+#define	M88E1000_PSCR_EN_10BT_EXT_DIST	0x0080
+/* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */
+#define	M88E1000_PSCR_MII_5BIT_ENABLE	0x0100
+#define	M88E1000_PSCR_SCRAMBLER_DISABLE	0x0200	/* 1=Scrambler disable */
+#define	M88E1000_PSCR_FORCE_LINK_GOOD	0x0400	/* 1=Force link good */
+#define	M88E1000_PSCR_ASSERT_CRS_ON_TX	0x0800	/* 1=Assert CRS on Transmit */
+
+/* M88E1000 PHY Specific Status Register */
+#define	M88E1000_PSSR_JABBER		0x0001	/* 1=Jabber */
+#define	M88E1000_PSSR_REV_POLARITY	0x0002	/* 1=Polarity reversed */
+#define	M88E1000_PSSR_DOWNSHIFT		0x0020	/* 1=Downshifted */
+#define	M88E1000_PSSR_MDIX		0x0040	/* 1=MDIX; 0=MDI */
+/*
+ * 0 = <50M
+ * 1 = 50-80M
+ * 2 = 80-110M
+ * 3 = 110-140M
+ * 4 = >140M
+ */
+#define	M88E1000_PSSR_CABLE_LENGTH	0x0380
+#define	M88E1000_PSSR_LINK		0x0400	/* 1=Link up, 0=Link down */
+#define	M88E1000_PSSR_SPD_DPLX_RESOLVED	0x0800	/* 1=Speed & Duplex resolved */
+#define	M88E1000_PSSR_PAGE_RCVD		0x1000	/* 1=Page received */
+#define	M88E1000_PSSR_DPLX		0x2000	/* 1=Duplex 0=Half Duplex */
+#define	M88E1000_PSSR_SPEED		0xC000	/* Speed, bits 14:15 */
+#define	M88E1000_PSSR_10MBS		0x0000	/* 00=10Mbs */
+#define	M88E1000_PSSR_100MBS		0x4000	/* 01=100Mbs */
+#define	M88E1000_PSSR_1000MBS		0x8000	/* 10=1000Mbs */
+
+#define	M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/* M88E1000 Extended PHY Specific Control Register */
+#define	M88E1000_EPSCR_FIBER_LOOPBACK	0x4000	/* 1=Fiber loopback */
+/*
+ * 1 = Lost lock detect enabled.
+ * Will assert lost lock and bring
+ * link down if idle not seen
+ * within 1ms in 1000BASE-T
+ */
+#define	M88E1000_EPSCR_DOWN_NO_IDLE	0x8000
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master
+ */
+#define	M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK	0x0C00
+#define	M88E1000_EPSCR_MASTER_DOWNSHIFT_1X	0x0000
+#define	M88E1000_EPSCR_MASTER_DOWNSHIFT_2X	0x0400
+#define	M88E1000_EPSCR_MASTER_DOWNSHIFT_3X	0x0800
+#define	M88E1000_EPSCR_MASTER_DOWNSHIFT_4X	0x0C00
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave
+ */
+#define	M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK	0x0300
+#define	M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS	0x0000
+#define	M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X	0x0100
+#define	M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X	0x0200
+#define	M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X	0x0300
+#define	M88E1000_EPSCR_TX_CLK_2_5	0x0060	/* 2.5 MHz TX_CLK */
+#define	M88E1000_EPSCR_TX_CLK_25	0x0070	/* 25  MHz TX_CLK */
+#define	M88E1000_EPSCR_TX_CLK_0		0x0000	/* NO  TX_CLK */
+
+/* M88EC018 Rev 2 specific DownShift settings */
+#define	M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK	0x0E00
+#define	M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X	0x0000
+#define	M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X	0x0200
+#define	M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X	0x0400
+#define	M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X	0x0600
+#define	M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X	0x0800
+#define	M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X	0x0A00
+#define	M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X	0x0C00
+#define	M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X	0x0E00
+
+/*
+ * Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define	GG82563_PAGE_SHIFT	5
+#define	GG82563_REG(page, reg)	\
+	(((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+#define	GG82563_MIN_ALT_REG	30
+
+/* GG82563 Specific Registers */
+#define	GG82563_PHY_SPEC_CTRL		\
+	GG82563_REG(0, 16)	/* PHY Specific Control */
+#define	GG82563_PHY_SPEC_STATUS		\
+	GG82563_REG(0, 17)	/* PHY Specific Status */
+#define	GG82563_PHY_INT_ENABLE		\
+	GG82563_REG(0, 18)	/* Interrupt Enable */
+#define	GG82563_PHY_SPEC_STATUS_2	\
+	GG82563_REG(0, 19)	/* PHY Specific Status 2 */
+#define	GG82563_PHY_RX_ERR_CNTR		\
+	GG82563_REG(0, 21)	/* Receive Error Counter */
+#define	GG82563_PHY_PAGE_SELECT		\
+	GG82563_REG(0, 22)	/* Page Select */
+#define	GG82563_PHY_SPEC_CTRL_2		\
+	GG82563_REG(0, 26)	/* PHY Specific Control 2 */
+#define	GG82563_PHY_PAGE_SELECT_ALT	\
+	GG82563_REG(0, 29)	/* Alternate Page Select */
+#define	GG82563_PHY_TEST_CLK_CTRL       \
+	GG82563_REG(0, 30)	/* Test Clock Control (use reg. 29 to select) */
+
+#define	GG82563_PHY_MAC_SPEC_CTRL	\
+	GG82563_REG(2, 21)	/* MAC Specific Control Register */
+#define	GG82563_PHY_MAC_SPEC_CTRL_2	\
+	GG82563_REG(2, 26)	/* MAC Specific Control 2 */
+
+#define	GG82563_PHY_DSP_DISTANCE	\
+	GG82563_REG(5, 26)	/* DSP Distance */
+
+/* Page 193 - Port Control Registers */
+#define	GG82563_PHY_KMRN_MODE_CTRL	\
+	GG82563_REG(193, 16)	/* Kumeran Mode Control */
+#define	GG82563_PHY_PORT_RESET		\
+	GG82563_REG(193, 17)	/* Port Reset */
+#define	GG82563_PHY_REVISION_ID		\
+	GG82563_REG(193, 18)	/* Revision ID */
+#define	GG82563_PHY_DEVICE_ID		\
+	GG82563_REG(193, 19)	/* Device ID */
+#define	GG82563_PHY_PWR_MGMT_CTRL	\
+	GG82563_REG(193, 20)	/* Power Management Control */
+#define	GG82563_PHY_RATE_ADAPT_CTRL	\
+	GG82563_REG(193, 25)	/* Rate Adaptation Control */
+
+/* Page 194 - KMRN Registers */
+#define	GG82563_PHY_KMRN_FIFO_CTRL_STAT	\
+	GG82563_REG(194, 16)	/* FIFO's Control/Status */
+#define	GG82563_PHY_KMRN_CTRL		\
+	GG82563_REG(194, 17)	/* Control */
+#define	GG82563_PHY_INBAND_CTRL		\
+	GG82563_REG(194, 18)	/* Inband Control */
+#define	GG82563_PHY_KMRN_DIAGNOSTIC	\
+	GG82563_REG(194, 19)	/* Diagnostic */
+#define	GG82563_PHY_ACK_TIMEOUTS	\
+	GG82563_REG(194, 20)	/* Acknowledge Timeouts */
+#define	GG82563_PHY_ADV_ABILITY		\
+	GG82563_REG(194, 21)	/* Advertised Ability */
+#define	GG82563_PHY_LINK_PARTNER_ADV_ABILITY \
+	GG82563_REG(194, 23)	/* Link Partner Advertised Ability */
+#define	GG82563_PHY_ADV_NEXT_PAGE	\
+	GG82563_REG(194, 24)	/* Advertised Next Page */
+#define	GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \
+	GG82563_REG(194, 25)	/* Link Partner Advertised Next page */
+#define	GG82563_PHY_KMRN_MISC		\
+	GG82563_REG(194, 26)	/* Misc. */
+
+/* MDI Control */
+#define	E1000_MDIC_DATA_MASK	0x0000FFFF
+#define	E1000_MDIC_REG_MASK	0x001F0000
+#define	E1000_MDIC_REG_SHIFT	16
+#define	E1000_MDIC_PHY_MASK	0x03E00000
+#define	E1000_MDIC_PHY_SHIFT	21
+#define	E1000_MDIC_OP_WRITE	0x04000000
+#define	E1000_MDIC_OP_READ	0x08000000
+#define	E1000_MDIC_READY	0x10000000
+#define	E1000_MDIC_INT_EN	0x20000000
+#define	E1000_MDIC_ERROR	0x40000000
+
+/* SerDes Control */
+#define	E1000_GEN_CTL_READY	0x80000000
+#define	E1000_GEN_CTL_ADDRESS_SHIFT	8
+#define	E1000_GEN_POLL_TIMEOUT		640
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif	/* _E1000_DEFINES_H_ */
--- a/usr/src/uts/common/io/e1000g/e1000_hw.c	Mon Aug 20 23:01:08 2007 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,9309 +0,0 @@
-/*
- * This file is provided under a CDDLv1 license.  When using or
- * redistributing this file, you may do so under this license.
- * In redistributing this file this license must be included
- * and no other modification of this header file is permitted.
- *
- * CDDL LICENSE SUMMARY
- *
- * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
- *
- * The contents of this file are subject to the terms of Version
- * 1.0 of the Common Development and Distribution License (the "License").
- *
- * You should have received a copy of the License with this software.
- * You can obtain a copy of the License at
- *	http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- */
-
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms of the CDDLv1.
- */
-
-/*
- * e1000_hw.c
- * Shared functions for accessing and configuring the MAC
- * IntelVersion: 1.428.2.1
- */
-
-#pragma ident	"%Z%%M%	%I%	%E% SMI"
-
-#include "e1000_hw.h"
-
-#define STATIC static
-
-static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
-static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
-static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data);
-static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data);
-static int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
-static void e1000_release_software_semaphore(struct e1000_hw *hw);
-
-static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
-static int32_t e1000_check_downshift(struct e1000_hw *hw);
-static int32_t e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity *polarity);
-static void e1000_clear_vfta(struct e1000_hw *hw);
-static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
-static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up);
-static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
-static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
-static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank);
-static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
-static int32_t e1000_get_cable_length(struct e1000_hw *hw, uint16_t *min_length, uint16_t *max_length);
-static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
-static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
-static int32_t e1000_get_software_flag(struct e1000_hw *hw);
-static int32_t e1000_ich8_cycle_init(struct e1000_hw *hw);
-static int32_t e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout);
-static int32_t e1000_id_led_init(struct e1000_hw *hw);
-static int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
-static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
-static void e1000_init_rx_addrs(struct e1000_hw *hw);
-static void e1000_initialize_hardware_bits(struct e1000_hw *hw);
-static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
-static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
-static int32_t e1000_mng_enable_host_if(struct e1000_hw *hw);
-static int32_t e1000_mng_host_if_write(struct e1000_hw *hw, uint8_t *buffer, uint16_t length, uint16_t offset, uint8_t *sum);
-static int32_t e1000_mng_write_cmd_header(struct e1000_hw* hw, struct e1000_host_mng_command_header* hdr);
-static int32_t e1000_mng_write_commit(struct e1000_hw *hw);
-static int32_t e1000_phy_ife_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
-static int32_t e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
-static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
-static int32_t e1000_write_eeprom_eewr(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
-static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
-static int32_t e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
-static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
-static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t *data);
-static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
-static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
-static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data);
-static int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t *data);
-static int32_t e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t data);
-static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
-static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
-static void e1000_release_software_flag(struct e1000_hw *hw);
-static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
-static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
-static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop);
-static void e1000_set_pci_express_master_disable(struct e1000_hw *hw);
-static int32_t e1000_wait_autoneg(struct e1000_hw *hw);
-static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value);
-static int32_t e1000_set_phy_type(struct e1000_hw *hw);
-static void e1000_phy_init_script(struct e1000_hw *hw);
-static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
-static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
-static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
-static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
-static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
-static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
-static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
-static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
-                                     uint16_t count);
-static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
-static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
-static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
-                                      uint16_t words, uint16_t *data);
-static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
-                                            uint16_t offset, uint16_t words,
-                                            uint16_t *data);
-static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
-static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
-static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
-static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
-                                    uint16_t count);
-static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
-                                      uint16_t phy_data);
-static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
-                                     uint16_t *phy_data);
-static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
-static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
-static void e1000_release_eeprom(struct e1000_hw *hw);
-static void e1000_standby_eeprom(struct e1000_hw *hw);
-static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
-static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
-static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
-static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
-static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
-static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
-                                               uint16_t duplex);
-static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
-
-/* IGP cable length table */
-static const
-uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
-    { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
-      5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
-      25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
-      40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
-      60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
-      90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
-      100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
-      110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
-
-static const
-uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
-    { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
-      0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
-      6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
-      21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
-      40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
-      60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
-      83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
-      104, 109, 114, 118, 121, 124};
-
-/******************************************************************************
- * Set the phy type member in the hw struct.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-STATIC int32_t
-e1000_set_phy_type(struct e1000_hw *hw)
-{
-    DEBUGFUNC("e1000_set_phy_type");
-
-    if (hw->mac_type == e1000_undefined)
-        return -E1000_ERR_PHY_TYPE;
-
-    switch (hw->phy_id) {
-    case M88E1000_E_PHY_ID:
-    case M88E1000_I_PHY_ID:
-    case M88E1011_I_PHY_ID:
-    case M88E1111_I_PHY_ID:
-        hw->phy_type = e1000_phy_m88;
-        break;
-    case IGP01E1000_I_PHY_ID:
-        if (hw->mac_type == e1000_82541 ||
-            hw->mac_type == e1000_82541_rev_2 ||
-            hw->mac_type == e1000_82547 ||
-            hw->mac_type == e1000_82547_rev_2) {
-            hw->phy_type = e1000_phy_igp;
-            break;
-        }
-    case IGP03E1000_E_PHY_ID:
-        hw->phy_type = e1000_phy_igp_3;
-        break;
-    case IFE_E_PHY_ID:
-    case IFE_PLUS_E_PHY_ID:
-    case IFE_C_E_PHY_ID:
-        hw->phy_type = e1000_phy_ife;
-        break;
-    case GG82563_E_PHY_ID:
-        if (hw->mac_type == e1000_80003es2lan) {
-            hw->phy_type = e1000_phy_gg82563;
-            break;
-        }
-        /* Fall Through */
-    default:
-        /* Should never have loaded on this device */
-        hw->phy_type = e1000_phy_undefined;
-        return -E1000_ERR_PHY_TYPE;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * IGP phy init script - initializes the GbE PHY
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void
-e1000_phy_init_script(struct e1000_hw *hw)
-{
-    uint32_t ret_val;
-    uint16_t phy_saved_data;
-
-    DEBUGFUNC("e1000_phy_init_script");
-
-    if (hw->phy_init_script) {
-        msec_delay(20);
-
-        /* Save off the current value of register 0x2F5B to be restored at
-         * the end of this routine. */
-        ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
-        /* Disabled the PHY transmitter */
-        e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
-
-        msec_delay(20);
-
-        e1000_write_phy_reg(hw,0x0000,0x0140);
-
-        msec_delay(5);
-
-        switch (hw->mac_type) {
-        case e1000_82541:
-        case e1000_82547:
-            e1000_write_phy_reg(hw, 0x1F95, 0x0001);
-
-            e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
-
-            e1000_write_phy_reg(hw, 0x1F79, 0x0018);
-
-            e1000_write_phy_reg(hw, 0x1F30, 0x1600);
-
-            e1000_write_phy_reg(hw, 0x1F31, 0x0014);
-
-            e1000_write_phy_reg(hw, 0x1F32, 0x161C);
-
-            e1000_write_phy_reg(hw, 0x1F94, 0x0003);
-
-            e1000_write_phy_reg(hw, 0x1F96, 0x003F);
-
-            e1000_write_phy_reg(hw, 0x2010, 0x0008);
-            break;
-
-        case e1000_82541_rev_2:
-        case e1000_82547_rev_2:
-            e1000_write_phy_reg(hw, 0x1F73, 0x0099);
-            break;
-        default:
-            break;
-        }
-
-        e1000_write_phy_reg(hw, 0x0000, 0x3300);
-
-        msec_delay(20);
-
-        /* Now enable the transmitter */
-        e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
-        if (hw->mac_type == e1000_82547) {
-            uint16_t fused, fine, coarse;
-
-            /* Move to analog registers page */
-            e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
-
-            if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
-                e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
-
-                fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
-                coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
-
-                if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
-                    coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
-                    fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
-                } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
-                    fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
-
-                fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
-                        (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
-                        (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
-
-                e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
-                e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
-                                    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
-            }
-        }
-    }
-}
-
-/******************************************************************************
- * Set the mac type member in the hw struct.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-e1000_set_mac_type(struct e1000_hw *hw)
-{
-    DEBUGFUNC("e1000_set_mac_type");
-
-    switch (hw->device_id) {
-    case E1000_DEV_ID_82542:
-        switch (hw->revision_id) {
-        case E1000_82542_2_0_REV_ID:
-            hw->mac_type = e1000_82542_rev2_0;
-            break;
-        case E1000_82542_2_1_REV_ID:
-            hw->mac_type = e1000_82542_rev2_1;
-            break;
-        default:
-            /* Invalid 82542 revision ID */
-            return -E1000_ERR_MAC_TYPE;
-        }
-        break;
-    case E1000_DEV_ID_82543GC_FIBER:
-    case E1000_DEV_ID_82543GC_COPPER:
-        hw->mac_type = e1000_82543;
-        break;
-    case E1000_DEV_ID_82544EI_COPPER:
-    case E1000_DEV_ID_82544EI_FIBER:
-    case E1000_DEV_ID_82544GC_COPPER:
-    case E1000_DEV_ID_82544GC_LOM:
-        hw->mac_type = e1000_82544;
-        break;
-    case E1000_DEV_ID_82540EM:
-    case E1000_DEV_ID_82540EM_LOM:
-    case E1000_DEV_ID_82540EP:
-    case E1000_DEV_ID_82540EP_LOM:
-    case E1000_DEV_ID_82540EP_LP:
-        hw->mac_type = e1000_82540;
-        break;
-    case E1000_DEV_ID_82545EM_COPPER:
-    case E1000_DEV_ID_82545EM_FIBER:
-        hw->mac_type = e1000_82545;
-        break;
-    case E1000_DEV_ID_82545GM_COPPER:
-    case E1000_DEV_ID_82545GM_FIBER:
-    case E1000_DEV_ID_82545GM_SERDES:
-        hw->mac_type = e1000_82545_rev_3;
-        break;
-    case E1000_DEV_ID_82546EB_COPPER:
-    case E1000_DEV_ID_82546EB_FIBER:
-    case E1000_DEV_ID_82546EB_QUAD_COPPER:
-        hw->mac_type = e1000_82546;
-        break;
-    case E1000_DEV_ID_82546GB_COPPER:
-    case E1000_DEV_ID_82546GB_FIBER:
-    case E1000_DEV_ID_82546GB_SERDES:
-    case E1000_DEV_ID_82546GB_PCIE:
-    case E1000_DEV_ID_82546GB_QUAD_COPPER:
-    case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
-        hw->mac_type = e1000_82546_rev_3;
-        break;
-    case E1000_DEV_ID_82541EI:
-    case E1000_DEV_ID_82541EI_MOBILE:
-    case E1000_DEV_ID_82541ER_LOM:
-        hw->mac_type = e1000_82541;
-        break;
-    case E1000_DEV_ID_82541ER:
-    case E1000_DEV_ID_82541GI:
-    case E1000_DEV_ID_82541GI_LF:
-    case E1000_DEV_ID_82541GI_MOBILE:
-        hw->mac_type = e1000_82541_rev_2;
-        break;
-    case E1000_DEV_ID_82547EI:
-    case E1000_DEV_ID_82547EI_MOBILE:
-        hw->mac_type = e1000_82547;
-        break;
-    case E1000_DEV_ID_82547GI:
-        hw->mac_type = e1000_82547_rev_2;
-        break;
-    case E1000_DEV_ID_82571EB_COPPER:
-    case E1000_DEV_ID_82571EB_FIBER:
-    case E1000_DEV_ID_82571EB_SERDES:
-    case E1000_DEV_ID_82571EB_QUAD_COPPER:
-    case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
-    case E1000_DEV_ID_82571PT_QUAD_COPPER:
-            hw->mac_type = e1000_82571;
-        break;
-    case E1000_DEV_ID_82572EI_COPPER:
-    case E1000_DEV_ID_82572EI_FIBER:
-    case E1000_DEV_ID_82572EI_SERDES:
-    case E1000_DEV_ID_82572EI:
-        hw->mac_type = e1000_82572;
-        break;
-    case E1000_DEV_ID_82573E:
-    case E1000_DEV_ID_82573E_IAMT:
-    case E1000_DEV_ID_82573L:
-        hw->mac_type = e1000_82573;
-        break;
-    case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
-    case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
-    case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
-    case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
-        hw->mac_type = e1000_80003es2lan;
-        break;
-    case E1000_DEV_ID_ICH8_IGP_M_AMT:
-    case E1000_DEV_ID_ICH8_IGP_AMT:
-    case E1000_DEV_ID_ICH8_IGP_C:
-    case E1000_DEV_ID_ICH8_IFE:
-    case E1000_DEV_ID_ICH8_IFE_GT:
-    case E1000_DEV_ID_ICH8_IFE_G:
-    case E1000_DEV_ID_ICH8_IGP_M:
-        hw->mac_type = e1000_ich8lan;
-        break;
-    default:
-        /* Should never have loaded on this device */
-        return -E1000_ERR_MAC_TYPE;
-    }
-
-    switch (hw->mac_type) {
-    case e1000_ich8lan:
-        hw->swfwhw_semaphore_present = TRUE;
-        hw->asf_firmware_present = TRUE;
-        break;
-    case e1000_80003es2lan:
-        hw->swfw_sync_present = TRUE;
-        /* fall through */
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_82573:
-        hw->eeprom_semaphore_present = TRUE;
-        /* fall through */
-    case e1000_82541:
-    case e1000_82547:
-    case e1000_82541_rev_2:
-    case e1000_82547_rev_2:
-        hw->asf_firmware_present = TRUE;
-        break;
-    default:
-        break;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- * Set media type and TBI compatibility.
- *
- * hw - Struct containing variables accessed by shared code
- * **************************************************************************/
-void
-e1000_set_media_type(struct e1000_hw *hw)
-{
-    uint32_t status;
-
-    DEBUGFUNC("e1000_set_media_type");
-
-    if (hw->mac_type != e1000_82543) {
-        /* tbi_compatibility is only valid on 82543 */
-        hw->tbi_compatibility_en = FALSE;
-    }
-
-    switch (hw->device_id) {
-    case E1000_DEV_ID_82545GM_SERDES:
-    case E1000_DEV_ID_82546GB_SERDES:
-    case E1000_DEV_ID_82571EB_SERDES:
-    case E1000_DEV_ID_82572EI_SERDES:
-    case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
-        hw->media_type = e1000_media_type_internal_serdes;
-        break;
-    default:
-        switch (hw->mac_type) {
-        case e1000_82542_rev2_0:
-        case e1000_82542_rev2_1:
-            hw->media_type = e1000_media_type_fiber;
-            break;
-        case e1000_ich8lan:
-        case e1000_82573:
-            /* The STATUS_TBIMODE bit is reserved or reused for the this
-             * device.
-             */
-            hw->media_type = e1000_media_type_copper;
-            break;
-        default:
-            status = E1000_READ_REG(hw, STATUS);
-            if (status & E1000_STATUS_TBIMODE) {
-                hw->media_type = e1000_media_type_fiber;
-                /* tbi_compatibility not valid on fiber */
-                hw->tbi_compatibility_en = FALSE;
-            } else {
-                hw->media_type = e1000_media_type_copper;
-            }
-            break;
-        }
-    }
-}
-
-/******************************************************************************
- * Reset the transmit and receive units; mask and clear all interrupts.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-e1000_reset_hw(struct e1000_hw *hw)
-{
-    uint32_t ctrl;
-    uint32_t ctrl_ext;
-    uint32_t icr;
-    uint32_t manc;
-    uint32_t led_ctrl;
-    uint32_t timeout;
-    uint32_t extcnf_ctrl;
-    int32_t ret_val;
-
-    DEBUGFUNC("e1000_reset_hw");
-
-    /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
-    if (hw->mac_type == e1000_82542_rev2_0) {
-        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
-        e1000_pci_clear_mwi(hw);
-    }
-
-    if (hw->bus_type == e1000_bus_type_pci_express) {
-        /* Prevent the PCI-E bus from sticking if there is no TLP connection
-         * on the last TLP read/write transaction when MAC is reset.
-         */
-        if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
-            DEBUGOUT("PCI-E Master disable polling has failed.\n");
-        }
-    }
-
-    /* Clear interrupt mask to stop board from generating interrupts */
-    DEBUGOUT("Masking off all interrupts\n");
-    E1000_WRITE_REG(hw, IMC, 0xffffffff);
-
-    /* Disable the Transmit and Receive units.  Then delay to allow
-     * any pending transactions to complete before we hit the MAC with
-     * the global reset.
-     */
-    E1000_WRITE_REG(hw, RCTL, 0);
-    E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
-    E1000_WRITE_FLUSH(hw);
-#ifndef FIFO_WORKAROUND
-    hw->tx_fifo_head = 0;
-#endif
-
-    /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
-    hw->tbi_compatibility_on = FALSE;
-
-    /* Delay to allow any outstanding PCI transactions to complete before
-     * resetting the device
-     */
-    msec_delay(10);
-
-    ctrl = E1000_READ_REG(hw, CTRL);
-
-    /* Must reset the PHY before resetting the MAC */
-    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
-        E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
-        msec_delay(5);
-    }
-
-    /* Must acquire the MDIO ownership before MAC reset.
-     * Ownership defaults to firmware after a reset. */
-    if (hw->mac_type == e1000_82573) {
-        timeout = 10;
-
-        extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
-        extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
-        do {
-            E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
-            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
-
-            if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
-                break;
-            else
-                extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
-            msec_delay(2);
-            timeout--;
-        } while (timeout);
-    }
-
-    /* Workaround for ICH8 bit corruption issue in FIFO memory */
-    if (hw->mac_type == e1000_ich8lan) {
-        /* Set Tx and Rx buffer allocation to 8k apiece. */
-        E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
-        /* Set Packet Buffer Size to 16k. */
-        E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
-    }
-
-    /* Issue a global reset to the MAC.  This will reset the chip's
-     * transmit, receive, DMA, and link units.  It will not effect
-     * the current PCI configuration.  The global reset bit is self-
-     * clearing, and should clear within a microsecond.
-     */
-    DEBUGOUT("Issuing a global reset to MAC\n");
-
-    switch (hw->mac_type) {
-        case e1000_82544:
-        case e1000_82540:
-        case e1000_82545:
-        case e1000_82546:
-        case e1000_82541:
-        case e1000_82541_rev_2:
-            /* These controllers can't ack the 64-bit write when issuing the
-             * reset, so use IO-mapping as a workaround to issue the reset */
-            E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
-            break;
-        case e1000_82545_rev_3:
-        case e1000_82546_rev_3:
-            /* Reset is performed on a shadow of the control register */
-            E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
-            break;
-        case e1000_ich8lan:
-            if (!hw->phy_reset_disable &&
-                e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
-                /* e1000_ich8lan PHY HW reset requires MAC CORE reset
-                 * at the same time to make sure the interface between
-                 * MAC and the external PHY is reset.
-                 */
-                ctrl |= E1000_CTRL_PHY_RST;
-            }
-
-            e1000_get_software_flag(hw);
-            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
-            msec_delay(5);
-            break;
-        default:
-            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
-            break;
-    }
-
-    /* After MAC reset, force reload of EEPROM to restore power-on settings to
-     * device.  Later controllers reload the EEPROM automatically, so just wait
-     * for reload to complete.
-     */
-    switch (hw->mac_type) {
-        case e1000_82542_rev2_0:
-        case e1000_82542_rev2_1:
-        case e1000_82543:
-        case e1000_82544:
-            /* Wait for reset to complete */
-            usec_delay(10);
-            ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-            ctrl_ext |= E1000_CTRL_EXT_EE_RST;
-            E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-            E1000_WRITE_FLUSH(hw);
-            /* Wait for EEPROM reload */
-            msec_delay(2);
-            break;
-        case e1000_82541:
-        case e1000_82541_rev_2:
-        case e1000_82547:
-        case e1000_82547_rev_2:
-            /* Wait for EEPROM reload */
-            msec_delay(20);
-            break;
-        case e1000_82573:
-            if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
-                usec_delay(10);
-                ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-                ctrl_ext |= E1000_CTRL_EXT_EE_RST;
-                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-                E1000_WRITE_FLUSH(hw);
-            }
-            /* fall through */
-        default:
-            /* Auto read done will delay 5ms or poll based on mac type */
-            ret_val = e1000_get_auto_rd_done(hw);
-            if (ret_val)
-                return ret_val;
-            break;
-    }
-
-    /* Disable HW ARPs on ASF enabled adapters */
-    if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
-        manc = E1000_READ_REG(hw, MANC);
-        manc &= ~(E1000_MANC_ARP_EN);
-        E1000_WRITE_REG(hw, MANC, manc);
-    }
-
-    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
-        e1000_phy_init_script(hw);
-
-        /* Configure activity LED after PHY reset */
-        led_ctrl = E1000_READ_REG(hw, LEDCTL);
-        led_ctrl &= IGP_ACTIVITY_LED_MASK;
-        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
-        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
-    }
-
-    /* Clear interrupt mask to stop board from generating interrupts */
-    DEBUGOUT("Masking off all interrupts\n");
-    E1000_WRITE_REG(hw, IMC, 0xffffffff);
-
-    /* Clear any pending interrupt events. */
-    icr = E1000_READ_REG(hw, ICR);
-
-    /* If MWI was previously enabled, reenable it. */
-    if (hw->mac_type == e1000_82542_rev2_0) {
-        if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
-            e1000_pci_set_mwi(hw);
-    }
-
-    if (hw->mac_type == e1000_ich8lan) {
-        uint32_t kab = E1000_READ_REG(hw, KABGTXD);
-        kab |= E1000_KABGTXD_BGSQLBIAS;
-        E1000_WRITE_REG(hw, KABGTXD, kab);
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- *
- * Initialize a number of hardware-dependent bits
- *
- * hw: Struct containing variables accessed by shared code
- *
- *****************************************************************************/
-STATIC void
-e1000_initialize_hardware_bits(struct e1000_hw *hw)
-{
-    if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) {
-        /* Settings common to all silicon */
-        uint32_t reg_ctrl, reg_ctrl_ext;
-        uint32_t reg_tarc0, reg_tarc1;
-        uint32_t reg_tctl;
-        uint32_t reg_txdctl, reg_txdctl1;
-
-        reg_tarc0 = E1000_READ_REG(hw, TARC0);
-        reg_tarc0 &= ~0x78000000;           /* Clear bits 30, 29, 28, and 27 */
-
-        reg_txdctl = E1000_READ_REG(hw, TXDCTL);
-        reg_txdctl |= E1000_TXDCTL_COUNT_DESC;       /* Set bit 22 */
-        E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
-
-        reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
-        reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;      /* Set bit 22 */
-        E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
-
-        switch (hw->mac_type) {
-            case e1000_82571:
-            case e1000_82572:
-                reg_tarc1 = E1000_READ_REG(hw, TARC1);
-                reg_tctl = E1000_READ_REG(hw, TCTL);
-
-                /* Set the phy Tx compatible mode bits */
-                reg_tarc1 &= ~0x60000000;   /* Clear bits 30 and 29 */
-
-                reg_tarc0 |= 0x07800000;    /* Set TARC0 bits 23-26 */
-                reg_tarc1 |= 0x07000000;    /* Set TARC1 bits 24-26 */
-
-                if (reg_tctl & E1000_TCTL_MULR)
-                    reg_tarc1 &= ~0x10000000;   /* Clear bit 28 if MULR is 1b */
-                else
-                    reg_tarc1 |= 0x10000000;    /* Set bit 28 if MULR is 0b */
-
-                E1000_WRITE_REG(hw, TARC1, reg_tarc1);
-                break;
-            case e1000_82573:
-                reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-                reg_ctrl = E1000_READ_REG(hw, CTRL);
-
-                reg_ctrl_ext &= ~0x00800000;    /* Clear bit 23 */
-                reg_ctrl_ext |= 0x00400000;     /* Set bit 22 */
-                reg_ctrl &= ~0x20000000;        /* Clear bit 29 */
-
-                E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
-                E1000_WRITE_REG(hw, CTRL, reg_ctrl);
-                break;
-            case e1000_80003es2lan:
-                if ((hw->media_type == e1000_media_type_fiber) ||
-                    (hw->media_type == e1000_media_type_internal_serdes)) {
-                    reg_tarc0 &= ~0x00100000;   /* Clear bit 20 */
-                }
-
-                reg_tctl = E1000_READ_REG(hw, TCTL);
-                reg_tarc1 = E1000_READ_REG(hw, TARC1);
-                if (reg_tctl & E1000_TCTL_MULR)
-                    reg_tarc1 &= ~0x10000000;   /* Clear bit 28 if MULR is 1b */
-                else
-                    reg_tarc1 |= 0x10000000;    /* Set bit 28 if MULR is 0b */
-
-                E1000_WRITE_REG(hw, TARC1, reg_tarc1);
-                break;
-            case e1000_ich8lan:
-                if ((hw->revision_id < 3) ||
-                    ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
-                     (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
-                    reg_tarc0 |= 0x30000000;    /* Set TARC0 bits 29 and 28 */
-                reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-                reg_ctrl_ext |= 0x00400000;     /* Set bit 22 */
-                E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
-
-                reg_tarc0 |= 0x0d800000;    /* Set TARC0 bits 23, 24, 26, 27 */
-
-                reg_tarc1 = E1000_READ_REG(hw, TARC1);
-                reg_tctl = E1000_READ_REG(hw, TCTL);
-
-                if (reg_tctl & E1000_TCTL_MULR)
-                    reg_tarc1 &= ~0x10000000;   /* Clear bit 28 if MULR is 1b */
-                else
-                    reg_tarc1 |= 0x10000000;    /* Set bit 28 if MULR is 0b */
-
-                reg_tarc1 |= 0x45000000;        /* Set bit 24, 26 and 30 */
-
-                E1000_WRITE_REG(hw, TARC1, reg_tarc1);
-                break;
-            default:
-                break;
-        }
-
-        E1000_WRITE_REG(hw, TARC0, reg_tarc0);
-    }
-}
-
-/******************************************************************************
- * Performs basic configuration of the adapter.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Assumes that the controller has previously been reset and is in a
- * post-reset uninitialized state. Initializes the receive address registers,
- * multicast table, and VLAN filter table. Calls routines to setup link
- * configuration and flow control settings. Clears all on-chip counters. Leaves
- * the transmit and receive units disabled and uninitialized.
- *****************************************************************************/
-int32_t
-e1000_init_hw(struct e1000_hw *hw)
-{
-    uint32_t ctrl;
-    uint32_t i;
-    int32_t ret_val;
-    uint16_t pcix_cmd_word;
-    uint16_t pcix_stat_hi_word;
-    uint16_t cmd_mmrbc;
-    uint16_t stat_mmrbc;
-    uint32_t mta_size;
-#ifndef FIFO_WORKAROUND
-    uint32_t pba_reg;
-#endif
-    uint32_t reg_data;
-    uint32_t ctrl_ext;
-
-    DEBUGFUNC("e1000_init_hw");
-
-    /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
-    if ((hw->mac_type == e1000_ich8lan) &&
-        ((hw->revision_id < 3) ||
-         ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
-          (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
-            reg_data = E1000_READ_REG(hw, STATUS);
-            reg_data &= ~0x80000000;
-            E1000_WRITE_REG(hw, STATUS, reg_data);
-    }
-
-    /* Initialize Identification LED */
-    ret_val = e1000_id_led_init(hw);
-    if (ret_val) {
-        DEBUGOUT("Error Initializing Identification LED\n");
-        return ret_val;
-    }
-
-    /* Set the media type and TBI compatibility */
-    e1000_set_media_type(hw);
-
-#ifndef FIFO_WORKAROUND
-    pba_reg = E1000_READ_REG(hw, PBA);
-    hw->tx_fifo_start = (pba_reg & 0x0000FFFF) * E1000_FIFO_MULTIPLIER;
-    hw->tx_fifo_size = (pba_reg & 0xFFFF0000) >> 6;
-
-#endif
-    /* Disabling VLAN filtering. */
-    DEBUGOUT("Initializing the IEEE VLAN\n");
-    /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
-    if (hw->mac_type != e1000_ich8lan) {
-        if (hw->mac_type < e1000_82545_rev_3)
-            E1000_WRITE_REG(hw, VET, 0);
-        e1000_clear_vfta(hw);
-    }
-
-    /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
-    if (hw->mac_type == e1000_82542_rev2_0) {
-        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
-        e1000_pci_clear_mwi(hw);
-        E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
-        E1000_WRITE_FLUSH(hw);
-        msec_delay(5);
-    }
-
-    /* Setup the receive address. This involves initializing all of the Receive
-     * Address Registers (RARs 0 - 15).
-     */
-    e1000_init_rx_addrs(hw);
-
-    /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
-    if (hw->mac_type == e1000_82542_rev2_0) {
-        E1000_WRITE_REG(hw, RCTL, 0);
-        E1000_WRITE_FLUSH(hw);
-        msec_delay(1);
-        if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
-            e1000_pci_set_mwi(hw);
-    }
-
-    /* Zero out the Multicast HASH table */
-    DEBUGOUT("Zeroing the MTA\n");
-    mta_size = E1000_MC_TBL_SIZE;
-    if (hw->mac_type == e1000_ich8lan)
-        mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
-    for (i = 0; i < mta_size; i++) {
-        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
-        /* use write flush to prevent Memory Write Block (MWB) from
-         * occuring when accessing our register space */
-        E1000_WRITE_FLUSH(hw);
-    }
-
-    /* Set the PCI priority bit correctly in the CTRL register.  This
-     * determines if the adapter gives priority to receives, or if it
-     * gives equal priority to transmits and receives.  Valid only on
-     * 82542 and 82543 silicon.
-     */
-    if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
-        ctrl = E1000_READ_REG(hw, CTRL);
-        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
-    }
-
-    switch (hw->mac_type) {
-    case e1000_82545_rev_3:
-    case e1000_82546_rev_3:
-        break;
-    default:
-        /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
-        if (hw->bus_type == e1000_bus_type_pcix) {
-            e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
-            e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
-                &pcix_stat_hi_word);
-            cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
-                PCIX_COMMAND_MMRBC_SHIFT;
-            stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
-                PCIX_STATUS_HI_MMRBC_SHIFT;
-            if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
-                stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
-            if (cmd_mmrbc > stat_mmrbc) {
-                pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
-                pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
-                e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
-                    &pcix_cmd_word);
-            }
-        }
-        break;
-    }
-
-    /* More time needed for PHY to initialize */
-    if (hw->mac_type == e1000_ich8lan)
-        msec_delay(15);
-
-    /* Call a subroutine to configure the link and setup flow control. */
-    ret_val = e1000_setup_link(hw);
-
-    /* Set the transmit descriptor write-back policy */
-    if (hw->mac_type > e1000_82544) {
-        ctrl = E1000_READ_REG(hw, TXDCTL);
-        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
-        E1000_WRITE_REG(hw, TXDCTL, ctrl);
-    }
-
-    if (hw->mac_type == e1000_82573) {
-        e1000_enable_tx_pkt_filtering(hw);
-    }
-
-    switch (hw->mac_type) {
-    default:
-        break;
-    case e1000_80003es2lan:
-        /* Enable retransmit on late collisions */
-        reg_data = E1000_READ_REG(hw, TCTL);
-        reg_data |= E1000_TCTL_RTLC;
-        E1000_WRITE_REG(hw, TCTL, reg_data);
-
-        /* Configure Gigabit Carry Extend Padding */
-        reg_data = E1000_READ_REG(hw, TCTL_EXT);
-        reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
-        reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
-        E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
-
-        /* Configure Transmit Inter-Packet Gap */
-        reg_data = E1000_READ_REG(hw, TIPG);
-        reg_data &= ~E1000_TIPG_IPGT_MASK;
-        reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
-        E1000_WRITE_REG(hw, TIPG, reg_data);
-
-        reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
-        reg_data &= ~0x00100000;
-        E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
-        /* Fall through */
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_ich8lan:
-        ctrl = E1000_READ_REG(hw, TXDCTL1);
-        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
-        E1000_WRITE_REG(hw, TXDCTL1, ctrl);
-        break;
-    }
-
-
-    if (hw->mac_type == e1000_82573) {
-        uint32_t gcr = E1000_READ_REG(hw, GCR);
-        gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
-        E1000_WRITE_REG(hw, GCR, gcr);
-    }
-
-    /* Clear all of the statistics registers (clear on read).  It is
-     * important that we do this after we have tried to establish link
-     * because the symbol error count will increment wildly if there
-     * is no link.
-     */
-    e1000_clear_hw_cntrs(hw);
-
-    /* ICH8 No-snoop bits are opposite polarity.
-     * Set to snoop by default after reset. */
-    if (hw->mac_type == e1000_ich8lan)
-        e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
-
-    if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
-        hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
-        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-        /* Relaxed ordering must be disabled to avoid a parity
-         * error crash in a PCI slot. */
-        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-    }
-
-    /* Must be called after e1000_set_media_type because media_type is used */
-    e1000_initialize_hardware_bits(hw);
-
-    return ret_val;
-}
-
-/******************************************************************************
- * Adjust SERDES output amplitude based on EEPROM setting.
- *
- * hw - Struct containing variables accessed by shared code.
- *****************************************************************************/
-static int32_t
-e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
-{
-    uint16_t eeprom_data;
-    int32_t  ret_val;
-
-    DEBUGFUNC("e1000_adjust_serdes_amplitude");
-
-    if (hw->media_type != e1000_media_type_internal_serdes)
-        return E1000_SUCCESS;
-
-    switch (hw->mac_type) {
-    case e1000_82545_rev_3:
-    case e1000_82546_rev_3:
-        break;
-    default:
-        return E1000_SUCCESS;
-    }
-
-    ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
-    if (ret_val) {
-        return ret_val;
-    }
-
-    if (eeprom_data != EEPROM_RESERVED_WORD) {
-        /* Adjust SERDES output amplitude only. */
-        eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
-        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Configures flow control and link settings.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Determines which flow control settings to use. Calls the apropriate media-
- * specific link configuration function. Configures the flow control settings.
- * Assuming the adapter has a valid link partner, a valid link should be
- * established. Assumes the hardware has previously been reset and the
- * transmitter and receiver are not enabled.
- *****************************************************************************/
-int32_t
-e1000_setup_link(struct e1000_hw *hw)
-{
-    uint32_t ctrl_ext;
-    int32_t ret_val;
-    uint16_t eeprom_data;
-
-    DEBUGFUNC("e1000_setup_link");
-
-    /* In the case of the phy reset being blocked, we already have a link.
-     * We do not have to set it up again. */
-    if (e1000_check_phy_reset_block(hw))
-        return E1000_SUCCESS;
-
-    /* Read and store word 0x0F of the EEPROM. This word contains bits
-     * that determine the hardware's default PAUSE (flow control) mode,
-     * a bit that determines whether the HW defaults to enabling or
-     * disabling auto-negotiation, and the direction of the
-     * SW defined pins. If there is no SW over-ride of the flow
-     * control setting, then the variable hw->fc will
-     * be initialized based on a value in the EEPROM.
-     */
-    if (hw->fc == E1000_FC_DEFAULT) {
-        switch (hw->mac_type) {
-        case e1000_ich8lan:
-        case e1000_82573:
-            hw->fc = E1000_FC_FULL;
-            break;
-        default:
-            ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
-                                        1, &eeprom_data);
-            if (ret_val) {
-                DEBUGOUT("EEPROM Read Error\n");
-                return -E1000_ERR_EEPROM;
-            }
-            if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
-                hw->fc = E1000_FC_NONE;
-            else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
-                    EEPROM_WORD0F_ASM_DIR)
-                hw->fc = E1000_FC_TX_PAUSE;
-            else
-                hw->fc = E1000_FC_FULL;
-            break;
-        }
-    }
-
-    /* We want to save off the original Flow Control configuration just
-     * in case we get disconnected and then reconnected into a different
-     * hub or switch with different Flow Control capabilities.
-     */
-    if (hw->mac_type == e1000_82542_rev2_0)
-        hw->fc &= (~E1000_FC_TX_PAUSE);
-
-    if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
-        hw->fc &= (~E1000_FC_RX_PAUSE);
-
-    hw->original_fc = hw->fc;
-
-    DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
-
-    /* Take the 4 bits from EEPROM word 0x0F that determine the initial
-     * polarity value for the SW controlled pins, and setup the
-     * Extended Device Control reg with that info.
-     * This is needed because one of the SW controlled pins is used for
-     * signal detection.  So this should be done before e1000_setup_pcs_link()
-     * or e1000_phy_setup() is called.
-     */
-    if (hw->mac_type == e1000_82543) {
-        ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
-                                    1, &eeprom_data);
-        if (ret_val) {
-            DEBUGOUT("EEPROM Read Error\n");
-            return -E1000_ERR_EEPROM;
-        }
-        ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
-                    SWDPIO__EXT_SHIFT);
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-    }
-
-    /* Call the necessary subroutine to configure the link. */
-    ret_val = (hw->media_type == e1000_media_type_copper) ?
-              e1000_setup_copper_link(hw) :
-              e1000_setup_fiber_serdes_link(hw);
-
-    /* Initialize the flow control address, type, and PAUSE timer
-     * registers to their default values.  This is done even if flow
-     * control is disabled, because it does not hurt anything to
-     * initialize these registers.
-     */
-    DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
-
-    /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
-    if (hw->mac_type != e1000_ich8lan) {
-        E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
-        E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
-        E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
-    }
-
-    E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
-
-    /* Set the flow control receive threshold registers.  Normally,
-     * these registers will be set to a default threshold that may be
-     * adjusted later by the driver's runtime code.  However, if the
-     * ability to transmit pause frames in not enabled, then these
-     * registers will be set to 0.
-     */
-    if (!(hw->fc & E1000_FC_TX_PAUSE)) {
-        E1000_WRITE_REG(hw, FCRTL, 0);
-        E1000_WRITE_REG(hw, FCRTH, 0);
-    } else {
-        /* We need to set up the Receive Threshold high and low water marks
-         * as well as (optionally) enabling the transmission of XON frames.
-         */
-        if (hw->fc_send_xon) {
-            E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
-            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
-        } else {
-            E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
-            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
-        }
-    }
-    return ret_val;
-}
-
-/******************************************************************************
- * Sets up link for a fiber based or serdes based adapter
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Manipulates Physical Coding Sublayer functions in order to configure
- * link. Assumes the hardware has been previously reset and the transmitter
- * and receiver are not enabled.
- *****************************************************************************/
-static int32_t
-e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
-{
-    uint32_t ctrl;
-    uint32_t status;
-    uint32_t txcw = 0;
-    uint32_t i;
-    uint32_t signal = 0;
-    int32_t ret_val;
-
-    DEBUGFUNC("e1000_setup_fiber_serdes_link");
-
-    /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
-     * until explicitly turned off or a power cycle is performed.  A read to
-     * the register does not indicate its status.  Therefore, we ensure
-     * loopback mode is disabled during initialization.
-     */
-    if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
-        E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
-
-    /* On adapters with a MAC newer than 82544, SWDP 1 will be
-     * set when the optics detect a signal. On older adapters, it will be
-     * cleared when there is a signal.  This applies to fiber media only.
-     * If we're on serdes media, adjust the output amplitude to value
-     * set in the EEPROM.
-     */
-    ctrl = E1000_READ_REG(hw, CTRL);
-    if (hw->media_type == e1000_media_type_fiber)
-        signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
-
-    ret_val = e1000_adjust_serdes_amplitude(hw);
-    if (ret_val)
-        return ret_val;
-
-    /* Take the link out of reset */
-    ctrl &= ~(E1000_CTRL_LRST);
-
-    /* Adjust VCO speed to improve BER performance */
-    ret_val = e1000_set_vco_speed(hw);
-    if (ret_val)
-        return ret_val;
-
-    e1000_config_collision_dist(hw);
-
-    /* Check for a software override of the flow control settings, and setup
-     * the device accordingly.  If auto-negotiation is enabled, then software
-     * will have to set the "PAUSE" bits to the correct value in the Tranmsit
-     * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
-     * auto-negotiation is disabled, then software will have to manually
-     * configure the two flow control enable bits in the CTRL register.
-     *
-     * The possible values of the "fc" parameter are:
-     *      0:  Flow control is completely disabled
-     *      1:  Rx flow control is enabled (we can receive pause frames, but
-     *          not send pause frames).
-     *      2:  Tx flow control is enabled (we can send pause frames but we do
-     *          not support receiving pause frames).
-     *      3:  Both Rx and TX flow control (symmetric) are enabled.
-     */
-    switch (hw->fc) {
-    case E1000_FC_NONE:
-        /* Flow control is completely disabled by a software over-ride. */
-        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
-        break;
-    case E1000_FC_RX_PAUSE:
-        /* RX Flow control is enabled and TX Flow control is disabled by a
-         * software over-ride. Since there really isn't a way to advertise
-         * that we are capable of RX Pause ONLY, we will advertise that we
-         * support both symmetric and asymmetric RX PAUSE. Later, we will
-         *  disable the adapter's ability to send PAUSE frames.
-         */
-        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
-        break;
-    case E1000_FC_TX_PAUSE:
-        /* TX Flow control is enabled, and RX Flow control is disabled, by a
-         * software over-ride.
-         */
-        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
-        break;
-    case E1000_FC_FULL:
-        /* Flow control (both RX and TX) is enabled by a software over-ride. */
-        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
-        break;
-    default:
-        DEBUGOUT("Flow control param set incorrectly\n");
-        return -E1000_ERR_CONFIG;
-    }
-
-    /* Since auto-negotiation is enabled, take the link out of reset (the link
-     * will be in reset, because we previously reset the chip). This will
-     * restart auto-negotiation.  If auto-neogtiation is successful then the
-     * link-up status bit will be set and the flow control enable bits (RFCE
-     * and TFCE) will be set according to their negotiated value.
-     */
-    DEBUGOUT("Auto-negotiation enabled\n");
-
-    E1000_WRITE_REG(hw, TXCW, txcw);
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-    E1000_WRITE_FLUSH(hw);
-
-    hw->txcw = txcw;
-    msec_delay(1);
-
-    /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
-     * indication in the Device Status Register.  Time-out if a link isn't
-     * seen in 500 milliseconds seconds (Auto-negotiation should complete in
-     * less than 500 milliseconds even if the other end is doing it in SW).
-     * For internal serdes, we just assume a signal is present, then poll.
-     */
-    if (hw->media_type == e1000_media_type_internal_serdes ||
-       (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
-        DEBUGOUT("Looking for Link\n");
-        for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
-            msec_delay(10);
-            status = E1000_READ_REG(hw, STATUS);
-            if (status & E1000_STATUS_LU) break;
-        }
-        if (i == (LINK_UP_TIMEOUT / 10)) {
-            DEBUGOUT("Never got a valid link from auto-neg!!!\n");
-            hw->autoneg_failed = 1;
-            /* AutoNeg failed to achieve a link, so we'll call
-             * e1000_check_for_link. This routine will force the link up if
-             * we detect a signal. This will allow us to communicate with
-             * non-autonegotiating link partners.
-             */
-            ret_val = e1000_check_for_link(hw);
-            if (ret_val) {
-                DEBUGOUT("Error while checking for link\n");
-                return ret_val;
-            }
-            hw->autoneg_failed = 0;
-        } else {
-            hw->autoneg_failed = 0;
-            DEBUGOUT("Valid Link Found\n");
-        }
-    } else {
-        DEBUGOUT("No Signal Detected\n");
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Make sure we have a valid PHY and change PHY mode before link setup.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-e1000_copper_link_preconfig(struct e1000_hw *hw)
-{
-    uint32_t ctrl;
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("e1000_copper_link_preconfig");
-
-    ctrl = E1000_READ_REG(hw, CTRL);
-    /* With 82543, we need to force speed and duplex on the MAC equal to what
-     * the PHY speed and duplex configuration is. In addition, we need to
-     * perform a hardware reset on the PHY to take it out of reset.
-     */
-    if (hw->mac_type > e1000_82543) {
-        ctrl |= E1000_CTRL_SLU;
-        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-        E1000_WRITE_REG(hw, CTRL, ctrl);
-    } else {
-        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
-        E1000_WRITE_REG(hw, CTRL, ctrl);
-        ret_val = e1000_phy_hw_reset(hw);
-        if (ret_val)
-            return ret_val;
-    }
-
-    /* Make sure we have a valid PHY */
-    ret_val = e1000_detect_gig_phy(hw);
-    if (ret_val) {
-        DEBUGOUT("Error, did not detect valid phy.\n");
-        return ret_val;
-    }
-    DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
-
-    /* Set PHY to class A mode (if necessary) */
-    ret_val = e1000_set_phy_mode(hw);
-    if (ret_val)
-        return ret_val;
-
-    if ((hw->mac_type == e1000_82545_rev_3) ||
-       (hw->mac_type == e1000_82546_rev_3)) {
-        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-        phy_data |= 0x00000008;
-        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-    }
-
-    if (hw->mac_type <= e1000_82543 ||
-        hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
-        hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
-        hw->phy_reset_disable = FALSE;
-
-   return E1000_SUCCESS;
-}
-
-
-/********************************************************************
-* Copper link setup for e1000_phy_igp series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-e1000_copper_link_igp_setup(struct e1000_hw *hw)
-{
-    uint32_t led_ctrl;
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("e1000_copper_link_igp_setup");
-
-    if (hw->phy_reset_disable)
-        return E1000_SUCCESS;
-
-    ret_val = e1000_phy_reset(hw);
-    if (ret_val) {
-        DEBUGOUT("Error Resetting the PHY\n");
-        return ret_val;
-    }
-
-    /* Wait 15ms for MAC to configure PHY from eeprom settings */
-    msec_delay(15);
-    if (hw->mac_type != e1000_ich8lan) {
-    /* Configure activity LED after PHY reset */
-    led_ctrl = E1000_READ_REG(hw, LEDCTL);
-    led_ctrl &= IGP_ACTIVITY_LED_MASK;
-    led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
-    E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
-    }
-
-    /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
-    if (hw->phy_type == e1000_phy_igp) {
-        /* disable lplu d3 during driver init */
-        ret_val = e1000_set_d3_lplu_state(hw, FALSE);
-        if (ret_val) {
-            DEBUGOUT("Error Disabling LPLU D3\n");
-            return ret_val;
-        }
-    }
-
-    /* disable lplu d0 during driver init */
-    ret_val = e1000_set_d0_lplu_state(hw, FALSE);
-    if (ret_val) {
-        DEBUGOUT("Error Disabling LPLU D0\n");
-        return ret_val;
-    }
-    /* Configure mdi-mdix settings */
-    ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
-        hw->dsp_config_state = e1000_dsp_config_disabled;
-        /* Force MDI for earlier revs of the IGP PHY */
-        phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
-        hw->mdix = 1;
-
-    } else {
-        hw->dsp_config_state = e1000_dsp_config_enabled;
-        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-
-        switch (hw->mdix) {
-        case 1:
-            phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-            break;
-        case 2:
-            phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
-            break;
-        case 0:
-        default:
-            phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
-            break;
-        }
-    }
-    ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
-    if (ret_val)
-        return ret_val;
-
-    /* set auto-master slave resolution settings */
-    if (hw->autoneg) {
-        e1000_ms_type phy_ms_setting = hw->master_slave;
-
-        if (hw->ffe_config_state == e1000_ffe_config_active)
-            hw->ffe_config_state = e1000_ffe_config_enabled;
-
-        if (hw->dsp_config_state == e1000_dsp_config_activated)
-            hw->dsp_config_state = e1000_dsp_config_enabled;
-
-        /* when autonegotiation advertisment is only 1000Mbps then we
-          * should disable SmartSpeed and enable Auto MasterSlave
-          * resolution as hardware default. */
-        if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
-            /* Disable SmartSpeed */
-            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-            /* Set auto Master/Slave resolution process */
-            ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
-            if (ret_val)
-                return ret_val;
-            phy_data &= ~CR_1000T_MS_ENABLE;
-            ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
-        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* load defaults for future use */
-        hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
-                                        ((phy_data & CR_1000T_MS_VALUE) ?
-                                         e1000_ms_force_master :
-                                         e1000_ms_force_slave) :
-                                         e1000_ms_auto;
-
-        switch (phy_ms_setting) {
-        case e1000_ms_force_master:
-            phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
-            break;
-        case e1000_ms_force_slave:
-            phy_data |= CR_1000T_MS_ENABLE;
-            phy_data &= ~(CR_1000T_MS_VALUE);
-            break;
-        case e1000_ms_auto:
-            phy_data &= ~CR_1000T_MS_ENABLE;
-            default:
-            break;
-        }
-        ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/********************************************************************
-* Copper link setup for e1000_phy_gg82563 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-e1000_copper_link_ggp_setup(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-    uint32_t reg_data;
-
-    DEBUGFUNC("e1000_copper_link_ggp_setup");
-
-    if (!hw->phy_reset_disable) {
-
-        /* Enable CRS on TX for half-duplex operation. */
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
-        /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
-        phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
-
-        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
-                                      phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* Options:
-         *   MDI/MDI-X = 0 (default)
-         *   0 - Auto for all speeds
-         *   1 - MDI mode
-         *   2 - MDI-X mode
-         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
-         */
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
-
-        switch (hw->mdix) {
-        case 1:
-            phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
-            break;
-        case 2:
-            phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
-            break;
-        case 0:
-        default:
-            phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
-            break;
-        }
-
-        /* Options:
-         *   disable_polarity_correction = 0 (default)
-         *       Automatic Correction for Reversed Cable Polarity
-         *   0 - Disabled
-         *   1 - Enabled
-         */
-        phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
-        if (hw->disable_polarity_correction == 1)
-            phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
-        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
-
-        if (ret_val)
-            return ret_val;
-
-        /* SW Reset the PHY so all changes take effect */
-        ret_val = e1000_phy_reset(hw);
-        if (ret_val) {
-            DEBUGOUT("Error Resetting the PHY\n");
-            return ret_val;
-        }
-    } /* phy_reset_disable */
-
-    if (hw->mac_type == e1000_80003es2lan) {
-        /* Bypass RX and TX FIFO's */
-        ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
-                                       E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
-                                       E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
-        if (ret_val)
-            return ret_val;
-
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
-        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
-
-        if (ret_val)
-            return ret_val;
-
-        reg_data = E1000_READ_REG(hw, CTRL_EXT);
-        reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
-        E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
-
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
-                                          &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* Do not init these registers when the HW is in IAMT mode, since the
-         * firmware will have already initialized them.  We only initialize
-         * them if the HW is not in IAMT mode.
-         */
-        if (e1000_check_mng_mode(hw) == FALSE) {
-            /* Enable Electrical Idle on the PHY */
-            phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
-            ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-
-            ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-            ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
-                                          phy_data);
-
-            if (ret_val)
-                return ret_val;
-        }
-
-        /* Workaround: Disable padding in Kumeran interface in the MAC
-         * and in the PHY to avoid CRC errors.
-         */
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        phy_data |= GG82563_ICR_DIS_PADDING;
-        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
-                                      phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/********************************************************************
-* Copper link setup for e1000_phy_m88 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-e1000_copper_link_mgp_setup(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("e1000_copper_link_mgp_setup");
-
-    if (hw->phy_reset_disable)
-        return E1000_SUCCESS;
-
-    /* Enable CRS on TX. This must be set for half-duplex operation. */
-    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
-    /* Options:
-     *   MDI/MDI-X = 0 (default)
-     *   0 - Auto for all speeds
-     *   1 - MDI mode
-     *   2 - MDI-X mode
-     *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
-     */
-    phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
-    switch (hw->mdix) {
-    case 1:
-        phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
-        break;
-    case 2:
-        phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
-        break;
-    case 3:
-        phy_data |= M88E1000_PSCR_AUTO_X_1000T;
-        break;
-    case 0:
-    default:
-        phy_data |= M88E1000_PSCR_AUTO_X_MODE;
-        break;
-    }
-
-    /* Options:
-     *   disable_polarity_correction = 0 (default)
-     *       Automatic Correction for Reversed Cable Polarity
-     *   0 - Disabled
-     *   1 - Enabled
-     */
-    phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
-    if (hw->disable_polarity_correction == 1)
-        phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-    if (ret_val)
-        return ret_val;
-
-    if (hw->phy_revision < M88E1011_I_REV_4) {
-        /* Force TX_CLK in the Extended PHY Specific Control Register
-         * to 25MHz clock.
-         */
-        ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
-        if ((hw->phy_revision == E1000_REVISION_2) &&
-            (hw->phy_id == M88E1111_I_PHY_ID)) {
-            /* Vidalia Phy, set the downshift counter to 5x */
-            phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
-            phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
-            ret_val = e1000_write_phy_reg(hw,
-                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
-            if (ret_val)
-                return ret_val;
-        } else {
-            /* Configure Master and Slave downshift values */
-            phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
-                              M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
-            phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
-                             M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
-            ret_val = e1000_write_phy_reg(hw,
-                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
-            if (ret_val)
-               return ret_val;
-        }
-    }
-
-    /* SW Reset the PHY so all changes take effect */
-    ret_val = e1000_phy_reset(hw);
-    if (ret_val) {
-        DEBUGOUT("Error Resetting the PHY\n");
-        return ret_val;
-    }
-
-   return E1000_SUCCESS;
-}
-
-/********************************************************************
-* Setup auto-negotiation and flow control advertisements,
-* and then perform auto-negotiation.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-e1000_copper_link_autoneg(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("e1000_copper_link_autoneg");
-
-    /* Perform some bounds checking on the hw->autoneg_advertised
-     * parameter.  If this variable is zero, then set it to the default.
-     */
-    hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
-    /* If autoneg_advertised is zero, we assume it was not defaulted
-     * by the calling code so we set to advertise full capability.
-     */
-    if (hw->autoneg_advertised == 0)
-        hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
-    /* IFE phy only supports 10/100 */
-    if (hw->phy_type == e1000_phy_ife)
-        hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
-
-    DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
-    ret_val = e1000_phy_setup_autoneg(hw);
-    if (ret_val) {
-        DEBUGOUT("Error Setting up Auto-Negotiation\n");
-        return ret_val;
-    }
-    DEBUGOUT("Restarting Auto-Neg\n");
-
-    /* Restart auto-negotiation by setting the Auto Neg Enable bit and
-     * the Auto Neg Restart bit in the PHY control register.
-     */
-    ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
-    ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
-    if (ret_val)
-        return ret_val;
-
-    /* Does the user want to wait for Auto-Neg to complete here, or
-     * check at a later time (for example, callback routine).
-     */
-    if (hw->wait_autoneg_complete) {
-        ret_val = e1000_wait_autoneg(hw);
-        if (ret_val) {
-            DEBUGOUT("Error while waiting for autoneg to complete\n");
-            return ret_val;
-        }
-    }
-
-    hw->get_link_status = TRUE;
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Config the MAC and the PHY after link is up.
-*   1) Set up the MAC to the current PHY speed/duplex
-*      if we are on 82543.  If we
-*      are on newer silicon, we only need to configure
-*      collision distance in the Transmit Control Register.
-*   2) Set up flow control on the MAC to that established with
-*      the link partner.
-*   3) Config DSP to improve Gigabit link quality for some PHY revisions.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-e1000_copper_link_postconfig(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    DEBUGFUNC("e1000_copper_link_postconfig");
-
-    if (hw->mac_type >= e1000_82544) {
-        e1000_config_collision_dist(hw);
-    } else {
-        ret_val = e1000_config_mac_to_phy(hw);
-        if (ret_val) {
-            DEBUGOUT("Error configuring MAC to PHY settings\n");
-            return ret_val;
-        }
-    }
-    ret_val = e1000_config_fc_after_link_up(hw);
-    if (ret_val) {
-        DEBUGOUT("Error Configuring Flow Control\n");
-        return ret_val;
-    }
-
-    /* Config DSP to improve Giga link quality */
-    if (hw->phy_type == e1000_phy_igp) {
-        ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
-        if (ret_val) {
-            DEBUGOUT("Error Configuring DSP after link up\n");
-            return ret_val;
-        }
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Detects which PHY is present and setup the speed and duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-e1000_setup_copper_link(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t i;
-    uint16_t phy_data;
-    uint16_t reg_data;
-
-    DEBUGFUNC("e1000_setup_copper_link");
-
-    switch (hw->mac_type) {
-    case e1000_80003es2lan:
-    case e1000_ich8lan:
-        /* Set the mac to wait the maximum time between each
-         * iteration and increase the max iterations when
-         * polling the phy; this fixes erroneous timeouts at 10Mbps. */
-        ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
-        if (ret_val)
-            return ret_val;
-        ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
-        if (ret_val)
-            return ret_val;
-        reg_data |= 0x3F;
-        ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
-        if (ret_val)
-            return ret_val;
-    default:
-        break;
-    }
-
-    /* Check if it is a valid PHY and set PHY mode if necessary. */
-    ret_val = e1000_copper_link_preconfig(hw);
-    if (ret_val)
-        return ret_val;
-
-    switch (hw->mac_type) {
-    case e1000_80003es2lan:
-        /* Kumeran registers are written-only */
-        reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
-        reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
-        ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
-                                       reg_data);
-        if (ret_val)
-            return ret_val;
-        break;
-    default:
-        break;
-    }
-
-    if (hw->phy_type == e1000_phy_igp ||
-        hw->phy_type == e1000_phy_igp_3 ||
-        hw->phy_type == e1000_phy_igp_2) {
-        ret_val = e1000_copper_link_igp_setup(hw);
-        if (ret_val)
-            return ret_val;
-    } else if (hw->phy_type == e1000_phy_m88) {
-        ret_val = e1000_copper_link_mgp_setup(hw);
-        if (ret_val)
-            return ret_val;
-    } else if (hw->phy_type == e1000_phy_gg82563) {
-        ret_val = e1000_copper_link_ggp_setup(hw);
-        if (ret_val)
-            return ret_val;
-    }
-
-    if (hw->autoneg) {
-        /* Setup autoneg and flow control advertisement
-          * and perform autonegotiation */
-        ret_val = e1000_copper_link_autoneg(hw);
-        if (ret_val)
-            return ret_val;
-    } else {
-        /* PHY will be set to 10H, 10F, 100H,or 100F
-          * depending on value from forced_speed_duplex. */
-        DEBUGOUT("Forcing speed and duplex\n");
-        ret_val = e1000_phy_force_speed_duplex(hw);
-        if (ret_val) {
-            DEBUGOUT("Error Forcing Speed and Duplex\n");
-            return ret_val;
-        }
-    }
-
-    /* Check link status. Wait up to 100 microseconds for link to become
-     * valid.
-     */
-    for (i = 0; i < 10; i++) {
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        if (phy_data & MII_SR_LINK_STATUS) {
-            /* Config the MAC and PHY after link is up */
-            ret_val = e1000_copper_link_postconfig(hw);
-            if (ret_val)
-                return ret_val;
-
-            DEBUGOUT("Valid link established!!!\n");
-            return E1000_SUCCESS;
-        }
-        usec_delay(10);
-    }
-
-    DEBUGOUT("Unable to establish link!!!\n");
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Configure the MAC-to-PHY interface for 10/100Mbps
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
-{
-    int32_t ret_val = E1000_SUCCESS;
-    uint32_t tipg;
-    uint16_t reg_data;
-
-    DEBUGFUNC("e1000_configure_kmrn_for_10_100");
-
-    reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
-    ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
-                                   reg_data);
-    if (ret_val)
-        return ret_val;
-
-    /* Configure Transmit Inter-Packet Gap */
-    tipg = E1000_READ_REG(hw, TIPG);
-    tipg &= ~E1000_TIPG_IPGT_MASK;
-    tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
-    E1000_WRITE_REG(hw, TIPG, tipg);
-
-    ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
-
-    if (ret_val)
-        return ret_val;
-
-    if (duplex == HALF_DUPLEX)
-        reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
-    else
-        reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-
-    ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-
-    return ret_val;
-}
-
-static int32_t
-e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
-{
-    int32_t ret_val = E1000_SUCCESS;
-    uint16_t reg_data;
-    uint32_t tipg;
-
-    DEBUGFUNC("e1000_configure_kmrn_for_1000");
-
-    reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
-    ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
-                                   reg_data);
-    if (ret_val)
-        return ret_val;
-
-    /* Configure Transmit Inter-Packet Gap */
-    tipg = E1000_READ_REG(hw, TIPG);
-    tipg &= ~E1000_TIPG_IPGT_MASK;
-    tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
-    E1000_WRITE_REG(hw, TIPG, tipg);
-
-    ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
-
-    if (ret_val)
-        return ret_val;
-
-    reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-    ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-
-    return ret_val;
-}
-
-/******************************************************************************
-* Configures PHY autoneg and flow control advertisement settings
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-e1000_phy_setup_autoneg(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t mii_autoneg_adv_reg;
-    uint16_t mii_1000t_ctrl_reg;
-
-    DEBUGFUNC("e1000_phy_setup_autoneg");
-
-    /* Read the MII Auto-Neg Advertisement Register (Address 4). */
-    ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
-    if (ret_val)
-        return ret_val;
-
-    if (hw->phy_type != e1000_phy_ife) {
-        /* Read the MII 1000Base-T Control Register (Address 9). */
-        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
-        if (ret_val)
-            return ret_val;
-    } else
-        mii_1000t_ctrl_reg=0;
-
-    /* Need to parse both autoneg_advertised and fc and set up
-     * the appropriate PHY registers.  First we will parse for
-     * autoneg_advertised software override.  Since we can advertise
-     * a plethora of combinations, we need to check each bit
-     * individually.
-     */
-
-    /* First we clear all the 10/100 mb speed bits in the Auto-Neg
-     * Advertisement Register (Address 4) and the 1000 mb speed bits in
-     * the  1000Base-T Control Register (Address 9).
-     */
-    mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
-    mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
-
-    DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
-
-    /* Do we want to advertise 10 Mb Half Duplex? */
-    if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
-        DEBUGOUT("Advertise 10mb Half duplex\n");
-        mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
-    }
-
-    /* Do we want to advertise 10 Mb Full Duplex? */
-    if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
-        DEBUGOUT("Advertise 10mb Full duplex\n");
-        mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
-    }
-
-    /* Do we want to advertise 100 Mb Half Duplex? */
-    if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
-        DEBUGOUT("Advertise 100mb Half duplex\n");
-        mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
-    }
-
-    /* Do we want to advertise 100 Mb Full Duplex? */
-    if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
-        DEBUGOUT("Advertise 100mb Full duplex\n");
-        mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
-    }
-
-    /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
-    if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
-        DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
-    }
-
-    /* Do we want to advertise 1000 Mb Full Duplex? */
-    if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
-        DEBUGOUT("Advertise 1000mb Full duplex\n");
-        mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
-        if (hw->phy_type == e1000_phy_ife) {
-            DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
-        }
-    }
-
-    /* Check for a software override of the flow control settings, and
-     * setup the PHY advertisement registers accordingly.  If
-     * auto-negotiation is enabled, then software will have to set the
-     * "PAUSE" bits to the correct value in the Auto-Negotiation
-     * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
-     *
-     * The possible values of the "fc" parameter are:
-     *      0:  Flow control is completely disabled
-     *      1:  Rx flow control is enabled (we can receive pause frames
-     *          but not send pause frames).
-     *      2:  Tx flow control is enabled (we can send pause frames
-     *          but we do not support receiving pause frames).
-     *      3:  Both Rx and TX flow control (symmetric) are enabled.
-     *  other:  No software override.  The flow control configuration
-     *          in the EEPROM is used.
-     */
-    switch (hw->fc) {
-    case E1000_FC_NONE: /* 0 */
-        /* Flow control (RX & TX) is completely disabled by a
-         * software over-ride.
-         */
-        mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
-        break;
-    case E1000_FC_RX_PAUSE: /* 1 */
-        /* RX Flow control is enabled, and TX Flow control is
-         * disabled, by a software over-ride.
-         */
-        /* Since there really isn't a way to advertise that we are
-         * capable of RX Pause ONLY, we will advertise that we
-         * support both symmetric and asymmetric RX PAUSE.  Later
-         * (in e1000_config_fc_after_link_up) we will disable the
-         *hw's ability to send PAUSE frames.
-         */
-        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
-        break;
-    case E1000_FC_TX_PAUSE: /* 2 */
-        /* TX Flow control is enabled, and RX Flow control is
-         * disabled, by a software over-ride.
-         */
-        mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
-        mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
-        break;
-    case E1000_FC_FULL: /* 3 */
-        /* Flow control (both RX and TX) is enabled by a software
-         * over-ride.
-         */
-        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
-        break;
-    default:
-        DEBUGOUT("Flow control param set incorrectly\n");
-        return -E1000_ERR_CONFIG;
-    }
-
-    ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
-    if (ret_val)
-        return ret_val;
-
-    DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
-
-    if (hw->phy_type != e1000_phy_ife) {
-        ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
-        if (ret_val)
-            return ret_val;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Force PHY speed and duplex settings to hw->forced_speed_duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-e1000_phy_force_speed_duplex(struct e1000_hw *hw)
-{
-    uint32_t ctrl;
-    int32_t ret_val;
-    uint16_t mii_ctrl_reg;
-    uint16_t mii_status_reg;
-    uint16_t phy_data;
-    uint16_t i;
-
-    DEBUGFUNC("e1000_phy_force_speed_duplex");
-
-    /* Turn off Flow control if we are forcing speed and duplex. */
-    hw->fc = E1000_FC_NONE;
-
-    DEBUGOUT1("hw->fc = %d\n", hw->fc);
-
-    /* Read the Device Control Register. */
-    ctrl = E1000_READ_REG(hw, CTRL);
-
-    /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
-    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-    ctrl &= ~(DEVICE_SPEED_MASK);
-
-    /* Clear the Auto Speed Detect Enable bit. */
-    ctrl &= ~E1000_CTRL_ASDE;
-
-    /* Read the MII Control Register. */
-    ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
-    if (ret_val)
-        return ret_val;
-
-    /* We need to disable autoneg in order to force link and duplex. */
-
-    mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
-
-    /* Are we forcing Full or Half Duplex? */
-    if (hw->forced_speed_duplex == e1000_100_full ||
-        hw->forced_speed_duplex == e1000_10_full) {
-        /* We want to force full duplex so we SET the full duplex bits in the
-         * Device and MII Control Registers.
-         */
-        ctrl |= E1000_CTRL_FD;
-        mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
-        DEBUGOUT("Full Duplex\n");
-    } else {
-        /* We want to force half duplex so we CLEAR the full duplex bits in
-         * the Device and MII Control Registers.
-         */
-        ctrl &= ~E1000_CTRL_FD;
-        mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
-        DEBUGOUT("Half Duplex\n");
-    }
-
-    /* Are we forcing 100Mbps??? */
-    if (hw->forced_speed_duplex == e1000_100_full ||
-       hw->forced_speed_duplex == e1000_100_half) {
-        /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
-        ctrl |= E1000_CTRL_SPD_100;
-        mii_ctrl_reg |= MII_CR_SPEED_100;
-        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
-        DEBUGOUT("Forcing 100mb ");
-    } else {
-        /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
-        ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
-        mii_ctrl_reg |= MII_CR_SPEED_10;
-        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
-        DEBUGOUT("Forcing 10mb ");
-    }
-
-    e1000_config_collision_dist(hw);
-
-    /* Write the configured values back to the Device Control Reg. */
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-
-    if ((hw->phy_type == e1000_phy_m88) ||
-        (hw->phy_type == e1000_phy_gg82563)) {
-        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
-         * forced whenever speed are duplex are forced.
-         */
-        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-
-        DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
-
-        /* Need to reset the PHY or these changes will be ignored */
-        mii_ctrl_reg |= MII_CR_RESET;
-
-    /* Disable MDI-X support for 10/100 */
-    } else if (hw->phy_type == e1000_phy_ife) {
-        ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~IFE_PMC_AUTO_MDIX;
-        phy_data &= ~IFE_PMC_FORCE_MDIX;
-
-        ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
-        if (ret_val)
-            return ret_val;
-
-    } else {
-        /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
-         * forced whenever speed or duplex are forced.
-         */
-        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-
-        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    /* Write back the modified PHY MII control register. */
-    ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
-    if (ret_val)
-        return ret_val;
-
-    usec_delay(1);
-
-    /* The wait_autoneg_complete flag may be a little misleading here.
-     * Since we are forcing speed and duplex, Auto-Neg is not enabled.
-     * But we do want to delay for a period while forcing only so we
-     * don't generate false No Link messages.  So we will wait here
-     * only if the user has set wait_autoneg_complete to 1, which is
-     * the default.
-     */
-    if (hw->wait_autoneg_complete) {
-        /* We will wait for autoneg to complete. */
-        DEBUGOUT("Waiting for forced speed/duplex link.\n");
-        mii_status_reg = 0;
-
-        /* We will wait for autoneg to complete or 4.5 seconds to expire. */
-        for (i = PHY_FORCE_TIME; i > 0; i--) {
-            /* Read the MII Status Register and wait for Auto-Neg Complete bit
-             * to be set.
-             */
-            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-            if (ret_val)
-                return ret_val;
-
-            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-            if (ret_val)
-                return ret_val;
-
-            if (mii_status_reg & MII_SR_LINK_STATUS) break;
-            msec_delay(100);
-        }
-        if ((i == 0) &&
-           ((hw->phy_type == e1000_phy_m88) ||
-            (hw->phy_type == e1000_phy_gg82563))) {
-            /* We didn't get link.  Reset the DSP and wait again for link. */
-            ret_val = e1000_phy_reset_dsp(hw);
-            if (ret_val) {
-                DEBUGOUT("Error Resetting PHY DSP\n");
-                return ret_val;
-            }
-        }
-        /* This loop will early-out if the link condition has been met.  */
-        for (i = PHY_FORCE_TIME; i > 0; i--) {
-            if (mii_status_reg & MII_SR_LINK_STATUS) break;
-            msec_delay(100);
-            /* Read the MII Status Register and wait for Auto-Neg Complete bit
-             * to be set.
-             */
-            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-            if (ret_val)
-                return ret_val;
-
-            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-            if (ret_val)
-                return ret_val;
-        }
-    }
-
-    if (hw->phy_type == e1000_phy_m88) {
-        /* Because we reset the PHY above, we need to re-force TX_CLK in the
-         * Extended PHY Specific Control Register to 25MHz clock.  This value
-         * defaults back to a 2.5MHz clock when the PHY is reset.
-         */
-        ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |= M88E1000_EPSCR_TX_CLK_25;
-        ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* In addition, because of the s/w reset above, we need to enable CRS on
-         * TX.  This must be set for both full and half duplex operation.
-         */
-        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-
-        if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
-            (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
-             hw->forced_speed_duplex == e1000_10_half)) {
-            ret_val = e1000_polarity_reversal_workaround(hw);
-            if (ret_val)
-                return ret_val;
-        }
-    } else if (hw->phy_type == e1000_phy_gg82563) {
-        /* The TX_CLK of the Extended PHY Specific Control Register defaults
-         * to 2.5MHz on a reset.  We need to re-force it back to 25MHz, if
-         * we're not in a forced 10/duplex configuration. */
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
-        if ((hw->forced_speed_duplex == e1000_10_full) ||
-            (hw->forced_speed_duplex == e1000_10_half))
-            phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
-        else
-            phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
-
-        /* Also due to the reset, we need to enable CRS on Tx. */
-        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
-
-        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Sets the collision distance in the Transmit Control register
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Link should have been established previously. Reads the speed and duplex
-* information from the Device Status register.
-******************************************************************************/
-void
-e1000_config_collision_dist(struct e1000_hw *hw)
-{
-    uint32_t tctl, coll_dist;
-
-    DEBUGFUNC("e1000_config_collision_dist");
-
-    if (hw->mac_type < e1000_82543)
-        coll_dist = E1000_COLLISION_DISTANCE_82542;
-    else
-        coll_dist = E1000_COLLISION_DISTANCE;
-
-    tctl = E1000_READ_REG(hw, TCTL);
-
-    tctl &= ~E1000_TCTL_COLD;
-    tctl |= coll_dist << E1000_COLD_SHIFT;
-
-    E1000_WRITE_REG(hw, TCTL, tctl);
-    E1000_WRITE_FLUSH(hw);
-}
-
-/******************************************************************************
-* Sets MAC speed and duplex settings to reflect the those in the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* mii_reg - data to write to the MII control register
-*
-* The contents of the PHY register containing the needed information need to
-* be passed in.
-******************************************************************************/
-static int32_t
-e1000_config_mac_to_phy(struct e1000_hw *hw)
-{
-    uint32_t ctrl;
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("e1000_config_mac_to_phy");
-
-    /* 82544 or newer MAC, Auto Speed Detection takes care of
-    * MAC speed/duplex configuration.*/
-    if (hw->mac_type >= e1000_82544)
-        return E1000_SUCCESS;
-
-    /* Read the Device Control Register and set the bits to Force Speed
-     * and Duplex.
-     */
-    ctrl = E1000_READ_REG(hw, CTRL);
-    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-    ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
-
-    /* Set up duplex in the Device Control and Transmit Control
-     * registers depending on negotiated values.
-     */
-    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    if (phy_data & M88E1000_PSSR_DPLX)
-        ctrl |= E1000_CTRL_FD;
-    else
-        ctrl &= ~E1000_CTRL_FD;
-
-    e1000_config_collision_dist(hw);
-
-    /* Set up speed in the Device Control register depending on
-     * negotiated values.
-     */
-    if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
-        ctrl |= E1000_CTRL_SPD_1000;
-    else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
-        ctrl |= E1000_CTRL_SPD_100;
-
-    /* Write the configured values back to the Device Control Reg. */
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Forces the MAC's flow control settings.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Sets the TFCE and RFCE bits in the device control register to reflect
- * the adapter settings. TFCE and RFCE need to be explicitly set by
- * software when a Copper PHY is used because autonegotiation is managed
- * by the PHY rather than the MAC. Software must also configure these
- * bits when link is forced on a fiber connection.
- *****************************************************************************/
-int32_t
-e1000_force_mac_fc(struct e1000_hw *hw)
-{
-    uint32_t ctrl;
-
-    DEBUGFUNC("e1000_force_mac_fc");
-
-    /* Get the current configuration of the Device Control Register */
-    ctrl = E1000_READ_REG(hw, CTRL);
-
-    /* Because we didn't get link via the internal auto-negotiation
-     * mechanism (we either forced link or we got link via PHY
-     * auto-neg), we have to manually enable/disable transmit an
-     * receive flow control.
-     *
-     * The "Case" statement below enables/disable flow control
-     * according to the "hw->fc" parameter.
-     *
-     * The possible values of the "fc" parameter are:
-     *      0:  Flow control is completely disabled
-     *      1:  Rx flow control is enabled (we can receive pause
-     *          frames but not send pause frames).
-     *      2:  Tx flow control is enabled (we can send pause frames
-     *          frames but we do not receive pause frames).
-     *      3:  Both Rx and TX flow control (symmetric) is enabled.
-     *  other:  No other values should be possible at this point.
-     */
-
-    switch (hw->fc) {
-    case E1000_FC_NONE:
-        ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
-        break;
-    case E1000_FC_RX_PAUSE:
-        ctrl &= (~E1000_CTRL_TFCE);
-        ctrl |= E1000_CTRL_RFCE;
-        break;
-    case E1000_FC_TX_PAUSE:
-        ctrl &= (~E1000_CTRL_RFCE);
-        ctrl |= E1000_CTRL_TFCE;
-        break;
-    case E1000_FC_FULL:
-        ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
-        break;
-    default:
-        DEBUGOUT("Flow control param set incorrectly\n");
-        return -E1000_ERR_CONFIG;
-    }
-
-    /* Disable TX Flow Control for 82542 (rev 2.0) */
-    if (hw->mac_type == e1000_82542_rev2_0)
-        ctrl &= (~E1000_CTRL_TFCE);
-
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Configures flow control settings after link is established
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Should be called immediately after a valid link has been established.
- * Forces MAC flow control settings if link was forced. When in MII/GMII mode
- * and autonegotiation is enabled, the MAC flow control settings will be set
- * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
- * and RFCE bits will be automaticaly set to the negotiated flow control mode.
- *****************************************************************************/
-STATIC int32_t
-e1000_config_fc_after_link_up(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t mii_status_reg;
-    uint16_t mii_nway_adv_reg;
-    uint16_t mii_nway_lp_ability_reg;
-    uint16_t speed;
-    uint16_t duplex;
-
-    DEBUGFUNC("e1000_config_fc_after_link_up");
-
-    /* Check for the case where we have fiber media and auto-neg failed
-     * so we had to force link.  In this case, we need to force the
-     * configuration of the MAC to match the "fc" parameter.
-     */
-    if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
-        ((hw->media_type == e1000_media_type_internal_serdes) &&
-         (hw->autoneg_failed)) ||
-        ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
-        ret_val = e1000_force_mac_fc(hw);
-        if (ret_val) {
-            DEBUGOUT("Error forcing flow control settings\n");
-            return ret_val;
-        }
-    }
-
-    /* Check for the case where we have copper media and auto-neg is
-     * enabled.  In this case, we need to check and see if Auto-Neg
-     * has completed, and if so, how the PHY and link partner has
-     * flow control configured.
-     */
-    if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
-        /* Read the MII Status Register and check to see if AutoNeg
-         * has completed.  We read this twice because this reg has
-         * some "sticky" (latched) bits.
-         */
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-
-        if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
-            /* The AutoNeg process has completed, so we now need to
-             * read both the Auto Negotiation Advertisement Register
-             * (Address 4) and the Auto_Negotiation Base Page Ability
-             * Register (Address 5) to determine how flow control was
-             * negotiated.
-             */
-            ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
-                                         &mii_nway_adv_reg);
-            if (ret_val)
-                return ret_val;
-            ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
-                                         &mii_nway_lp_ability_reg);
-            if (ret_val)
-                return ret_val;
-
-            /* Two bits in the Auto Negotiation Advertisement Register
-             * (Address 4) and two bits in the Auto Negotiation Base
-             * Page Ability Register (Address 5) determine flow control
-             * for both the PHY and the link partner.  The following
-             * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
-             * 1999, describes these PAUSE resolution bits and how flow
-             * control is determined based upon these settings.
-             * NOTE:  DC = Don't Care
-             *
-             *   LOCAL DEVICE  |   LINK PARTNER
-             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
-             *-------|---------|-------|---------|--------------------
-             *   0   |    0    |  DC   |   DC    | e1000_fc_none
-             *   0   |    1    |   0   |   DC    | e1000_fc_none
-             *   0   |    1    |   1   |    0    | e1000_fc_none
-             *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
-             *   1   |    0    |   0   |   DC    | e1000_fc_none
-             *   1   |   DC    |   1   |   DC    | e1000_fc_full
-             *   1   |    1    |   0   |    0    | e1000_fc_none
-             *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
-             *
-             */
-            /* Are both PAUSE bits set to 1?  If so, this implies
-             * Symmetric Flow Control is enabled at both ends.  The
-             * ASM_DIR bits are irrelevant per the spec.
-             *
-             * For Symmetric Flow Control:
-             *
-             *   LOCAL DEVICE  |   LINK PARTNER
-             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
-             *-------|---------|-------|---------|--------------------
-             *   1   |   DC    |   1   |   DC    | e1000_fc_full
-             *
-             */
-            if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
-                (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
-                /* Now we need to check if the user selected RX ONLY
-                 * of pause frames.  In this case, we had to advertise
-                 * FULL flow control because we could not advertise RX
-                 * ONLY. Hence, we must now check to see if we need to
-                 * turn OFF  the TRANSMISSION of PAUSE frames.
-                 */
-                if (hw->original_fc == E1000_FC_FULL) {
-                    hw->fc = E1000_FC_FULL;
-                    DEBUGOUT("Flow Control = FULL.\n");
-                } else {
-                    hw->fc = E1000_FC_RX_PAUSE;
-                    DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
-                }
-            }
-            /* For receiving PAUSE frames ONLY.
-             *
-             *   LOCAL DEVICE  |   LINK PARTNER
-             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
-             *-------|---------|-------|---------|--------------------
-             *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
-             *
-             */
-            else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
-                     (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
-                     (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
-                     (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
-                hw->fc = E1000_FC_TX_PAUSE;
-                DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
-            }
-            /* For transmitting PAUSE frames ONLY.
-             *
-             *   LOCAL DEVICE  |   LINK PARTNER
-             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
-             *-------|---------|-------|---------|--------------------
-             *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
-             *
-             */
-            else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
-                     (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
-                     !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
-                     (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
-                hw->fc = E1000_FC_RX_PAUSE;
-                DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
-            }
-            /* Per the IEEE spec, at this point flow control should be
-             * disabled.  However, we want to consider that we could
-             * be connected to a legacy switch that doesn't advertise
-             * desired flow control, but can be forced on the link
-             * partner.  So if we advertised no flow control, that is
-             * what we will resolve to.  If we advertised some kind of
-             * receive capability (Rx Pause Only or Full Flow Control)
-             * and the link partner advertised none, we will configure
-             * ourselves to enable Rx Flow Control only.  We can do
-             * this safely for two reasons:  If the link partner really
-             * didn't want flow control enabled, and we enable Rx, no
-             * harm done since we won't be receiving any PAUSE frames
-             * anyway.  If the intent on the link partner was to have
-             * flow control enabled, then by us enabling RX only, we
-             * can at least receive pause frames and process them.
-             * This is a good idea because in most cases, since we are
-             * predominantly a server NIC, more times than not we will
-             * be asked to delay transmission of packets than asking
-             * our link partner to pause transmission of frames.
-             */
-            else if ((hw->original_fc == E1000_FC_NONE||
-                      hw->original_fc == E1000_FC_TX_PAUSE) ||
-                      hw->fc_strict_ieee) {
-                hw->fc = E1000_FC_NONE;
-                DEBUGOUT("Flow Control = NONE.\n");
-            } else {
-                hw->fc = E1000_FC_RX_PAUSE;
-                DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
-            }
-
-            /* Now we need to do one last check...  If we auto-
-             * negotiated to HALF DUPLEX, flow control should not be
-             * enabled per IEEE 802.3 spec.
-             */
-            ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
-            if (ret_val) {
-                DEBUGOUT("Error getting link speed and duplex\n");
-                return ret_val;
-            }
-
-            if (duplex == HALF_DUPLEX)
-                hw->fc = E1000_FC_NONE;
-
-            /* Now we call a subroutine to actually force the MAC
-             * controller to use the correct flow control settings.
-             */
-            ret_val = e1000_force_mac_fc(hw);
-            if (ret_val) {
-                DEBUGOUT("Error forcing flow control settings\n");
-                return ret_val;
-            }
-        } else {
-            DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
-        }
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Checks to see if the link status of the hardware has changed.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Called by any function that needs to check the link status of the adapter.
- *****************************************************************************/
-int32_t
-e1000_check_for_link(struct e1000_hw *hw)
-{
-    uint32_t rxcw = 0;
-    uint32_t ctrl;
-    uint32_t status;
-    uint32_t rctl;
-    uint32_t icr;
-    uint32_t signal = 0;
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("e1000_check_for_link");
-
-    ctrl = E1000_READ_REG(hw, CTRL);
-    status = E1000_READ_REG(hw, STATUS);
-
-    /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
-     * set when the optics detect a signal. On older adapters, it will be
-     * cleared when there is a signal.  This applies to fiber media only.
-     */
-    if ((hw->media_type == e1000_media_type_fiber) ||
-        (hw->media_type == e1000_media_type_internal_serdes)) {
-        rxcw = E1000_READ_REG(hw, RXCW);
-
-        if (hw->media_type == e1000_media_type_fiber) {
-            signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
-            if (status & E1000_STATUS_LU)
-                hw->get_link_status = FALSE;
-        }
-    }
-
-    /* If we have a copper PHY then we only want to go out to the PHY
-     * registers to see if Auto-Neg has completed and/or if our link
-     * status has changed.  The get_link_status flag will be set if we
-     * receive a Link Status Change interrupt or we have Rx Sequence
-     * Errors.
-     */
-    if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
-        /* First we want to see if the MII Status Register reports
-         * link.  If so, then we want to get the current speed/duplex
-         * of the PHY.
-         * Read the register twice since the link bit is sticky.
-         */
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        if (phy_data & MII_SR_LINK_STATUS) {
-            hw->get_link_status = FALSE;
-            /* Check if there was DownShift, must be checked immediately after
-             * link-up */
-            e1000_check_downshift(hw);
-
-            /* If we are on 82544 or 82543 silicon and speed/duplex
-             * are forced to 10H or 10F, then we will implement the polarity
-             * reversal workaround.  We disable interrupts first, and upon
-             * returning, place the devices interrupt state to its previous
-             * value except for the link status change interrupt which will
-             * happen due to the execution of this workaround.
-             */
-
-            if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
-                (!hw->autoneg) &&
-                (hw->forced_speed_duplex == e1000_10_full ||
-                 hw->forced_speed_duplex == e1000_10_half)) {
-                E1000_WRITE_REG(hw, IMC, 0xffffffff);
-                ret_val = e1000_polarity_reversal_workaround(hw);
-                icr = E1000_READ_REG(hw, ICR);
-                E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
-                E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
-            }
-
-        } else {
-            /* No link detected */
-            e1000_config_dsp_after_link_change(hw, FALSE);
-            return 0;
-        }
-
-        /* If we are forcing speed/duplex, then we simply return since
-         * we have already determined whether we have link or not.
-         */
-        if (!hw->autoneg) return -E1000_ERR_CONFIG;
-
-        /* optimize the dsp settings for the igp phy */
-        e1000_config_dsp_after_link_change(hw, TRUE);
-
-        /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
-         * have Si on board that is 82544 or newer, Auto
-         * Speed Detection takes care of MAC speed/duplex
-         * configuration.  So we only need to configure Collision
-         * Distance in the MAC.  Otherwise, we need to force
-         * speed/duplex on the MAC to the current PHY speed/duplex
-         * settings.
-         */
-        if (hw->mac_type >= e1000_82544)
-            e1000_config_collision_dist(hw);
-        else {
-            ret_val = e1000_config_mac_to_phy(hw);
-            if (ret_val) {
-                DEBUGOUT("Error configuring MAC to PHY settings\n");
-                return ret_val;
-            }
-        }
-
-        /* Configure Flow Control now that Auto-Neg has completed. First, we
-         * need to restore the desired flow control settings because we may
-         * have had to re-autoneg with a different link partner.
-         */
-        ret_val = e1000_config_fc_after_link_up(hw);
-        if (ret_val) {
-            DEBUGOUT("Error configuring flow control\n");
-            return ret_val;
-        }
-
-        /* At this point we know that we are on copper and we have
-         * auto-negotiated link.  These are conditions for checking the link
-         * partner capability register.  We use the link speed to determine if
-         * TBI compatibility needs to be turned on or off.  If the link is not
-         * at gigabit speed, then TBI compatibility is not needed.  If we are
-         * at gigabit speed, we turn on TBI compatibility.
-         */
-        if (hw->tbi_compatibility_en) {
-            uint16_t speed, duplex;
-            ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
-            if (ret_val) {
-                DEBUGOUT("Error getting link speed and duplex\n");
-                return ret_val;
-            }
-            if (speed != SPEED_1000) {
-                /* If link speed is not set to gigabit speed, we do not need
-                 * to enable TBI compatibility.
-                 */
-                if (hw->tbi_compatibility_on) {
-                    /* If we previously were in the mode, turn it off. */
-                    rctl = E1000_READ_REG(hw, RCTL);
-                    rctl &= ~E1000_RCTL_SBP;
-                    E1000_WRITE_REG(hw, RCTL, rctl);
-                    hw->tbi_compatibility_on = FALSE;
-                }
-            } else {
-                /* If TBI compatibility is was previously off, turn it on. For
-                 * compatibility with a TBI link partner, we will store bad
-                 * packets. Some frames have an additional byte on the end and
-                 * will look like CRC errors to to the hardware.
-                 */
-                if (!hw->tbi_compatibility_on) {
-                    hw->tbi_compatibility_on = TRUE;
-                    rctl = E1000_READ_REG(hw, RCTL);
-                    rctl |= E1000_RCTL_SBP;
-                    E1000_WRITE_REG(hw, RCTL, rctl);
-                }
-            }
-        }
-    }
-    /* If we don't have link (auto-negotiation failed or link partner cannot
-     * auto-negotiate), the cable is plugged in (we have signal), and our
-     * link partner is not trying to auto-negotiate with us (we are receiving
-     * idles or data), we need to force link up. We also need to give
-     * auto-negotiation time to complete, in case the cable was just plugged
-     * in. The autoneg_failed flag does this.
-     */
-    else if ((((hw->media_type == e1000_media_type_fiber) &&
-              ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
-              (hw->media_type == e1000_media_type_internal_serdes)) &&
-              (!(status & E1000_STATUS_LU)) &&
-              (!(rxcw & E1000_RXCW_C))) {
-        if (hw->autoneg_failed == 0) {
-            hw->autoneg_failed = 1;
-            return 0;
-        }
-        DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
-
-        /* Disable auto-negotiation in the TXCW register */
-        E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
-
-        /* Force link-up and also force full-duplex. */
-        ctrl = E1000_READ_REG(hw, CTRL);
-        ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
-        E1000_WRITE_REG(hw, CTRL, ctrl);
-
-        /* Configure Flow Control after forcing link up. */
-        ret_val = e1000_config_fc_after_link_up(hw);
-        if (ret_val) {
-            DEBUGOUT("Error configuring flow control\n");
-            return ret_val;
-        }
-    }
-    /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
-     * auto-negotiation in the TXCW register and disable forced link in the
-     * Device Control register in an attempt to auto-negotiate with our link
-     * partner.
-     */
-    else if (((hw->media_type == e1000_media_type_fiber) ||
-              (hw->media_type == e1000_media_type_internal_serdes)) &&
-              (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
-        DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
-        E1000_WRITE_REG(hw, TXCW, hw->txcw);
-        E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
-
-        hw->serdes_link_down = FALSE;
-    }
-    /* If we force link for non-auto-negotiation switch, check link status
-     * based on MAC synchronization for internal serdes media type.
-     */
-    else if ((hw->media_type == e1000_media_type_internal_serdes) &&
-             !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
-        /* SYNCH bit and IV bit are sticky. */
-        usec_delay(10);
-        if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
-            if (!(rxcw & E1000_RXCW_IV)) {
-                hw->serdes_link_down = FALSE;
-                DEBUGOUT("SERDES: Link is up.\n");
-            }
-        } else {
-            hw->serdes_link_down = TRUE;
-            DEBUGOUT("SERDES: Link is down.\n");
-        }
-    }
-    if ((hw->media_type == e1000_media_type_internal_serdes) &&
-        (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
-        hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Detects the current speed and duplex settings of the hardware.
- *
- * hw - Struct containing variables accessed by shared code
- * speed - Speed of the connection
- * duplex - Duplex setting of the connection
- *****************************************************************************/
-int32_t
-e1000_get_speed_and_duplex(struct e1000_hw *hw,
-                           uint16_t *speed,
-                           uint16_t *duplex)
-{
-    uint32_t status;
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("e1000_get_speed_and_duplex");
-
-    if (hw->mac_type >= e1000_82543) {
-        status = E1000_READ_REG(hw, STATUS);
-        if (status & E1000_STATUS_SPEED_1000) {
-            *speed = SPEED_1000;
-            DEBUGOUT("1000 Mbs, ");
-        } else if (status & E1000_STATUS_SPEED_100) {
-            *speed = SPEED_100;
-            DEBUGOUT("100 Mbs, ");
-        } else {
-            *speed = SPEED_10;
-            DEBUGOUT("10 Mbs, ");
-        }
-
-        if (status & E1000_STATUS_FD) {
-            *duplex = FULL_DUPLEX;
-            DEBUGOUT("Full Duplex\n");
-        } else {
-            *duplex = HALF_DUPLEX;
-            DEBUGOUT(" Half Duplex\n");
-        }
-    } else {
-        DEBUGOUT("1000 Mbs, Full Duplex\n");
-        *speed = SPEED_1000;
-        *duplex = FULL_DUPLEX;
-    }
-
-    /* IGP01 PHY may advertise full duplex operation after speed downgrade even
-     * if it is operating at half duplex.  Here we set the duplex settings to
-     * match the duplex in the link partner's capabilities.
-     */
-    if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
-        ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
-            *duplex = HALF_DUPLEX;
-        else {
-            ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
-            if (ret_val)
-                return ret_val;
-            if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
-               (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
-                *duplex = HALF_DUPLEX;
-        }
-    }
-
-    if ((hw->mac_type == e1000_80003es2lan) &&
-        (hw->media_type == e1000_media_type_copper)) {
-        if (*speed == SPEED_1000)
-            ret_val = e1000_configure_kmrn_for_1000(hw);
-        else
-            ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
-        if (ret_val)
-            return ret_val;
-    }
-
-    if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
-        ret_val = e1000_kumeran_lock_loss_workaround(hw);
-        if (ret_val)
-            return ret_val;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Blocks until autoneg completes or times out (~4.5 seconds)
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-STATIC int32_t
-e1000_wait_autoneg(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t i;
-    uint16_t phy_data;
-
-    DEBUGFUNC("e1000_wait_autoneg");
-    DEBUGOUT("Waiting for Auto-Neg to complete.\n");
-
-    /* We will wait for autoneg to complete or 4.5 seconds to expire. */
-    for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
-        /* Read the MII Status Register and wait for Auto-Neg
-         * Complete bit to be set.
-         */
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-        if (phy_data & MII_SR_AUTONEG_COMPLETE) {
-            return E1000_SUCCESS;
-        }
-        msec_delay(100);
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Raises the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
-static void
-e1000_raise_mdi_clk(struct e1000_hw *hw,
-                    uint32_t *ctrl)
-{
-    /* Raise the clock input to the Management Data Clock (by setting the MDC
-     * bit), and then delay 10 microseconds.
-     */
-    E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
-    E1000_WRITE_FLUSH(hw);
-    usec_delay(10);
-}
-
-/******************************************************************************
-* Lowers the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
-static void
-e1000_lower_mdi_clk(struct e1000_hw *hw,
-                    uint32_t *ctrl)
-{
-    /* Lower the clock input to the Management Data Clock (by clearing the MDC
-     * bit), and then delay 10 microseconds.
-     */
-    E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
-    E1000_WRITE_FLUSH(hw);
-    usec_delay(10);
-}
-
-/******************************************************************************
-* Shifts data bits out to the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* data - Data to send out to the PHY
-* count - Number of bits to shift out
-*
-* Bits are shifted out in MSB to LSB order.
-******************************************************************************/
-static void
-e1000_shift_out_mdi_bits(struct e1000_hw *hw,
-                         uint32_t data,
-                         uint16_t count)
-{
-    uint32_t ctrl;
-    uint32_t mask;
-
-    /* We need to shift "count" number of bits out to the PHY. So, the value
-     * in the "data" parameter will be shifted out to the PHY one bit at a
-     * time. In order to do this, "data" must be broken down into bits.
-     */
-    mask = 0x01;
-    mask <<= (count - 1);
-
-    ctrl = E1000_READ_REG(hw, CTRL);
-
-    /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
-    ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
-
-    while (mask) {
-        /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
-         * then raising and lowering the Management Data Clock. A "0" is
-         * shifted out to the PHY by setting the MDIO bit to "0" and then
-         * raising and lowering the clock.
-         */
-        if (data & mask)
-            ctrl |= E1000_CTRL_MDIO;
-        else
-            ctrl &= ~E1000_CTRL_MDIO;
-
-        E1000_WRITE_REG(hw, CTRL, ctrl);
-        E1000_WRITE_FLUSH(hw);
-
-        usec_delay(10);
-
-        e1000_raise_mdi_clk(hw, &ctrl);
-        e1000_lower_mdi_clk(hw, &ctrl);
-
-        mask = mask >> 1;
-    }
-}
-
-/******************************************************************************
-* Shifts data bits in from the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Bits are shifted in in MSB to LSB order.
-******************************************************************************/
-static uint16_t
-e1000_shift_in_mdi_bits(struct e1000_hw *hw)
-{
-    uint32_t ctrl;
-    uint16_t data = 0;
-    uint8_t i;
-
-    /* In order to read a register from the PHY, we need to shift in a total
-     * of 18 bits from the PHY. The first two bit (turnaround) times are used
-     * to avoid contention on the MDIO pin when a read operation is performed.
-     * These two bits are ignored by us and thrown away. Bits are "shifted in"
-     * by raising the input to the Management Data Clock (setting the MDC bit),
-     * and then reading the value of the MDIO bit.
-     */
-    ctrl = E1000_READ_REG(hw, CTRL);
-
-    /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
-    ctrl &= ~E1000_CTRL_MDIO_DIR;
-    ctrl &= ~E1000_CTRL_MDIO;
-
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-    E1000_WRITE_FLUSH(hw);
-
-    /* Raise and Lower the clock before reading in the data. This accounts for
-     * the turnaround bits. The first clock occurred when we clocked out the
-     * last bit of the Register Address.
-     */
-    e1000_raise_mdi_clk(hw, &ctrl);
-    e1000_lower_mdi_clk(hw, &ctrl);
-
-    for (data = 0, i = 0; i < 16; i++) {
-        data = data << 1;
-        e1000_raise_mdi_clk(hw, &ctrl);
-        ctrl = E1000_READ_REG(hw, CTRL);
-        /* Check to see if we shifted in a "1". */
-        if (ctrl & E1000_CTRL_MDIO)
-            data |= 1;
-        e1000_lower_mdi_clk(hw, &ctrl);
-    }
-
-    e1000_raise_mdi_clk(hw, &ctrl);
-    e1000_lower_mdi_clk(hw, &ctrl);
-
-    return data;
-}
-
-STATIC int32_t
-e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
-{
-    uint32_t swfw_sync = 0;
-    uint32_t swmask = mask;
-    uint32_t fwmask = mask << 16;
-    int32_t timeout = 200;
-
-    DEBUGFUNC("e1000_swfw_sync_acquire");
-
-    if (hw->swfwhw_semaphore_present)
-        return e1000_get_software_flag(hw);
-
-    if (!hw->swfw_sync_present)
-        return e1000_get_hw_eeprom_semaphore(hw);
-
-    while (timeout) {
-            if (e1000_get_hw_eeprom_semaphore(hw))
-                return -E1000_ERR_SWFW_SYNC;
-
-            swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
-            if (!(swfw_sync & (fwmask | swmask))) {
-                break;
-            }
-
-            /* firmware currently using resource (fwmask) */
-            /* or other software thread currently using resource (swmask) */
-            e1000_put_hw_eeprom_semaphore(hw);
-            msec_delay_irq(5);
-            timeout--;
-    }
-
-    if (!timeout) {
-        DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
-        return -E1000_ERR_SWFW_SYNC;
-    }
-
-    swfw_sync |= swmask;
-    E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
-
-    e1000_put_hw_eeprom_semaphore(hw);
-    return E1000_SUCCESS;
-}
-
-STATIC void
-e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
-{
-    uint32_t swfw_sync;
-    uint32_t swmask = mask;
-
-    DEBUGFUNC("e1000_swfw_sync_release");
-
-    if (hw->swfwhw_semaphore_present) {
-        e1000_release_software_flag(hw);
-        return;
-    }
-
-    if (!hw->swfw_sync_present) {
-        e1000_put_hw_eeprom_semaphore(hw);
-        return;
-    }
-
-    /* if (e1000_get_hw_eeprom_semaphore(hw))
-     *    return -E1000_ERR_SWFW_SYNC; */
-    while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
-        /* empty */
-
-    swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
-    swfw_sync &= ~swmask;
-    E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
-
-    e1000_put_hw_eeprom_semaphore(hw);
-}
-
-/*****************************************************************************
-* Reads the value from a PHY register, if the value is on a specific non zero
-* page, sets the page first.
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to read
-******************************************************************************/
-int32_t
-e1000_read_phy_reg(struct e1000_hw *hw,
-                   uint32_t reg_addr,
-                   uint16_t *phy_data)
-{
-    uint32_t ret_val;
-    uint16_t swfw;
-
-    DEBUGFUNC("e1000_read_phy_reg");
-
-    if ((hw->mac_type == e1000_80003es2lan) &&
-        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
-        swfw = E1000_SWFW_PHY1_SM;
-    } else {
-        swfw = E1000_SWFW_PHY0_SM;
-    }
-    if (e1000_swfw_sync_acquire(hw, swfw))
-        return -E1000_ERR_SWFW_SYNC;
-
-    if ((hw->phy_type == e1000_phy_igp ||
-        hw->phy_type == e1000_phy_igp_3 ||
-        hw->phy_type == e1000_phy_igp_2) &&
-       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
-        ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
-                                         (uint16_t)reg_addr);
-        if (ret_val) {
-            e1000_swfw_sync_release(hw, swfw);
-            return ret_val;
-        }
-    } else if (hw->phy_type == e1000_phy_gg82563) {
-        if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
-            (hw->mac_type == e1000_80003es2lan)) {
-            /* Select Configuration Page */
-            if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
-                ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
-                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
-            } else {
-                /* Use Alternative Page Select register to access
-                 * registers 30 and 31
-                 */
-                ret_val = e1000_write_phy_reg_ex(hw,
-                                                 GG82563_PHY_PAGE_SELECT_ALT,
-                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
-            }
-
-            if (ret_val) {
-                e1000_swfw_sync_release(hw, swfw);
-                return ret_val;
-            }
-        }
-    }
-
-    ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
-                                    phy_data);
-
-    e1000_swfw_sync_release(hw, swfw);
-    return ret_val;
-}
-
-STATIC int32_t
-e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
-                      uint16_t *phy_data)
-{
-    uint32_t i;
-    uint32_t mdic = 0;
-    const uint32_t phy_addr = 1;
-
-    DEBUGFUNC("e1000_read_phy_reg_ex");
-
-    if (reg_addr > MAX_PHY_REG_ADDRESS) {
-        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
-        return -E1000_ERR_PARAM;
-    }
-
-    if (hw->mac_type > e1000_82543) {
-        /* Set up Op-code, Phy Address, and register address in the MDI
-         * Control register.  The MAC will take care of interfacing with the
-         * PHY to retrieve the desired data.
-         */
-        mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
-                (phy_addr << E1000_MDIC_PHY_SHIFT) |
-                (E1000_MDIC_OP_READ));
-
-        E1000_WRITE_REG(hw, MDIC, mdic);
-
-        /* Poll the ready bit to see if the MDI read completed */
-        for (i = 0; i < 64; i++) {
-            usec_delay(50);
-            mdic = E1000_READ_REG(hw, MDIC);
-            if (mdic & E1000_MDIC_READY) break;
-        }
-        if (!(mdic & E1000_MDIC_READY)) {
-            DEBUGOUT("MDI Read did not complete\n");
-            return -E1000_ERR_PHY;
-        }
-        if (mdic & E1000_MDIC_ERROR) {
-            DEBUGOUT("MDI Error\n");
-            return -E1000_ERR_PHY;
-        }
-        *phy_data = (uint16_t) mdic;
-    } else {
-        /* We must first send a preamble through the MDIO pin to signal the
-         * beginning of an MII instruction.  This is done by sending 32
-         * consecutive "1" bits.
-         */
-        e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
-        /* Now combine the next few fields that are required for a read
-         * operation.  We use this method instead of calling the
-         * e1000_shift_out_mdi_bits routine five different times. The format of
-         * a MII read instruction consists of a shift out of 14 bits and is
-         * defined as follows:
-         *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
-         * followed by a shift in of 18 bits.  This first two bits shifted in
-         * are TurnAround bits used to avoid contention on the MDIO pin when a
-         * READ operation is performed.  These two bits are thrown away
-         * followed by a shift in of 16 bits which contains the desired data.
-         */
-        mdic = ((reg_addr) | (phy_addr << 5) |
-                (PHY_OP_READ << 10) | (PHY_SOF << 12));
-
-        e1000_shift_out_mdi_bits(hw, mdic, 14);
-
-        /* Now that we've shifted out the read command to the MII, we need to
-         * "shift in" the 16-bit value (18 total bits) of the requested PHY
-         * register address.
-         */
-        *phy_data = e1000_shift_in_mdi_bits(hw);
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Writes a value to a PHY register
-*
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to write
-* data - data to write to the PHY
-******************************************************************************/
-int32_t
-e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
-                    uint16_t phy_data)
-{
-    uint32_t ret_val;
-    uint16_t swfw;
-
-    DEBUGFUNC("e1000_write_phy_reg");
-
-    if ((hw->mac_type == e1000_80003es2lan) &&
-        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
-        swfw = E1000_SWFW_PHY1_SM;
-    } else {
-        swfw = E1000_SWFW_PHY0_SM;
-    }
-    if (e1000_swfw_sync_acquire(hw, swfw))
-        return -E1000_ERR_SWFW_SYNC;
-
-    if ((hw->phy_type == e1000_phy_igp ||
-        hw->phy_type == e1000_phy_igp_3 ||
-        hw->phy_type == e1000_phy_igp_2) &&
-       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
-        ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
-                                         (uint16_t)reg_addr);
-        if (ret_val) {
-            e1000_swfw_sync_release(hw, swfw);
-            return ret_val;
-        }
-    } else if (hw->phy_type == e1000_phy_gg82563) {
-        if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
-            (hw->mac_type == e1000_80003es2lan)) {
-            /* Select Configuration Page */
-            if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
-                ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
-                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
-            } else {
-                /* Use Alternative Page Select register to access
-                 * registers 30 and 31
-                 */
-                ret_val = e1000_write_phy_reg_ex(hw,
-                                                 GG82563_PHY_PAGE_SELECT_ALT,
-                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
-            }
-
-            if (ret_val) {
-                e1000_swfw_sync_release(hw, swfw);
-                return ret_val;
-            }
-        }
-    }
-
-    ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
-                                     phy_data);
-
-    e1000_swfw_sync_release(hw, swfw);
-    return ret_val;
-}
-
-STATIC int32_t
-e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
-                       uint16_t phy_data)
-{
-    uint32_t i;
-    uint32_t mdic = 0;
-    const uint32_t phy_addr = 1;
-
-    DEBUGFUNC("e1000_write_phy_reg_ex");
-
-    if (reg_addr > MAX_PHY_REG_ADDRESS) {
-        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
-        return -E1000_ERR_PARAM;
-    }
-
-    if (hw->mac_type > e1000_82543) {
-        /* Set up Op-code, Phy Address, register address, and data intended
-         * for the PHY register in the MDI Control register.  The MAC will take
-         * care of interfacing with the PHY to send the desired data.
-         */
-        mdic = (((uint32_t) phy_data) |
-                (reg_addr << E1000_MDIC_REG_SHIFT) |
-                (phy_addr << E1000_MDIC_PHY_SHIFT) |
-                (E1000_MDIC_OP_WRITE));
-
-        E1000_WRITE_REG(hw, MDIC, mdic);
-
-        /* Poll the ready bit to see if the MDI read completed */
-        for (i = 0; i < 641; i++) {
-            usec_delay(5);
-            mdic = E1000_READ_REG(hw, MDIC);
-            if (mdic & E1000_MDIC_READY) break;
-        }
-        if (!(mdic & E1000_MDIC_READY)) {
-            DEBUGOUT("MDI Write did not complete\n");
-            return -E1000_ERR_PHY;
-        }
-    } else {
-        /* We'll need to use the SW defined pins to shift the write command
-         * out to the PHY. We first send a preamble to the PHY to signal the
-         * beginning of the MII instruction.  This is done by sending 32
-         * consecutive "1" bits.
-         */
-        e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
-        /* Now combine the remaining required fields that will indicate a
-         * write operation. We use this method instead of calling the
-         * e1000_shift_out_mdi_bits routine for each field in the command. The
-         * format of a MII write instruction is as follows:
-         * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
-         */
-        mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
-                (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
-        mdic <<= 16;
-        mdic |= (uint32_t) phy_data;
-
-        e1000_shift_out_mdi_bits(hw, mdic, 32);
-    }
-
-    return E1000_SUCCESS;
-}
-
-STATIC int32_t
-e1000_read_kmrn_reg(struct e1000_hw *hw,
-                    uint32_t reg_addr,
-                    uint16_t *data)
-{
-    uint32_t reg_val;
-    uint16_t swfw;
-    DEBUGFUNC("e1000_read_kmrn_reg");
-
-    if ((hw->mac_type == e1000_80003es2lan) &&
-        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
-        swfw = E1000_SWFW_PHY1_SM;
-    } else {
-        swfw = E1000_SWFW_PHY0_SM;
-    }
-    if (e1000_swfw_sync_acquire(hw, swfw))
-        return -E1000_ERR_SWFW_SYNC;
-
-    /* Write register address */
-    reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
-              E1000_KUMCTRLSTA_OFFSET) |
-              E1000_KUMCTRLSTA_REN;
-    E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
-    usec_delay(2);
-
-    /* Read the data returned */
-    reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
-    *data = (uint16_t)reg_val;
-
-    e1000_swfw_sync_release(hw, swfw);
-    return E1000_SUCCESS;
-}
-
-STATIC int32_t
-e1000_write_kmrn_reg(struct e1000_hw *hw,
-                     uint32_t reg_addr,
-                     uint16_t data)
-{
-    uint32_t reg_val;
-    uint16_t swfw;
-    DEBUGFUNC("e1000_write_kmrn_reg");
-
-    if ((hw->mac_type == e1000_80003es2lan) &&
-        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
-        swfw = E1000_SWFW_PHY1_SM;
-    } else {
-        swfw = E1000_SWFW_PHY0_SM;
-    }
-    if (e1000_swfw_sync_acquire(hw, swfw))
-        return -E1000_ERR_SWFW_SYNC;
-
-    reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
-              E1000_KUMCTRLSTA_OFFSET) | data;
-    E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
-    usec_delay(2);
-
-    e1000_swfw_sync_release(hw, swfw);
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Returns the PHY to the power-on reset state
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-e1000_phy_hw_reset(struct e1000_hw *hw)
-{
-    uint32_t ctrl, ctrl_ext;
-    uint32_t led_ctrl;
-    int32_t ret_val;
-    uint16_t swfw;
-
-    DEBUGFUNC("e1000_phy_hw_reset");
-
-    /* In the case of the phy reset being blocked, it's not an error, we
-     * simply return success without performing the reset. */
-    ret_val = e1000_check_phy_reset_block(hw);
-    if (ret_val)
-        return E1000_SUCCESS;
-
-    DEBUGOUT("Resetting Phy...\n");
-
-    if (hw->mac_type > e1000_82543) {
-        if ((hw->mac_type == e1000_80003es2lan) &&
-            (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
-            swfw = E1000_SWFW_PHY1_SM;
-        } else {
-            swfw = E1000_SWFW_PHY0_SM;
-        }
-        if (e1000_swfw_sync_acquire(hw, swfw)) {
-            DEBUGOUT("Unable to acquire swfw sync\n");
-            return -E1000_ERR_SWFW_SYNC;
-        }
-        /* Read the device control register and assert the E1000_CTRL_PHY_RST
-         * bit. Then, take it out of reset.
-         * For pre-e1000_82571 hardware, we delay for 10ms between the assert
-         * and deassert.  For e1000_82571 hardware and later, we instead delay
-         * for 50us between and 10ms after the deassertion.
-         */
-        ctrl = E1000_READ_REG(hw, CTRL);
-        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
-        E1000_WRITE_FLUSH(hw);
-
-        if (hw->mac_type < e1000_82571)
-            msec_delay(10);
-        else
-            usec_delay(100);
-
-        E1000_WRITE_REG(hw, CTRL, ctrl);
-        E1000_WRITE_FLUSH(hw);
-
-        if (hw->mac_type >= e1000_82571)
-            msec_delay_irq(10);
-
-        e1000_swfw_sync_release(hw, swfw);
-    } else {
-        /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
-         * bit to put the PHY into reset. Then, take it out of reset.
-         */
-        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-        ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
-        ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-        E1000_WRITE_FLUSH(hw);
-        msec_delay(10);
-        ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-        E1000_WRITE_FLUSH(hw);
-    }
-    usec_delay(150);
-
-    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
-        /* Configure activity LED after PHY reset */
-        led_ctrl = E1000_READ_REG(hw, LEDCTL);
-        led_ctrl &= IGP_ACTIVITY_LED_MASK;
-        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
-        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
-    }
-
-    /* Wait for FW to finish PHY configuration. */
-    ret_val = e1000_get_phy_cfg_done(hw);
-    if (ret_val != E1000_SUCCESS)
-        return ret_val;
-    e1000_release_software_semaphore(hw);
-
-    if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
-        ret_val = e1000_init_lcd_from_nvm(hw);
-
-    return ret_val;
-}
-
-/******************************************************************************
-* Resets the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Sets bit 15 of the MII Control regiser
-******************************************************************************/
-int32_t
-e1000_phy_reset(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("e1000_phy_reset");
-
-    /* In the case of the phy reset being blocked, it's not an error, we
-     * simply return success without performing the reset. */
-    ret_val = e1000_check_phy_reset_block(hw);
-    if (ret_val)
-        return E1000_SUCCESS;
-
-    switch (hw->phy_type) {
-    case e1000_phy_igp:
-    case e1000_phy_igp_2:
-    case e1000_phy_igp_3:
-    case e1000_phy_ife:
-        ret_val = e1000_phy_hw_reset(hw);
-        if (ret_val)
-            return ret_val;
-        break;
-    default:
-        ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |= MII_CR_RESET;
-        ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-
-        usec_delay(1);
-        break;
-    }
-
-    if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
-        e1000_phy_init_script(hw);
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Work-around for 82566 power-down: on D3 entry-
-* 1) disable gigabit link
-* 2) write VR power-down enable
-* 3) read it back
-* if successful continue, else issue LCD reset and repeat
-*
-* hw - struct containing variables accessed by shared code
-******************************************************************************/
-void
-e1000_phy_powerdown_workaround(struct e1000_hw *hw)
-{
-    int32_t reg;
-    uint16_t phy_data;
-    int32_t retry = 0;
-
-    DEBUGFUNC("e1000_phy_powerdown_workaround");
-
-    if (hw->phy_type != e1000_phy_igp_3)
-        return;
-
-    do {
-        /* Disable link */
-        reg = E1000_READ_REG(hw, PHY_CTRL);
-        E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
-                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
-
-        /* Write VR power-down enable - bits 9:8 should be 10b */
-        e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
-        phy_data |= (1 << 9);
-        phy_data &= ~(1 << 8);
-        e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data);
-
-        /* Read it back and test */
-        e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
-        if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry)
-            break;
-
-        /* Issue PHY reset and repeat at most one more time */
-        reg = E1000_READ_REG(hw, CTRL);
-        E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
-        retry++;
-    } while (retry);
-
-    return;
-
-}
-
-/******************************************************************************
-* Work-around for 82566 Kumeran PCS lock loss:
-* On link status change (i.e. PCI reset, speed change) and link is up and
-* speed is gigabit-
-* 0) if workaround is optionally disabled do nothing
-* 1) wait 1ms for Kumeran link to come up
-* 2) check Kumeran Diagnostic register PCS lock loss bit
-* 3) if not set the link is locked (all is good), otherwise...
-* 4) reset the PHY
-* 5) repeat up to 10 times
-* Note: this is only called for IGP3 copper when speed is 1gb.
-*
-* hw - struct containing variables accessed by shared code
-******************************************************************************/
-STATIC int32_t
-e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    int32_t reg;
-    int32_t cnt;
-    uint16_t phy_data;
-
-    if (hw->kmrn_lock_loss_workaround_disabled)
-        return E1000_SUCCESS;
-
-    /* Make sure link is up before proceeding.  If not just return.
-     * Attempting this while link is negotiating fouled up link
-     * stability */
-    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-
-    if (phy_data & MII_SR_LINK_STATUS) {
-        for (cnt = 0; cnt < 10; cnt++) {
-            /* read once to clear */
-            ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
-            if (ret_val)
-                return ret_val;
-            /* and again to get new status */
-            ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            /* check for PCS lock */
-            if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
-                return E1000_SUCCESS;
-
-            /* Issue PHY reset */
-            e1000_phy_hw_reset(hw);
-            msec_delay_irq(5);
-        }
-        /* Disable GigE link negotiation */
-        reg = E1000_READ_REG(hw, PHY_CTRL);
-        E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
-                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
-
-        /* unable to acquire PCS lock */
-        return E1000_ERR_PHY;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Probes the expected PHY address for known PHY IDs
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-STATIC int32_t
-e1000_detect_gig_phy(struct e1000_hw *hw)
-{
-    int32_t phy_init_status, ret_val;
-    uint16_t phy_id_high, phy_id_low;
-    boolean_t match = FALSE;
-
-    DEBUGFUNC("e1000_detect_gig_phy");
-
-    if (hw->phy_id != 0)
-        return E1000_SUCCESS;
-
-    /* The 82571 firmware may still be configuring the PHY.  In this
-     * case, we cannot access the PHY until the configuration is done.  So
-     * we explicitly set the PHY values. */
-    if (hw->mac_type == e1000_82571 ||
-        hw->mac_type == e1000_82572) {
-        hw->phy_id = IGP01E1000_I_PHY_ID;
-        hw->phy_type = e1000_phy_igp_2;
-        return E1000_SUCCESS;
-    }
-
-    /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
-     * around that forces PHY page 0 to be set or the reads fail.  The rest of
-     * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
-     * So for ESB-2 we need to have this set so our reads won't fail.  If the
-     * attached PHY is not a e1000_phy_gg82563, the routines below will figure
-     * this out as well. */
-    if (hw->mac_type == e1000_80003es2lan)
-        hw->phy_type = e1000_phy_gg82563;
-
-    /* Read the PHY ID Registers to identify which PHY is onboard. */
-    ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
-    if (ret_val)
-        return ret_val;
-
-    hw->phy_id = (uint32_t) (phy_id_high << 16);
-    usec_delay(20);
-    ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
-    if (ret_val)
-        return ret_val;
-
-    hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
-    hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
-
-    switch (hw->mac_type) {
-    case e1000_82543:
-        if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
-        break;
-    case e1000_82544:
-        if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
-        break;
-    case e1000_82540:
-    case e1000_82545:
-    case e1000_82545_rev_3:
-    case e1000_82546:
-    case e1000_82546_rev_3:
-        if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
-        break;
-    case e1000_82541:
-    case e1000_82541_rev_2:
-    case e1000_82547:
-    case e1000_82547_rev_2:
-        if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
-        break;
-    case e1000_82573:
-        if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
-        break;
-    case e1000_80003es2lan:
-        if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
-        break;
-    case e1000_ich8lan:
-        if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
-        if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
-        if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
-        if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
-        break;
-    default:
-        DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
-        return -E1000_ERR_CONFIG;
-    }
-    phy_init_status = e1000_set_phy_type(hw);
-
-    if ((match) && (phy_init_status == E1000_SUCCESS)) {
-        DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
-        return E1000_SUCCESS;
-    }
-    DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
-    return -E1000_ERR_PHY;
-}
-
-/******************************************************************************
-* Resets the PHY's DSP
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-e1000_phy_reset_dsp(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    DEBUGFUNC("e1000_phy_reset_dsp");
-
-    do {
-        if (hw->phy_type != e1000_phy_gg82563) {
-            ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
-            if (ret_val) break;
-        }
-        ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
-        if (ret_val) break;
-        ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
-        if (ret_val) break;
-        ret_val = E1000_SUCCESS;
-    } while (0);
-
-    return ret_val;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers for igp PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-STATIC int32_t
-e1000_phy_igp_get_info(struct e1000_hw *hw,
-                       struct e1000_phy_info *phy_info)
-{
-    int32_t ret_val;
-    uint16_t phy_data, min_length, max_length, average;
-    e1000_rev_polarity polarity;
-
-    DEBUGFUNC("e1000_phy_igp_get_info");
-
-    /* The downshift status is checked only once, after link is established,
-     * and it stored in the hw->speed_downgraded parameter. */
-    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
-
-    /* IGP01E1000 does not need to support it. */
-    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
-
-    /* IGP01E1000 always correct polarity reversal */
-    phy_info->polarity_correction = e1000_polarity_reversal_enabled;
-
-    /* Check polarity status */
-    ret_val = e1000_check_polarity(hw, &polarity);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->cable_polarity = polarity;
-
-    ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
-                          IGP01E1000_PSSR_MDIX_SHIFT);
-
-    if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
-       IGP01E1000_PSSR_SPEED_1000MBPS) {
-        /* Local/Remote Receiver Information are only valid at 1000 Mbps */
-        ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
-                             SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
-                             e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
-        phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
-                              SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
-                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
-
-        /* Get cable length */
-        ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
-        if (ret_val)
-            return ret_val;
-
-        /* Translate to old method */
-        average = (max_length + min_length) / 2;
-
-        if (average <= e1000_igp_cable_length_50)
-            phy_info->cable_length = e1000_cable_length_50;
-        else if (average <= e1000_igp_cable_length_80)
-            phy_info->cable_length = e1000_cable_length_50_80;
-        else if (average <= e1000_igp_cable_length_110)
-            phy_info->cable_length = e1000_cable_length_80_110;
-        else if (average <= e1000_igp_cable_length_140)
-            phy_info->cable_length = e1000_cable_length_110_140;
-        else
-            phy_info->cable_length = e1000_cable_length_140;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers for ife PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-STATIC int32_t
-e1000_phy_ife_get_info(struct e1000_hw *hw,
-                       struct e1000_phy_info *phy_info)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-    e1000_rev_polarity polarity;
-
-    DEBUGFUNC("e1000_phy_ife_get_info");
-
-    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
-    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
-
-    ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
-    if (ret_val)
-        return ret_val;
-    phy_info->polarity_correction =
-                        ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
-                        IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ?
-                        e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
-
-    if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
-        ret_val = e1000_check_polarity(hw, &polarity);
-        if (ret_val)
-            return ret_val;
-    } else {
-        /* Polarity is forced. */
-        polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >>
-                     IFE_PSC_FORCE_POLARITY_SHIFT) ?
-                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
-    }
-    phy_info->cable_polarity = polarity;
-
-    ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->mdix_mode = (e1000_auto_x_mode)
-                     ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
-                     IFE_PMC_MDIX_MODE_SHIFT);
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers fot m88 PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-STATIC int32_t
-e1000_phy_m88_get_info(struct e1000_hw *hw,
-                       struct e1000_phy_info *phy_info)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-    e1000_rev_polarity polarity;
-
-    DEBUGFUNC("e1000_phy_m88_get_info");
-
-    /* The downshift status is checked only once, after link is established,
-     * and it stored in the hw->speed_downgraded parameter. */
-    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
-
-    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->extended_10bt_distance =
-        ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
-        M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
-        e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;
-
-    phy_info->polarity_correction =
-        ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
-        M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
-        e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
-
-    /* Check polarity status */
-    ret_val = e1000_check_polarity(hw, &polarity);
-    if (ret_val)
-        return ret_val;
-    phy_info->cable_polarity = polarity;
-
-    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
-                          M88E1000_PSSR_MDIX_SHIFT);
-
-    if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
-        /* Cable Length Estimation and Local/Remote Receiver Information
-         * are only valid at 1000 Mbps.
-         */
-        if (hw->phy_type != e1000_phy_gg82563) {
-            phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
-                                      M88E1000_PSSR_CABLE_LENGTH_SHIFT);
-        } else {
-            ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH);
-        }
-
-        ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
-                             SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
-                             e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
-        phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
-                              SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
-                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
-
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-int32_t
-e1000_phy_get_info(struct e1000_hw *hw,
-                   struct e1000_phy_info *phy_info)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("e1000_phy_get_info");
-
-    phy_info->cable_length = e1000_cable_length_undefined;
-    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
-    phy_info->cable_polarity = e1000_rev_polarity_undefined;
-    phy_info->downshift = e1000_downshift_undefined;
-    phy_info->polarity_correction = e1000_polarity_reversal_undefined;
-    phy_info->mdix_mode = e1000_auto_x_mode_undefined;
-    phy_info->local_rx = e1000_1000t_rx_status_undefined;
-    phy_info->remote_rx = e1000_1000t_rx_status_undefined;
-
-    if (hw->media_type != e1000_media_type_copper) {
-        DEBUGOUT("PHY info is only valid for copper media\n");
-        return -E1000_ERR_CONFIG;
-    }
-
-    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
-        DEBUGOUT("PHY info is only valid if link is up\n");
-        return -E1000_ERR_CONFIG;
-    }
-
-    if (hw->phy_type == e1000_phy_igp ||
-        hw->phy_type == e1000_phy_igp_3 ||
-        hw->phy_type == e1000_phy_igp_2)
-        return e1000_phy_igp_get_info(hw, phy_info);
-    else if (hw->phy_type == e1000_phy_ife)
-        return e1000_phy_ife_get_info(hw, phy_info);
-    else
-        return e1000_phy_m88_get_info(hw, phy_info);
-}
-
-int32_t
-e1000_validate_mdi_setting(struct e1000_hw *hw)
-{
-    DEBUGFUNC("e1000_validate_mdi_settings");
-
-    if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
-        DEBUGOUT("Invalid MDI setting detected\n");
-        hw->mdix = 1;
-        return -E1000_ERR_CONFIG;
-    }
-    return E1000_SUCCESS;
-}
-
-
-/******************************************************************************
- * Sets up eeprom variables in the hw struct.  Must be called after mac_type
- * is configured.  Additionally, if this is ICH8, the flash controller GbE
- * registers must be mapped, or this will crash.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-e1000_init_eeprom_params(struct e1000_hw *hw)
-{
-    struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t eecd = E1000_READ_REG(hw, EECD);
-    int32_t ret_val = E1000_SUCCESS;
-    uint16_t eeprom_size;
-
-    DEBUGFUNC("e1000_init_eeprom_params");
-
-    switch (hw->mac_type) {
-    case e1000_82542_rev2_0:
-    case e1000_82542_rev2_1:
-    case e1000_82543:
-    case e1000_82544:
-        eeprom->type = e1000_eeprom_microwire;
-        eeprom->word_size = 64;
-        eeprom->opcode_bits = 3;
-        eeprom->address_bits = 6;
-        eeprom->delay_usec = 50;
-        eeprom->use_eerd = FALSE;
-        eeprom->use_eewr = FALSE;
-        break;
-    case e1000_82540:
-    case e1000_82545:
-    case e1000_82545_rev_3:
-    case e1000_82546:
-    case e1000_82546_rev_3:
-        eeprom->type = e1000_eeprom_microwire;
-        eeprom->opcode_bits = 3;
-        eeprom->delay_usec = 50;
-        if (eecd & E1000_EECD_SIZE) {
-            eeprom->word_size = 256;
-            eeprom->address_bits = 8;
-        } else {
-            eeprom->word_size = 64;
-            eeprom->address_bits = 6;
-        }
-        eeprom->use_eerd = FALSE;
-        eeprom->use_eewr = FALSE;
-        break;
-    case e1000_82541:
-    case e1000_82541_rev_2:
-    case e1000_82547:
-    case e1000_82547_rev_2:
-        if (eecd & E1000_EECD_TYPE) {
-            eeprom->type = e1000_eeprom_spi;
-            eeprom->opcode_bits = 8;
-            eeprom->delay_usec = 1;
-            if (eecd & E1000_EECD_ADDR_BITS) {
-                eeprom->page_size = 32;
-                eeprom->address_bits = 16;
-            } else {
-                eeprom->page_size = 8;
-                eeprom->address_bits = 8;
-            }
-        } else {
-            eeprom->type = e1000_eeprom_microwire;
-            eeprom->opcode_bits = 3;
-            eeprom->delay_usec = 50;
-            if (eecd & E1000_EECD_ADDR_BITS) {
-                eeprom->word_size = 256;
-                eeprom->address_bits = 8;
-            } else {
-                eeprom->word_size = 64;
-                eeprom->address_bits = 6;
-            }
-        }
-        eeprom->use_eerd = FALSE;
-        eeprom->use_eewr = FALSE;
-        break;
-    case e1000_82571:
-    case e1000_82572:
-        eeprom->type = e1000_eeprom_spi;
-        eeprom->opcode_bits = 8;
-        eeprom->delay_usec = 1;
-        if (eecd & E1000_EECD_ADDR_BITS) {
-            eeprom->page_size = 32;
-            eeprom->address_bits = 16;
-        } else {
-            eeprom->page_size = 8;
-            eeprom->address_bits = 8;
-        }
-        eeprom->use_eerd = FALSE;
-        eeprom->use_eewr = FALSE;
-        break;
-    case e1000_82573:
-        eeprom->type = e1000_eeprom_spi;
-        eeprom->opcode_bits = 8;
-        eeprom->delay_usec = 1;
-        if (eecd & E1000_EECD_ADDR_BITS) {
-            eeprom->page_size = 32;
-            eeprom->address_bits = 16;
-        } else {
-            eeprom->page_size = 8;
-            eeprom->address_bits = 8;
-        }
-        eeprom->use_eerd = TRUE;
-        eeprom->use_eewr = TRUE;
-        if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
-            eeprom->type = e1000_eeprom_flash;
-            eeprom->word_size = 2048;
-
-            /* Ensure that the Autonomous FLASH update bit is cleared due to
-             * Flash update issue on parts which use a FLASH for NVM. */
-            eecd &= ~E1000_EECD_AUPDEN;
-            E1000_WRITE_REG(hw, EECD, eecd);
-        }
-        break;
-    case e1000_80003es2lan:
-        eeprom->type = e1000_eeprom_spi;
-        eeprom->opcode_bits = 8;
-        eeprom->delay_usec = 1;
-        if (eecd & E1000_EECD_ADDR_BITS) {
-            eeprom->page_size = 32;
-            eeprom->address_bits = 16;
-        } else {
-            eeprom->page_size = 8;
-            eeprom->address_bits = 8;
-        }
-        eeprom->use_eerd = TRUE;
-        eeprom->use_eewr = FALSE;
-        break;
-    case e1000_ich8lan:
-        {
-        int32_t  i = 0;
-        uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG);
-
-        eeprom->type = e1000_eeprom_ich8;
-        eeprom->use_eerd = FALSE;
-        eeprom->use_eewr = FALSE;
-        eeprom->word_size = E1000_SHADOW_RAM_WORDS;
-
-        /* Zero the shadow RAM structure. But don't load it from NVM
-         * so as to save time for driver init */
-        if (hw->eeprom_shadow_ram != NULL) {
-            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
-                hw->eeprom_shadow_ram[i].modified = FALSE;
-                hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
-            }
-        }
-
-        hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
-                              ICH_FLASH_SECTOR_SIZE;
-
-        hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
-        hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
-
-        hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
-
-        hw->flash_bank_size /= 2 * sizeof(uint16_t);
-
-        break;
-        }
-    default:
-        break;
-    }
-
-    if (eeprom->type == e1000_eeprom_spi) {
-        /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
-         * 32KB (incremented by powers of 2).
-         */
-        if (hw->mac_type <= e1000_82547_rev_2) {
-            /* Set to default value for initial eeprom read. */
-            eeprom->word_size = 64;
-            ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
-            if (ret_val)
-                return ret_val;
-            eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
-            /* 256B eeprom size was not supported in earlier hardware, so we
-             * bump eeprom_size up one to ensure that "1" (which maps to 256B)
-             * is never the result used in the shifting logic below. */
-            if (eeprom_size)
-                eeprom_size++;
-        } else {
-            eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
-                          E1000_EECD_SIZE_EX_SHIFT);
-        }
-
-        eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
-    }
-    return ret_val;
-}
-
-/******************************************************************************
- * Raises the EEPROM's clock input.
- *
- * hw - Struct containing variables accessed by shared code
- * eecd - EECD's current value
- *****************************************************************************/
-static void
-e1000_raise_ee_clk(struct e1000_hw *hw,
-                   uint32_t *eecd)
-{
-    /* Raise the clock input to the EEPROM (by setting the SK bit), and then
-     * wait <delay> microseconds.
-     */
-    *eecd = *eecd | E1000_EECD_SK;
-    E1000_WRITE_REG(hw, EECD, *eecd);
-    E1000_WRITE_FLUSH(hw);
-    usec_delay(hw->eeprom.delay_usec);
-}
-
-/******************************************************************************
- * Lowers the EEPROM's clock input.
- *
- * hw - Struct containing variables accessed by shared code
- * eecd - EECD's current value
- *****************************************************************************/
-static void
-e1000_lower_ee_clk(struct e1000_hw *hw,
-                   uint32_t *eecd)
-{
-    /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
-     * wait 50 microseconds.
-     */
-    *eecd = *eecd & ~E1000_EECD_SK;
-    E1000_WRITE_REG(hw, EECD, *eecd);
-    E1000_WRITE_FLUSH(hw);
-    usec_delay(hw->eeprom.delay_usec);
-}
-
-/******************************************************************************
- * Shift data bits out to the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * data - data to send to the EEPROM
- * count - number of bits to shift out
- *****************************************************************************/
-static void
-e1000_shift_out_ee_bits(struct e1000_hw *hw,
-                        uint16_t data,
-                        uint16_t count)
-{
-    struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t eecd;
-    uint32_t mask;
-
-    /* We need to shift "count" bits out to the EEPROM. So, value in the
-     * "data" parameter will be shifted out to the EEPROM one bit at a time.
-     * In order to do this, "data" must be broken down into bits.
-     */
-    mask = 0x01 << (count - 1);
-    eecd = E1000_READ_REG(hw, EECD);
-    if (eeprom->type == e1000_eeprom_microwire) {
-        eecd &= ~E1000_EECD_DO;
-    } else if (eeprom->type == e1000_eeprom_spi) {
-        eecd |= E1000_EECD_DO;
-    }
-    do {
-        /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
-         * and then raising and then lowering the clock (the SK bit controls
-         * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
-         * by setting "DI" to "0" and then raising and then lowering the clock.
-         */
-        eecd &= ~E1000_EECD_DI;
-
-        if (data & mask)
-            eecd |= E1000_EECD_DI;
-
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-
-        usec_delay(eeprom->delay_usec);
-
-        e1000_raise_ee_clk(hw, &eecd);
-        e1000_lower_ee_clk(hw, &eecd);
-
-        mask = mask >> 1;
-
-    } while (mask);
-
-    /* We leave the "DI" bit set to "0" when we leave this routine. */
-    eecd &= ~E1000_EECD_DI;
-    E1000_WRITE_REG(hw, EECD, eecd);
-}
-
-/******************************************************************************
- * Shift data bits in from the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static uint16_t
-e1000_shift_in_ee_bits(struct e1000_hw *hw,
-                       uint16_t count)
-{
-    uint32_t eecd;
-    uint32_t i;
-    uint16_t data;
-
-    /* In order to read a register from the EEPROM, we need to shift 'count'
-     * bits in from the EEPROM. Bits are "shifted in" by raising the clock
-     * input to the EEPROM (setting the SK bit), and then reading the value of
-     * the "DO" bit.  During this "shifting in" process the "DI" bit should
-     * always be clear.
-     */
-
-    eecd = E1000_READ_REG(hw, EECD);
-
-    eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
-    data = 0;
-
-    for (i = 0; i < count; i++) {
-        data = data << 1;
-        e1000_raise_ee_clk(hw, &eecd);
-
-        eecd = E1000_READ_REG(hw, EECD);
-
-        eecd &= ~(E1000_EECD_DI);
-        if (eecd & E1000_EECD_DO)
-            data |= 1;
-
-        e1000_lower_ee_clk(hw, &eecd);
-    }
-
-    return data;
-}
-
-/******************************************************************************
- * Prepares EEPROM for access
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
- * function should be called before issuing a command to the EEPROM.
- *****************************************************************************/
-static int32_t
-e1000_acquire_eeprom(struct e1000_hw *hw)
-{
-    struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t eecd, i=0;
-
-    DEBUGFUNC("e1000_acquire_eeprom");
-
-    if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
-        return -E1000_ERR_SWFW_SYNC;
-    eecd = E1000_READ_REG(hw, EECD);
-
-    if (hw->mac_type != e1000_82573) {
-        /* Request EEPROM Access */
-        if (hw->mac_type > e1000_82544) {
-            eecd |= E1000_EECD_REQ;
-            E1000_WRITE_REG(hw, EECD, eecd);
-            eecd = E1000_READ_REG(hw, EECD);
-            while ((!(eecd & E1000_EECD_GNT)) &&
-                  (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
-                i++;
-                usec_delay(5);
-                eecd = E1000_READ_REG(hw, EECD);
-            }
-            if (!(eecd & E1000_EECD_GNT)) {
-                eecd &= ~E1000_EECD_REQ;
-                E1000_WRITE_REG(hw, EECD, eecd);
-                DEBUGOUT("Could not acquire EEPROM grant\n");
-                e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
-                return -E1000_ERR_EEPROM;
-            }
-        }
-    }
-
-    /* Setup EEPROM for Read/Write */
-
-    if (eeprom->type == e1000_eeprom_microwire) {
-        /* Clear SK and DI */
-        eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
-        E1000_WRITE_REG(hw, EECD, eecd);
-
-        /* Set CS */
-        eecd |= E1000_EECD_CS;
-        E1000_WRITE_REG(hw, EECD, eecd);
-    } else if (eeprom->type == e1000_eeprom_spi) {
-        /* Clear SK and CS */
-        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
-        E1000_WRITE_REG(hw, EECD, eecd);
-        usec_delay(1);
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Returns EEPROM to a "standby" state
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void
-e1000_standby_eeprom(struct e1000_hw *hw)
-{
-    struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t eecd;
-
-    eecd = E1000_READ_REG(hw, EECD);
-
-    if (eeprom->type == e1000_eeprom_microwire) {
-        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-        usec_delay(eeprom->delay_usec);
-
-        /* Clock high */
-        eecd |= E1000_EECD_SK;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-        usec_delay(eeprom->delay_usec);
-
-        /* Select EEPROM */
-        eecd |= E1000_EECD_CS;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-        usec_delay(eeprom->delay_usec);
-
-        /* Clock low */
-        eecd &= ~E1000_EECD_SK;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-        usec_delay(eeprom->delay_usec);
-    } else if (eeprom->type == e1000_eeprom_spi) {
-        /* Toggle CS to flush commands */
-        eecd |= E1000_EECD_CS;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-        usec_delay(eeprom->delay_usec);
-        eecd &= ~E1000_EECD_CS;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-        usec_delay(eeprom->delay_usec);
-    }
-}
-
-/******************************************************************************
- * Terminates a command by inverting the EEPROM's chip select pin
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void
-e1000_release_eeprom(struct e1000_hw *hw)
-{
-    uint32_t eecd;
-
-    DEBUGFUNC("e1000_release_eeprom");
-
-    eecd = E1000_READ_REG(hw, EECD);
-
-    if (hw->eeprom.type == e1000_eeprom_spi) {
-        eecd |= E1000_EECD_CS;  /* Pull CS high */
-        eecd &= ~E1000_EECD_SK; /* Lower SCK */
-
-        E1000_WRITE_REG(hw, EECD, eecd);
-
-        usec_delay(hw->eeprom.delay_usec);
-    } else if (hw->eeprom.type == e1000_eeprom_microwire) {
-        /* cleanup eeprom */
-
-        /* CS on Microwire is active-high */
-        eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
-
-        E1000_WRITE_REG(hw, EECD, eecd);
-
-        /* Rising edge of clock */
-        eecd |= E1000_EECD_SK;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-        usec_delay(hw->eeprom.delay_usec);
-
-        /* Falling edge of clock */
-        eecd &= ~E1000_EECD_SK;
-        E1000_WRITE_REG(hw, EECD, eecd);
-        E1000_WRITE_FLUSH(hw);
-        usec_delay(hw->eeprom.delay_usec);
-    }
-
-    /* Stop requesting EEPROM access */
-    if (hw->mac_type > e1000_82544) {
-        eecd &= ~E1000_EECD_REQ;
-        E1000_WRITE_REG(hw, EECD, eecd);
-    }
-
-    e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-STATIC int32_t
-e1000_spi_eeprom_ready(struct e1000_hw *hw)
-{
-    uint16_t retry_count = 0;
-    uint8_t spi_stat_reg;
-
-    DEBUGFUNC("e1000_spi_eeprom_ready");
-
-    /* Read "Status Register" repeatedly until the LSB is cleared.  The
-     * EEPROM will signal that the command has been completed by clearing
-     * bit 0 of the internal status register.  If it's not cleared within
-     * 5 milliseconds, then error out.
-     */
-    retry_count = 0;
-    do {
-        e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
-                                hw->eeprom.opcode_bits);
-        spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
-        if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
-            break;
-
-        usec_delay(5);
-        retry_count += 5;
-
-        e1000_standby_eeprom(hw);
-    } while (retry_count < EEPROM_MAX_RETRY_SPI);
-
-    /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
-     * only 0-5mSec on 5V devices)
-     */
-    if (retry_count >= EEPROM_MAX_RETRY_SPI) {
-        DEBUGOUT("SPI EEPROM Status error\n");
-        return -E1000_ERR_EEPROM;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of  word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-e1000_read_eeprom(struct e1000_hw *hw,
-                  uint16_t offset,
-                  uint16_t words,
-                  uint16_t *data)
-{
-    struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t i = 0;
-
-    DEBUGFUNC("e1000_read_eeprom");
-
-    /* If eeprom is not yet detected, do so now */
-    if (eeprom->word_size == 0)
-        e1000_init_eeprom_params(hw);
-
-    /* A check for invalid values:  offset too large, too many words, and not
-     * enough words.
-     */
-    if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
-       (words == 0)) {
-        DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
-        return -E1000_ERR_EEPROM;
-    }
-
-    /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
-     * directly. In this case, we need to acquire the EEPROM so that
-     * FW or other port software does not interrupt.
-     */
-    if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
-        hw->eeprom.use_eerd == FALSE) {
-        /* Prepare the EEPROM for bit-bang reading */
-        if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
-            return -E1000_ERR_EEPROM;
-    }
-
-    /* Eerd register EEPROM access requires no eeprom aquire/release */
-    if (eeprom->use_eerd == TRUE)
-        return e1000_read_eeprom_eerd(hw, offset, words, data);
-
-    /* ICH EEPROM access is done via the ICH flash controller */
-    if (eeprom->type == e1000_eeprom_ich8)
-        return e1000_read_eeprom_ich8(hw, offset, words, data);
-
-    /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
-     * acquired the EEPROM at this point, so any returns should relase it */
-    if (eeprom->type == e1000_eeprom_spi) {
-        uint16_t word_in;
-        uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
-
-        if (e1000_spi_eeprom_ready(hw)) {
-            e1000_release_eeprom(hw);
-            return -E1000_ERR_EEPROM;
-        }
-
-        e1000_standby_eeprom(hw);
-
-        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
-        if ((eeprom->address_bits == 8) && (offset >= 128))
-            read_opcode |= EEPROM_A8_OPCODE_SPI;
-
-        /* Send the READ command (opcode + addr)  */
-        e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
-        e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
-
-        /* Read the data.  The address of the eeprom internally increments with
-         * each byte (spi) being read, saving on the overhead of eeprom setup
-         * and tear-down.  The address counter will roll over if reading beyond
-         * the size of the eeprom, thus allowing the entire memory to be read
-         * starting from any offset. */
-        for (i = 0; i < words; i++) {
-            word_in = e1000_shift_in_ee_bits(hw, 16);
-            data[i] = (word_in >> 8) | (word_in << 8);
-        }
-    } else if (eeprom->type == e1000_eeprom_microwire) {
-        for (i = 0; i < words; i++) {
-            /* Send the READ command (opcode + addr)  */
-            e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
-                                    eeprom->opcode_bits);
-            e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
-                                    eeprom->address_bits);
-
-            /* Read the data.  For microwire, each word requires the overhead
-             * of eeprom setup and tear-down. */
-            data[i] = e1000_shift_in_ee_bits(hw, 16);
-            e1000_standby_eeprom(hw);
-        }
-    }
-
-    /* End this read operation */
-    e1000_release_eeprom(hw);
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM using the EERD register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of  word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-STATIC int32_t
-e1000_read_eeprom_eerd(struct e1000_hw *hw,
-                  uint16_t offset,
-                  uint16_t words,
-                  uint16_t *data)
-{
-    uint32_t i, eerd = 0;
-    int32_t error = 0;
-
-    for (i = 0; i < words; i++) {
-        eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
-                         E1000_EEPROM_RW_REG_START;
-
-        E1000_WRITE_REG(hw, EERD, eerd);
-        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
-
-        if (error) {
-            break;
-        }
-        data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
-
-    }
-
-    return error;
-}
-
-/******************************************************************************
- * Writes a 16 bit word from the EEPROM using the EEWR register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of  word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-STATIC int32_t
-e1000_write_eeprom_eewr(struct e1000_hw *hw,
-                   uint16_t offset,
-                   uint16_t words,
-                   uint16_t *data)
-{
-    uint32_t    register_value = 0;
-    uint32_t    i              = 0;
-    int32_t     error          = 0;
-
-    if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
-        return -E1000_ERR_SWFW_SYNC;
-
-    for (i = 0; i < words; i++) {
-        register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
-                         ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
-                         E1000_EEPROM_RW_REG_START;
-
-        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
-        if (error) {
-            break;
-        }
-
-        E1000_WRITE_REG(hw, EEWR, register_value);
-
-        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
-
-        if (error) {
-            break;
-        }
-    }
-
-    e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
-    return error;
-}
-
-/******************************************************************************
- * Polls the status bit (bit 1) of the EERD to determine when the read is done.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-STATIC int32_t
-e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
-{
-    uint32_t attempts = 100000;
-    uint32_t i, reg = 0;
-    int32_t done = E1000_ERR_EEPROM;
-
-    for (i = 0; i < attempts; i++) {
-        if (eerd == E1000_EEPROM_POLL_READ)
-            reg = E1000_READ_REG(hw, EERD);
-        else
-            reg = E1000_READ_REG(hw, EEWR);
-
-        if (reg & E1000_EEPROM_RW_REG_DONE) {
-            done = E1000_SUCCESS;
-            break;
-        }
-        usec_delay(5);
-    }
-
-    return done;
-}
-
-/***************************************************************************
-* Description:     Determines if the onboard NVM is FLASH or EEPROM.
-*
-* hw - Struct containing variables accessed by shared code
-****************************************************************************/
-STATIC boolean_t
-e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
-{
-    uint32_t eecd = 0;
-
-    DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
-
-    if (hw->mac_type == e1000_ich8lan)
-        return FALSE;
-
-    if (hw->mac_type == e1000_82573) {
-        eecd = E1000_READ_REG(hw, EECD);
-
-        /* Isolate bits 15 & 16 */
-        eecd = ((eecd >> 15) & 0x03);
-
-        /* If both bits are set, device is Flash type */
-        if (eecd == 0x03) {
-            return FALSE;
-        }
-    }
-    return TRUE;
-}
-
-/******************************************************************************
- * Verifies that the EEPROM has a valid checksum
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Reads the first 64 16 bit words of the EEPROM and sums the values read.
- * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
- * valid.
- *****************************************************************************/
-int32_t
-e1000_validate_eeprom_checksum(struct e1000_hw *hw)
-{
-    uint16_t checksum = 0;
-    uint16_t i, eeprom_data;
-
-    DEBUGFUNC("e1000_validate_eeprom_checksum");
-
-    if ((hw->mac_type == e1000_82573) &&
-        (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
-        /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
-         * 10h-12h.  Checksum may need to be fixed. */
-        e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
-        if ((eeprom_data & 0x10) == 0) {
-            /* Read 0x23 and check bit 15.  This bit is a 1 when the checksum
-             * has already been fixed.  If the checksum is still wrong and this
-             * bit is a 1, we need to return bad checksum.  Otherwise, we need
-             * to set this bit to a 1 and update the checksum. */
-            e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
-            if ((eeprom_data & 0x8000) == 0) {
-                eeprom_data |= 0x8000;
-                e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
-                e1000_update_eeprom_checksum(hw);
-            }
-        }
-    }
-
-    if (hw->mac_type == e1000_ich8lan) {
-        /* Drivers must allocate the shadow ram structure for the
-         * EEPROM checksum to be updated.  Otherwise, this bit as well
-         * as the checksum must both be set correctly for this
-         * validation to pass.
-         */
-        e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
-        if ((eeprom_data & 0x40) == 0) {
-            eeprom_data |= 0x40;
-            e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
-            e1000_update_eeprom_checksum(hw);
-        }
-    }
-
-    for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
-        if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
-            DEBUGOUT("EEPROM Read Error\n");
-            return -E1000_ERR_EEPROM;
-        }
-        checksum += eeprom_data;
-    }
-
-    if (checksum == (uint16_t) EEPROM_SUM)
-        return E1000_SUCCESS;
-    else {
-        DEBUGOUT("EEPROM Checksum Invalid\n");
-        return -E1000_ERR_EEPROM;
-    }
-}
-
-/******************************************************************************
- * Calculates the EEPROM checksum and writes it to the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
- * Writes the difference to word offset 63 of the EEPROM.
- *****************************************************************************/
-int32_t
-e1000_update_eeprom_checksum(struct e1000_hw *hw)
-{
-    uint32_t ctrl_ext;
-    uint16_t checksum = 0;
-    uint16_t i, eeprom_data;
-
-    DEBUGFUNC("e1000_update_eeprom_checksum");
-
-    for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
-        if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
-            DEBUGOUT("EEPROM Read Error\n");
-            return -E1000_ERR_EEPROM;
-        }
-        checksum += eeprom_data;
-    }
-    checksum = (uint16_t) EEPROM_SUM - checksum;
-    if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
-        DEBUGOUT("EEPROM Write Error\n");
-        return -E1000_ERR_EEPROM;
-    } else if (hw->eeprom.type == e1000_eeprom_flash) {
-        e1000_commit_shadow_ram(hw);
-    } else if (hw->eeprom.type == e1000_eeprom_ich8) {
-        e1000_commit_shadow_ram(hw);
-        /* Reload the EEPROM, or else modifications will not appear
-         * until after next adapter reset. */
-        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-        ctrl_ext |= E1000_CTRL_EXT_EE_RST;
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-        msec_delay(10);
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Parent function for writing words to the different EEPROM types.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - 16 bit word to be written to the EEPROM
- *
- * If e1000_update_eeprom_checksum is not called after this function, the
- * EEPROM will most likely contain an invalid checksum.
- *****************************************************************************/
-int32_t
-e1000_write_eeprom(struct e1000_hw *hw,
-                   uint16_t offset,
-                   uint16_t words,
-                   uint16_t *data)
-{
-    struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    int32_t status = 0;
-
-    DEBUGFUNC("e1000_write_eeprom");
-
-    /* If eeprom is not yet detected, do so now */
-    if (eeprom->word_size == 0)
-        e1000_init_eeprom_params(hw);
-
-    /* A check for invalid values:  offset too large, too many words, and not
-     * enough words.
-     */
-    if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
-       (words == 0)) {
-        DEBUGOUT("\"words\" parameter out of bounds\n");
-        return -E1000_ERR_EEPROM;
-    }
-
-    /* 82573 writes only through eewr */
-    if (eeprom->use_eewr == TRUE)
-        return e1000_write_eeprom_eewr(hw, offset, words, data);
-
-    if (eeprom->type == e1000_eeprom_ich8)
-        return e1000_write_eeprom_ich8(hw, offset, words, data);
-
-    /* Prepare the EEPROM for writing  */
-    if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
-        return -E1000_ERR_EEPROM;
-
-    if (eeprom->type == e1000_eeprom_microwire) {
-        status = e1000_write_eeprom_microwire(hw, offset, words, data);
-    } else {
-        status = e1000_write_eeprom_spi(hw, offset, words, data);
-        msec_delay(10);
-    }
-
-    /* Done with writing */
-    e1000_release_eeprom(hw);
-
-    return status;
-}
-
-/******************************************************************************
- * Writes a 16 bit word to a given offset in an SPI EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - pointer to array of 8 bit words to be written to the EEPROM
- *
- *****************************************************************************/
-STATIC int32_t
-e1000_write_eeprom_spi(struct e1000_hw *hw,
-                       uint16_t offset,
-                       uint16_t words,
-                       uint16_t *data)
-{
-    struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    uint16_t widx = 0;
-
-    DEBUGFUNC("e1000_write_eeprom_spi");
-
-    while (widx < words) {
-        uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
-
-        if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
-
-        e1000_standby_eeprom(hw);
-
-        /*  Send the WRITE ENABLE command (8 bit opcode )  */
-        e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
-                                    eeprom->opcode_bits);
-
-        e1000_standby_eeprom(hw);
-
-        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
-        if ((eeprom->address_bits == 8) && (offset >= 128))
-            write_opcode |= EEPROM_A8_OPCODE_SPI;
-
-        /* Send the Write command (8-bit opcode + addr) */
-        e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
-
-        e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
-                                eeprom->address_bits);
-
-        /* Send the data */
-
-        /* Loop to allow for up to whole page write (32 bytes) of eeprom */
-        while (widx < words) {
-            uint16_t word_out = data[widx];
-            word_out = (word_out >> 8) | (word_out << 8);
-            e1000_shift_out_ee_bits(hw, word_out, 16);
-            widx++;
-
-            /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
-             * operation, while the smaller eeproms are capable of an 8-byte
-             * PAGE WRITE operation.  Break the inner loop to pass new address
-             */
-            if ((((offset + widx)*2) % eeprom->page_size) == 0) {
-                e1000_standby_eeprom(hw);
-                break;
-            }
-        }
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Writes a 16 bit word to a given offset in a Microwire EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - pointer to array of 16 bit words to be written to the EEPROM
- *
- *****************************************************************************/
-STATIC int32_t
-e1000_write_eeprom_microwire(struct e1000_hw *hw,
-                             uint16_t offset,
-                             uint16_t words,
-                             uint16_t *data)
-{
-    struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    uint32_t eecd;
-    uint16_t words_written = 0;
-    uint16_t i = 0;
-
-    DEBUGFUNC("e1000_write_eeprom_microwire");
-
-    /* Send the write enable command to the EEPROM (3-bit opcode plus
-     * 6/8-bit dummy address beginning with 11).  It's less work to include
-     * the 11 of the dummy address as part of the opcode than it is to shift
-     * it over the correct number of bits for the address.  This puts the
-     * EEPROM into write/erase mode.
-     */
-    e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
-                            (uint16_t)(eeprom->opcode_bits + 2));
-
-    e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
-
-    /* Prepare the EEPROM */
-    e1000_standby_eeprom(hw);
-
-    while (words_written < words) {
-        /* Send the Write command (3-bit opcode + addr) */
-        e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
-                                eeprom->opcode_bits);
-
-        e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
-                                eeprom->address_bits);
-
-        /* Send the data */
-        e1000_shift_out_ee_bits(hw, data[words_written], 16);
-
-        /* Toggle the CS line.  This in effect tells the EEPROM to execute
-         * the previous command.
-         */
-        e1000_standby_eeprom(hw);
-
-        /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
-         * signal that the command has been completed by raising the DO signal.
-         * If DO does not go high in 10 milliseconds, then error out.
-         */
-        for (i = 0; i < 200; i++) {
-            eecd = E1000_READ_REG(hw, EECD);
-            if (eecd & E1000_EECD_DO) break;
-            usec_delay(50);
-        }
-        if (i == 200) {
-            DEBUGOUT("EEPROM Write did not complete\n");
-            return -E1000_ERR_EEPROM;
-        }
-
-        /* Recover from write */
-        e1000_standby_eeprom(hw);
-
-        words_written++;
-    }
-
-    /* Send the write disable command to the EEPROM (3-bit opcode plus
-     * 6/8-bit dummy address beginning with 10).  It's less work to include
-     * the 10 of the dummy address as part of the opcode than it is to shift
-     * it over the correct number of bits for the address.  This takes the
-     * EEPROM out of write/erase mode.
-     */
-    e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
-                            (uint16_t)(eeprom->opcode_bits + 2));
-
-    e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Flushes the cached eeprom to NVM. This is done by saving the modified values
- * in the eeprom cache and the non modified values in the currently active bank
- * to the new bank.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of  word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-STATIC int32_t
-e1000_commit_shadow_ram(struct e1000_hw *hw)
-{
-    uint32_t attempts = 100000;
-    uint32_t eecd = 0;
-    uint32_t flop = 0;
-    uint32_t i = 0;
-    int32_t error = E1000_SUCCESS;
-    uint32_t old_bank_offset = 0;
-    uint32_t new_bank_offset = 0;
-    uint8_t low_byte = 0;
-    uint8_t high_byte = 0;
-    boolean_t sector_write_failed = FALSE;
-
-    if (hw->mac_type == e1000_82573) {
-        /* The flop register will be used to determine if flash type is STM */
-        flop = E1000_READ_REG(hw, FLOP);
-        for (i=0; i < attempts; i++) {
-            eecd = E1000_READ_REG(hw, EECD);
-            if ((eecd & E1000_EECD_FLUPD) == 0) {
-                break;
-            }
-            usec_delay(5);
-        }
-
-        if (i == attempts) {
-            return -E1000_ERR_EEPROM;
-        }
-
-        /* If STM opcode located in bits 15:8 of flop, reset firmware */
-        if ((flop & 0xFF00) == E1000_STM_OPCODE) {
-            E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
-        }
-
-        /* Perform the flash update */
-        E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
-
-        for (i=0; i < attempts; i++) {
-            eecd = E1000_READ_REG(hw, EECD);
-            if ((eecd & E1000_EECD_FLUPD) == 0) {
-                break;
-            }
-            usec_delay(5);
-        }
-
-        if (i == attempts) {
-            return -E1000_ERR_EEPROM;
-        }
-    }
-
-    if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
-        /* We're writing to the opposite bank so if we're on bank 1,
-         * write to bank 0 etc.  We also need to erase the segment that
-         * is going to be written */
-        if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
-            new_bank_offset = hw->flash_bank_size * 2;
-            old_bank_offset = 0;
-            e1000_erase_ich8_4k_segment(hw, 1);
-        } else {
-            old_bank_offset = hw->flash_bank_size * 2;
-            new_bank_offset = 0;
-            e1000_erase_ich8_4k_segment(hw, 0);
-        }
-
-        sector_write_failed = FALSE;
-        /* Loop for every byte in the shadow RAM,
-         * which is in units of words. */
-        for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
-            /* Determine whether to write the value stored
-             * in the other NVM bank or a modified value stored
-             * in the shadow RAM */
-            if (hw->eeprom_shadow_ram[i].modified == TRUE) {
-                low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
-                usec_delay(100);
-                error = e1000_verify_write_ich8_byte(hw,
-                            (i << 1) + new_bank_offset, low_byte);
-
-                if (error != E1000_SUCCESS)
-                    sector_write_failed = TRUE;
-                else {
-                    high_byte =
-                        (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
-                    usec_delay(100);
-                }
-            } else {
-                e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
-                                     &low_byte);
-                usec_delay(100);
-                error = e1000_verify_write_ich8_byte(hw,
-                            (i << 1) + new_bank_offset, low_byte);
-
-                if (error != E1000_SUCCESS)
-                    sector_write_failed = TRUE;
-                else {
-                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
-                                         &high_byte);
-                    usec_delay(100);
-                }
-            }
-
-            /* If the write of the low byte was successful, go ahread and
-             * write the high byte while checking to make sure that if it
-             * is the signature byte, then it is handled properly */
-            if (sector_write_failed == FALSE) {
-                /* If the word is 0x13, then make sure the signature bits
-                 * (15:14) are 11b until the commit has completed.
-                 * This will allow us to write 10b which indicates the
-                 * signature is valid.  We want to do this after the write
-                 * has completed so that we don't mark the segment valid
-                 * while the write is still in progress */
-                if (i == E1000_ICH_NVM_SIG_WORD)
-                    high_byte = E1000_ICH_NVM_SIG_MASK | high_byte;
-
-                error = e1000_verify_write_ich8_byte(hw,
-                            (i << 1) + new_bank_offset + 1, high_byte);
-                if (error != E1000_SUCCESS)
-                    sector_write_failed = TRUE;
-
-            } else {
-                /* If the write failed then break from the loop and
-                 * return an error */
-                break;
-            }
-        }
-
-        /* Don't bother writing the segment valid bits if sector
-         * programming failed. */
-        if (sector_write_failed == FALSE) {
-            /* Finally validate the new segment by setting bit 15:14
-             * to 10b in word 0x13 , this can be done without an
-             * erase as well since these bits are 11 to start with
-             * and we need to change bit 14 to 0b */
-            e1000_read_ich8_byte(hw,
-                                 E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
-                                 &high_byte);
-            high_byte &= 0xBF;
-            error = e1000_verify_write_ich8_byte(hw,
-                        E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte);
-            /* And invalidate the previously valid segment by setting
-             * its signature word (0x13) high_byte to 0b. This can be
-             * done without an erase because flash erase sets all bits
-             * to 1's. We can write 1's to 0's without an erase */
-            if (error == E1000_SUCCESS) {
-                error = e1000_verify_write_ich8_byte(hw,
-                            E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0);
-            }
-
-            /* Clear the now not used entry in the cache */
-            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
-                hw->eeprom_shadow_ram[i].modified = FALSE;
-                hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
-            }
-        }
-    }
-
-    return error;
-}
-
-/******************************************************************************
- * Reads the adapter's part number from the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- * part_num - Adapter's part number
- *****************************************************************************/
-int32_t
-e1000_read_part_num(struct e1000_hw *hw,
-                    uint32_t *part_num)
-{
-    uint16_t offset = EEPROM_PBA_BYTE_1;
-    uint16_t eeprom_data;
-
-    DEBUGFUNC("e1000_read_part_num");
-
-    /* Get word 0 from EEPROM */
-    if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
-        DEBUGOUT("EEPROM Read Error\n");
-        return -E1000_ERR_EEPROM;
-    }
-    /* Save word 0 in upper half of part_num */
-    *part_num = (uint32_t) (eeprom_data << 16);
-
-    /* Get word 1 from EEPROM */
-    if (e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
-        DEBUGOUT("EEPROM Read Error\n");
-        return -E1000_ERR_EEPROM;
-    }
-    /* Save word 1 in lower half of part_num */
-    *part_num |= eeprom_data;
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
- * second function of dual function devices
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-e1000_read_mac_addr(struct e1000_hw * hw)
-{
-    uint16_t offset;
-    uint16_t eeprom_data, i;
-
-    DEBUGFUNC("e1000_read_mac_addr");
-
-    for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
-        offset = i >> 1;
-        if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
-            DEBUGOUT("EEPROM Read Error\n");
-            return -E1000_ERR_EEPROM;
-        }
-        hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
-        hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
-    }
-
-    switch (hw->mac_type) {
-    default:
-        break;
-    case e1000_82546:
-    case e1000_82546_rev_3:
-    case e1000_82571:
-    case e1000_80003es2lan:
-        if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
-            hw->perm_mac_addr[5] ^= 0x01;
-        break;
-    }
-
-    for (i = 0; i < NODE_ADDRESS_SIZE; i++)
-        hw->mac_addr[i] = hw->perm_mac_addr[i];
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Initializes receive address filters.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Places the MAC address in receive address register 0 and clears the rest
- * of the receive addresss registers. Clears the multicast table. Assumes
- * the receiver is in reset when the routine is called.
- *****************************************************************************/
-STATIC void
-e1000_init_rx_addrs(struct e1000_hw *hw)
-{
-    uint32_t i;
-    uint32_t rar_num;
-
-    DEBUGFUNC("e1000_init_rx_addrs");
-
-    /* Setup the receive address. */
-    DEBUGOUT("Programming MAC Address into RAR[0]\n");
-
-    e1000_rar_set(hw, hw->mac_addr, 0);
-
-    rar_num = E1000_RAR_ENTRIES;
-
-    /* Reserve a spot for the Locally Administered Address to work around
-     * an 82571 issue in which a reset on one port will reload the MAC on
-     * the other port. */
-    if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
-        rar_num -= 1;
-    if (hw->mac_type == e1000_ich8lan)
-        rar_num = E1000_RAR_ENTRIES_ICH8LAN;
-
-    /* Zero out the other 15 receive addresses. */
-    DEBUGOUT("Clearing RAR[1-15]\n");
-    for (i = 1; i < rar_num; i++) {
-        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
-        E1000_WRITE_FLUSH(hw);
-        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
-        E1000_WRITE_FLUSH(hw);
-    }
-}
-
-/******************************************************************************
- * Updates the MAC's list of multicast addresses.
- *
- * hw - Struct containing variables accessed by shared code
- * mc_addr_list - the list of new multicast addresses
- * mc_addr_count - number of addresses
- * pad - number of bytes between addresses in the list
- * rar_used_count - offset where to start adding mc addresses into the RAR's
- *
- * The given list replaces any existing list. Clears the last 15 receive
- * address registers and the multicast table. Uses receive address registers
- * for the first 15 multicast addresses, and hashes the rest into the
- * multicast table.
- *****************************************************************************/
-void
-e1000_mc_addr_list_update(struct e1000_hw *hw,
-                          uint8_t *mc_addr_list,
-                          uint32_t mc_addr_count,
-                          uint32_t pad,
-                          uint32_t rar_used_count)
-{
-    uint32_t hash_value;
-    uint32_t i;
-    uint32_t num_rar_entry;
-    uint32_t num_mta_entry;
-
-    DEBUGFUNC("e1000_mc_addr_list_update");
-
-    /* Set the new number of MC addresses that we are being requested to use. */
-    hw->num_mc_addrs = mc_addr_count;
-
-    /* Clear RAR[1-15] */
-    DEBUGOUT(" Clearing RAR[1-15]\n");
-    num_rar_entry = E1000_RAR_ENTRIES;
-    if (hw->mac_type == e1000_ich8lan)
-        num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
-
-    /* Reserve a spot for the Locally Administered Address to work around
-     * an 82571 issue in which a reset on one port will reload the MAC on
-     * the other port. */
-    if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
-        num_rar_entry -= 1;
-
-    for (i = rar_used_count; i < num_rar_entry; i++) {
-        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
-        E1000_WRITE_FLUSH(hw);
-        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
-        E1000_WRITE_FLUSH(hw);
-    }
-
-    /* Clear the MTA */
-    DEBUGOUT(" Clearing MTA\n");
-    num_mta_entry = E1000_NUM_MTA_REGISTERS;
-    if (hw->mac_type == e1000_ich8lan)
-        num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
-
-    for (i = 0; i < num_mta_entry; i++) {
-        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
-        E1000_WRITE_FLUSH(hw);
-    }
-
-    /* Add the new addresses */
-    for (i = 0; i < mc_addr_count; i++) {
-        DEBUGOUT(" Adding the multicast addresses:\n");
-        DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
-                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
-
-        hash_value = e1000_hash_mc_addr(hw,
-                                        mc_addr_list +
-                                        (i * (ETH_LENGTH_OF_ADDRESS + pad)));
-
-        DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
-
-        /* Place this multicast address in the RAR if there is room, *
-         * else put it in the MTA
-         */
-        if (rar_used_count < num_rar_entry) {
-            e1000_rar_set(hw,
-                          mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
-                          rar_used_count);
-            rar_used_count++;
-        } else {
-            e1000_mta_set(hw, hash_value);
-        }
-    }
-    DEBUGOUT("MC Update Complete\n");
-}
-
-/******************************************************************************
- * Hashes an address to determine its location in the multicast table
- *
- * hw - Struct containing variables accessed by shared code
- * mc_addr - the multicast address to hash
- *****************************************************************************/
-uint32_t
-e1000_hash_mc_addr(struct e1000_hw *hw,
-                   uint8_t *mc_addr)
-{
-    uint32_t hash_value = 0;
-
-    /* The portion of the address that is used for the hash table is
-     * determined by the mc_filter_type setting.
-     */
-    switch (hw->mc_filter_type) {
-    /* [0] [1] [2] [3] [4] [5]
-     * 01  AA  00  12  34  56
-     * LSB                 MSB
-     */
-    case 0:
-        if (hw->mac_type == e1000_ich8lan) {
-            /* [47:38] i.e. 0x158 for above example address */
-            hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
-        } else {
-            /* [47:36] i.e. 0x563 for above example address */
-            hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
-        }
-        break;
-    case 1:
-        if (hw->mac_type == e1000_ich8lan) {
-            /* [46:37] i.e. 0x2B1 for above example address */
-            hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
-        } else {
-            /* [46:35] i.e. 0xAC6 for above example address */
-            hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
-        }
-        break;
-    case 2:
-        if (hw->mac_type == e1000_ich8lan) {
-            /*[45:36] i.e. 0x163 for above example address */
-            hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
-        } else {
-            /* [45:34] i.e. 0x5D8 for above example address */
-            hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
-        }
-        break;
-    case 3:
-        if (hw->mac_type == e1000_ich8lan) {
-            /* [43:34] i.e. 0x18D for above example address */
-            hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
-        } else {
-            /* [43:32] i.e. 0x634 for above example address */
-            hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
-        }
-        break;
-    }
-
-    hash_value &= 0xFFF;
-    if (hw->mac_type == e1000_ich8lan)
-        hash_value &= 0x3FF;
-
-    return hash_value;
-}
-
-/******************************************************************************
- * Sets the bit in the multicast table corresponding to the hash value.
- *
- * hw - Struct containing variables accessed by shared code
- * hash_value - Multicast address hash value
- *****************************************************************************/
-void
-e1000_mta_set(struct e1000_hw *hw,
-              uint32_t hash_value)
-{
-    uint32_t hash_bit, hash_reg;
-    uint32_t mta;
-    uint32_t temp;
-
-    /* The MTA is a register array of 128 32-bit registers.
-     * It is treated like an array of 4096 bits.  We want to set
-     * bit BitArray[hash_value]. So we figure out what register
-     * the bit is in, read it, OR in the new bit, then write
-     * back the new value.  The register is determined by the
-     * upper 7 bits of the hash value and the bit within that
-     * register are determined by the lower 5 bits of the value.
-     */
-    hash_reg = (hash_value >> 5) & 0x7F;
-    if (hw->mac_type == e1000_ich8lan)
-        hash_reg &= 0x1F;
-
-    hash_bit = hash_value & 0x1F;
-
-    mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
-
-    mta |= (1 << hash_bit);
-
-    /* If we are on an 82544 and we are trying to write an odd offset
-     * in the MTA, save off the previous entry before writing and
-     * restore the old value after writing.
-     */
-    if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
-        temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
-        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
-        E1000_WRITE_FLUSH(hw);
-        E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
-        E1000_WRITE_FLUSH(hw);
-    } else {
-        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
-        E1000_WRITE_FLUSH(hw);
-    }
-}
-
-/******************************************************************************
- * Puts an ethernet address into a receive address register.
- *
- * hw - Struct containing variables accessed by shared code
- * addr - Address to put into receive address register
- * index - Receive address register to write
- *****************************************************************************/
-void
-e1000_rar_set(struct e1000_hw *hw,
-              uint8_t *addr,
-              uint32_t index)
-{
-    uint32_t rar_low, rar_high;
-
-    /* HW expects these in little endian so we reverse the byte order
-     * from network order (big endian) to little endian
-     */
-    rar_low = ((uint32_t) addr[0] |
-               ((uint32_t) addr[1] << 8) |
-               ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
-    rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
-
-    /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
-     * unit hang.
-     *
-     * Description:
-     * If there are any Rx frames queued up or otherwise present in the HW
-     * before RSS is enabled, and then we enable RSS, the HW Rx unit will
-     * hang.  To work around this issue, we have to disable receives and
-     * flush out all Rx frames before we enable RSS. To do so, we modify we
-     * redirect all Rx traffic to manageability and then reset the HW.
-     * This flushes away Rx frames, and (since the redirections to
-     * manageability persists across resets) keeps new ones from coming in
-     * while we work.  Then, we clear the Address Valid AV bit for all MAC
-     * addresses and undo the re-direction to manageability.
-     * Now, frames are coming in again, but the MAC won't accept them, so
-     * far so good.  We now proceed to initialize RSS (if necessary) and
-     * configure the Rx unit.  Last, we re-enable the AV bits and continue
-     * on our merry way.
-     */
-    switch (hw->mac_type) {
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_80003es2lan:
-        if (hw->leave_av_bit_off == TRUE)
-            break;
-    default:
-        /* Indicate to hardware the Address is Valid. */
-        rar_high |= E1000_RAH_AV;
-        break;
-    }
-
-    E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
-    E1000_WRITE_FLUSH(hw);
-    E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
-    E1000_WRITE_FLUSH(hw);
-}
-
-/******************************************************************************
- * Writes a value to the specified offset in the VLAN filter table.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - Offset in VLAN filer table to write
- * value - Value to write into VLAN filter table
- *****************************************************************************/
-void
-e1000_write_vfta(struct e1000_hw *hw,
-                 uint32_t offset,
-                 uint32_t value)
-{
-    uint32_t temp;
-
-    if (hw->mac_type == e1000_ich8lan)
-        return;
-
-    if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
-        temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
-        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
-        E1000_WRITE_FLUSH(hw);
-        E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
-        E1000_WRITE_FLUSH(hw);
-    } else {
-        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
-        E1000_WRITE_FLUSH(hw);
-    }
-}
-
-/******************************************************************************
- * Clears the VLAN filer table
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-STATIC void
-e1000_clear_vfta(struct e1000_hw *hw)
-{
-    uint32_t offset;
-    uint32_t vfta_value = 0;
-    uint32_t vfta_offset = 0;
-    uint32_t vfta_bit_in_reg = 0;
-
-    if (hw->mac_type == e1000_ich8lan)
-        return;
-
-    if (hw->mac_type == e1000_82573) {
-        if (hw->mng_cookie.vlan_id != 0) {
-            /* The VFTA is a 4096b bit-field, each identifying a single VLAN
-             * ID.  The following operations determine which 32b entry
-             * (i.e. offset) into the array we want to set the VLAN ID
-             * (i.e. bit) of the manageability unit. */
-            vfta_offset = (hw->mng_cookie.vlan_id >>
-                           E1000_VFTA_ENTRY_SHIFT) &
-                          E1000_VFTA_ENTRY_MASK;
-            vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
-                                    E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
-        }
-    }
-    for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
-        /* If the offset we want to clear is the same offset of the
-         * manageability VLAN ID, then clear all bits except that of the
-         * manageability unit */
-        vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
-        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
-        E1000_WRITE_FLUSH(hw);
-    }
-}
-
-STATIC int32_t
-e1000_id_led_init(struct e1000_hw * hw)
-{
-    uint32_t ledctl;
-    const uint32_t ledctl_mask = 0x000000FF;
-    const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
-    const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
-    uint16_t eeprom_data, i, temp;
-    const uint16_t led_mask = 0x0F;
-
-    DEBUGFUNC("e1000_id_led_init");
-
-    if (hw->mac_type < e1000_82540) {
-        /* Nothing to do */
-        return E1000_SUCCESS;
-    }
-
-    ledctl = E1000_READ_REG(hw, LEDCTL);
-    hw->ledctl_default = ledctl;
-    hw->ledctl_mode1 = hw->ledctl_default;
-    hw->ledctl_mode2 = hw->ledctl_default;
-
-    if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
-        DEBUGOUT("EEPROM Read Error\n");
-        return -E1000_ERR_EEPROM;
-    }
-
-    if ((hw->mac_type == e1000_82573) &&
-        (eeprom_data == ID_LED_RESERVED_82573))
-        eeprom_data = ID_LED_DEFAULT_82573;
-    else if ((eeprom_data == ID_LED_RESERVED_0000) ||
-            (eeprom_data == ID_LED_RESERVED_FFFF)) {
-        if (hw->mac_type == e1000_ich8lan)
-            eeprom_data = ID_LED_DEFAULT_ICH8LAN;
-        else
-            eeprom_data = ID_LED_DEFAULT;
-    }
-
-    for (i = 0; i < 4; i++) {
-        temp = (eeprom_data >> (i << 2)) & led_mask;
-        switch (temp) {
-        case ID_LED_ON1_DEF2:
-        case ID_LED_ON1_ON2:
-        case ID_LED_ON1_OFF2:
-            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
-            hw->ledctl_mode1 |= ledctl_on << (i << 3);
-            break;
-        case ID_LED_OFF1_DEF2:
-        case ID_LED_OFF1_ON2:
-        case ID_LED_OFF1_OFF2:
-            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
-            hw->ledctl_mode1 |= ledctl_off << (i << 3);
-            break;
-        default:
-            /* Do nothing */
-            break;
-        }
-        switch (temp) {
-        case ID_LED_DEF1_ON2:
-        case ID_LED_ON1_ON2:
-        case ID_LED_OFF1_ON2:
-            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
-            hw->ledctl_mode2 |= ledctl_on << (i << 3);
-            break;
-        case ID_LED_DEF1_OFF2:
-        case ID_LED_ON1_OFF2:
-        case ID_LED_OFF1_OFF2:
-            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
-            hw->ledctl_mode2 |= ledctl_off << (i << 3);
-            break;
-        default:
-            /* Do nothing */
-            break;
-        }
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Prepares SW controlable LED for use and saves the current state of the LED.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-e1000_setup_led(struct e1000_hw *hw)
-{
-    uint32_t ledctl;
-    int32_t ret_val = E1000_SUCCESS;
-
-    DEBUGFUNC("e1000_setup_led");
-
-    switch (hw->mac_type) {
-    case e1000_82542_rev2_0:
-    case e1000_82542_rev2_1:
-    case e1000_82543:
-    case e1000_82544:
-        /* No setup necessary */
-        break;
-    case e1000_82541:
-    case e1000_82547:
-    case e1000_82541_rev_2:
-    case e1000_82547_rev_2:
-        /* Turn off PHY Smart Power Down (if enabled) */
-        ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
-                                     &hw->phy_spd_default);
-        if (ret_val)
-            return ret_val;
-        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
-                                      (uint16_t)(hw->phy_spd_default &
-                                      ~IGP01E1000_GMII_SPD));
-        if (ret_val)
-            return ret_val;
-        /* Fall Through */
-    default:
-        if (hw->media_type == e1000_media_type_fiber) {
-            ledctl = E1000_READ_REG(hw, LEDCTL);
-            /* Save current LEDCTL settings */
-            hw->ledctl_default = ledctl;
-            /* Turn off LED0 */
-            ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
-                        E1000_LEDCTL_LED0_BLINK |
-                        E1000_LEDCTL_LED0_MODE_MASK);
-            ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
-                       E1000_LEDCTL_LED0_MODE_SHIFT);
-            E1000_WRITE_REG(hw, LEDCTL, ledctl);
-        } else if (hw->media_type == e1000_media_type_copper)
-            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
-        break;
-    }
-
-    return E1000_SUCCESS;
-}
-
-
-/******************************************************************************
- * Used on 82571 and later Si that has LED blink bits.
- * Callers must use their own timer and should have already called
- * e1000_id_led_init()
- * Call e1000_cleanup led() to stop blinking
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-e1000_blink_led_start(struct e1000_hw *hw)
-{
-    int16_t  i;
-    uint32_t ledctl_blink = 0;
-
-    DEBUGFUNC("e1000_id_led_blink_on");
-
-    if (hw->mac_type < e1000_82571) {
-        /* Nothing to do */
-        return E1000_SUCCESS;
-    }
-    if (hw->media_type == e1000_media_type_fiber) {
-        /* always blink LED0 for PCI-E fiber */
-        ledctl_blink = E1000_LEDCTL_LED0_BLINK |
-                     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
-    } else {
-        /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
-        ledctl_blink = hw->ledctl_mode2;
-        for (i=0; i < 4; i++)
-            if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
-                E1000_LEDCTL_MODE_LED_ON)
-                ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
-    }
-
-    E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Restores the saved state of the SW controlable LED.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-e1000_cleanup_led(struct e1000_hw *hw)
-{
-    int32_t ret_val = E1000_SUCCESS;
-
-    DEBUGFUNC("e1000_cleanup_led");
-
-    switch (hw->mac_type) {
-    case e1000_82542_rev2_0:
-    case e1000_82542_rev2_1:
-    case e1000_82543:
-    case e1000_82544:
-        /* No cleanup necessary */
-        break;
-    case e1000_82541:
-    case e1000_82547:
-    case e1000_82541_rev_2:
-    case e1000_82547_rev_2:
-        /* Turn on PHY Smart Power Down (if previously enabled) */
-        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
-                                      hw->phy_spd_default);
-        if (ret_val)
-            return ret_val;
-        /* Fall Through */
-    default:
-        if (hw->phy_type == e1000_phy_ife) {
-            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
-            break;
-        }
-        /* Restore LEDCTL settings */
-        E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
-        break;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Turns on the software controllable LED
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-e1000_led_on(struct e1000_hw *hw)
-{
-    uint32_t ctrl = E1000_READ_REG(hw, CTRL);
-
-    DEBUGFUNC("e1000_led_on");
-
-    switch (hw->mac_type) {
-    case e1000_82542_rev2_0:
-    case e1000_82542_rev2_1:
-    case e1000_82543:
-        /* Set SW Defineable Pin 0 to turn on the LED */
-        ctrl |= E1000_CTRL_SWDPIN0;
-        ctrl |= E1000_CTRL_SWDPIO0;
-        break;
-    case e1000_82544:
-        if (hw->media_type == e1000_media_type_fiber) {
-            /* Set SW Defineable Pin 0 to turn on the LED */
-            ctrl |= E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        } else {
-            /* Clear SW Defineable Pin 0 to turn on the LED */
-            ctrl &= ~E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        }
-        break;
-    default:
-        if (hw->media_type == e1000_media_type_fiber) {
-            /* Clear SW Defineable Pin 0 to turn on the LED */
-            ctrl &= ~E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        } else if (hw->phy_type == e1000_phy_ife) {
-            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
-                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
-        } else if (hw->media_type == e1000_media_type_copper) {
-            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
-            return E1000_SUCCESS;
-        }
-        break;
-    }
-
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Turns off the software controllable LED
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-e1000_led_off(struct e1000_hw *hw)
-{
-    uint32_t ctrl = E1000_READ_REG(hw, CTRL);
-
-    DEBUGFUNC("e1000_led_off");
-
-    switch (hw->mac_type) {
-    case e1000_82542_rev2_0:
-    case e1000_82542_rev2_1:
-    case e1000_82543:
-        /* Clear SW Defineable Pin 0 to turn off the LED */
-        ctrl &= ~E1000_CTRL_SWDPIN0;
-        ctrl |= E1000_CTRL_SWDPIO0;
-        break;
-    case e1000_82544:
-        if (hw->media_type == e1000_media_type_fiber) {
-            /* Clear SW Defineable Pin 0 to turn off the LED */
-            ctrl &= ~E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        } else {
-            /* Set SW Defineable Pin 0 to turn off the LED */
-            ctrl |= E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        }
-        break;
-    default:
-        if (hw->media_type == e1000_media_type_fiber) {
-            /* Set SW Defineable Pin 0 to turn off the LED */
-            ctrl |= E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        } else if (hw->phy_type == e1000_phy_ife) {
-            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
-                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
-        } else if (hw->media_type == e1000_media_type_copper) {
-            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
-            return E1000_SUCCESS;
-        }
-        break;
-    }
-
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Clears all hardware statistics counters.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-void
-e1000_clear_hw_cntrs(struct e1000_hw *hw)
-{
-    volatile uint32_t temp;
-
-    temp = E1000_READ_REG(hw, CRCERRS);
-    temp = E1000_READ_REG(hw, SYMERRS);
-    temp = E1000_READ_REG(hw, MPC);
-    temp = E1000_READ_REG(hw, SCC);
-    temp = E1000_READ_REG(hw, ECOL);
-    temp = E1000_READ_REG(hw, MCC);
-    temp = E1000_READ_REG(hw, LATECOL);
-    temp = E1000_READ_REG(hw, COLC);
-    temp = E1000_READ_REG(hw, DC);
-    temp = E1000_READ_REG(hw, SEC);
-    temp = E1000_READ_REG(hw, RLEC);
-    temp = E1000_READ_REG(hw, XONRXC);
-    temp = E1000_READ_REG(hw, XONTXC);
-    temp = E1000_READ_REG(hw, XOFFRXC);
-    temp = E1000_READ_REG(hw, XOFFTXC);
-    temp = E1000_READ_REG(hw, FCRUC);
-
-    if (hw->mac_type != e1000_ich8lan) {
-    temp = E1000_READ_REG(hw, PRC64);
-    temp = E1000_READ_REG(hw, PRC127);
-    temp = E1000_READ_REG(hw, PRC255);
-    temp = E1000_READ_REG(hw, PRC511);
-    temp = E1000_READ_REG(hw, PRC1023);
-    temp = E1000_READ_REG(hw, PRC1522);
-    }
-
-    temp = E1000_READ_REG(hw, GPRC);
-    temp = E1000_READ_REG(hw, BPRC);
-    temp = E1000_READ_REG(hw, MPRC);
-    temp = E1000_READ_REG(hw, GPTC);
-    temp = E1000_READ_REG(hw, GORCL);
-    temp = E1000_READ_REG(hw, GORCH);
-    temp = E1000_READ_REG(hw, GOTCL);
-    temp = E1000_READ_REG(hw, GOTCH);
-    temp = E1000_READ_REG(hw, RNBC);
-    temp = E1000_READ_REG(hw, RUC);
-    temp = E1000_READ_REG(hw, RFC);
-    temp = E1000_READ_REG(hw, ROC);
-    temp = E1000_READ_REG(hw, RJC);
-    temp = E1000_READ_REG(hw, TORL);
-    temp = E1000_READ_REG(hw, TORH);
-    temp = E1000_READ_REG(hw, TOTL);
-    temp = E1000_READ_REG(hw, TOTH);
-    temp = E1000_READ_REG(hw, TPR);
-    temp = E1000_READ_REG(hw, TPT);
-
-    if (hw->mac_type != e1000_ich8lan) {
-    temp = E1000_READ_REG(hw, PTC64);
-    temp = E1000_READ_REG(hw, PTC127);
-    temp = E1000_READ_REG(hw, PTC255);
-    temp = E1000_READ_REG(hw, PTC511);
-    temp = E1000_READ_REG(hw, PTC1023);
-    temp = E1000_READ_REG(hw, PTC1522);
-    }
-
-    temp = E1000_READ_REG(hw, MPTC);
-    temp = E1000_READ_REG(hw, BPTC);
-
-    if (hw->mac_type < e1000_82543) return;
-
-    temp = E1000_READ_REG(hw, ALGNERRC);
-    temp = E1000_READ_REG(hw, RXERRC);
-    temp = E1000_READ_REG(hw, TNCRS);
-    temp = E1000_READ_REG(hw, CEXTERR);
-    temp = E1000_READ_REG(hw, TSCTC);
-    temp = E1000_READ_REG(hw, TSCTFC);
-
-    if (hw->mac_type <= e1000_82544) return;
-
-    temp = E1000_READ_REG(hw, MGTPRC);
-    temp = E1000_READ_REG(hw, MGTPDC);
-    temp = E1000_READ_REG(hw, MGTPTC);
-
-    if (hw->mac_type <= e1000_82547_rev_2) return;
-
-    temp = E1000_READ_REG(hw, IAC);
-    temp = E1000_READ_REG(hw, ICRXOC);
-
-    if (hw->mac_type == e1000_ich8lan) return;
-
-    temp = E1000_READ_REG(hw, ICRXPTC);
-    temp = E1000_READ_REG(hw, ICRXATC);
-    temp = E1000_READ_REG(hw, ICTXPTC);
-    temp = E1000_READ_REG(hw, ICTXATC);
-    temp = E1000_READ_REG(hw, ICTXQEC);
-    temp = E1000_READ_REG(hw, ICTXQMTC);
-    temp = E1000_READ_REG(hw, ICRXDMTC);
-
-}
-
-/******************************************************************************
- * Resets Adaptive IFS to its default state.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Call this after e1000_init_hw. You may override the IFS defaults by setting
- * hw->ifs_params_forced to TRUE. However, you must initialize hw->
- * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
- * before calling this function.
- *****************************************************************************/
-void
-e1000_reset_adaptive(struct e1000_hw *hw)
-{
-    DEBUGFUNC("e1000_reset_adaptive");
-
-    if (hw->adaptive_ifs) {
-        if (!hw->ifs_params_forced) {
-            hw->current_ifs_val = 0;
-            hw->ifs_min_val = IFS_MIN;
-            hw->ifs_max_val = IFS_MAX;
-            hw->ifs_step_size = IFS_STEP;
-            hw->ifs_ratio = IFS_RATIO;
-        }
-        hw->in_ifs_mode = FALSE;
-        E1000_WRITE_REG(hw, AIT, 0);
-    } else {
-        DEBUGOUT("Not in Adaptive IFS mode!\n");
-    }
-}
-
-/******************************************************************************
- * Called during the callback/watchdog routine to update IFS value based on
- * the ratio of transmits to collisions.
- *
- * hw - Struct containing variables accessed by shared code
- * tx_packets - Number of transmits since last callback
- * total_collisions - Number of collisions since last callback
- *****************************************************************************/
-void
-e1000_update_adaptive(struct e1000_hw *hw)
-{
-    DEBUGFUNC("e1000_update_adaptive");
-
-    if (hw->adaptive_ifs) {
-        if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
-            if (hw->tx_packet_delta > MIN_NUM_XMITS) {
-                hw->in_ifs_mode = TRUE;
-                if (hw->current_ifs_val < hw->ifs_max_val) {
-                    if (hw->current_ifs_val == 0)
-                        hw->current_ifs_val = hw->ifs_min_val;
-                    else
-                        hw->current_ifs_val += hw->ifs_step_size;
-                    E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
-                }
-            }
-        } else {
-            if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
-                hw->current_ifs_val = 0;
-                hw->in_ifs_mode = FALSE;
-                E1000_WRITE_REG(hw, AIT, 0);
-            }
-        }
-    } else {
-        DEBUGOUT("Not in Adaptive IFS mode!\n");
-    }
-}
-
-/******************************************************************************
- * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
- *
- * hw - Struct containing variables accessed by shared code
- * frame_len - The length of the frame in question
- * mac_addr - The Ethernet destination address of the frame in question
- *****************************************************************************/
-void
-e1000_tbi_adjust_stats(struct e1000_hw *hw,
-                       struct e1000_hw_stats *stats,
-                       uint32_t frame_len,
-                       uint8_t *mac_addr)
-{
-    uint64_t carry_bit;
-
-    /* First adjust the frame length. */
-    frame_len--;
-    /* We need to adjust the statistics counters, since the hardware
-     * counters overcount this packet as a CRC error and undercount
-     * the packet as a good packet
-     */
-    /* This packet should not be counted as a CRC error.    */
-    stats->crcerrs--;
-    /* This packet does count as a Good Packet Received.    */
-    stats->gprc++;
-
-    /* Adjust the Good Octets received counters             */
-    carry_bit = 0x80000000 & stats->gorcl;
-    stats->gorcl += frame_len;
-    /* If the high bit of Gorcl (the low 32 bits of the Good Octets
-     * Received Count) was one before the addition,
-     * AND it is zero after, then we lost the carry out,
-     * need to add one to Gorch (Good Octets Received Count High).
-     * This could be simplified if all environments supported
-     * 64-bit integers.
-     */
-    if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
-        stats->gorch++;
-    /* Is this a broadcast or multicast?  Check broadcast first,
-     * since the test for a multicast frame will test positive on
-     * a broadcast frame.
-     */
-    if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
-        /* Broadcast packet */
-        stats->bprc++;
-    else if (*mac_addr & 0x01)
-        /* Multicast packet */
-        stats->mprc++;
-
-    if (frame_len == hw->max_frame_size) {
-        /* In this case, the hardware has overcounted the number of
-         * oversize frames.
-         */
-        if (stats->roc > 0)
-            stats->roc--;
-    }
-
-    /* Adjust the bin counters when the extra byte put the frame in the
-     * wrong bin. Remember that the frame_len was adjusted above.
-     */
-    if (frame_len == 64) {
-        stats->prc64++;
-        stats->prc127--;
-    } else if (frame_len == 127) {
-        stats->prc127++;
-        stats->prc255--;
-    } else if (frame_len == 255) {
-        stats->prc255++;
-        stats->prc511--;
-    } else if (frame_len == 511) {
-        stats->prc511++;
-        stats->prc1023--;
-    } else if (frame_len == 1023) {
-        stats->prc1023++;
-        stats->prc1522--;
-    } else if (frame_len == 1522) {
-        stats->prc1522++;
-    }
-}
-
-/******************************************************************************
- * Gets the current PCI bus type, speed, and width of the hardware
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-void
-e1000_get_bus_info(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t pci_ex_link_status;
-    uint32_t status;
-
-    switch (hw->mac_type) {
-    case e1000_82542_rev2_0:
-    case e1000_82542_rev2_1:
-        hw->bus_type = e1000_bus_type_unknown;
-        hw->bus_speed = e1000_bus_speed_unknown;
-        hw->bus_width = e1000_bus_width_unknown;
-        break;
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_82573:
-    case e1000_80003es2lan:
-        hw->bus_type = e1000_bus_type_pci_express;
-        hw->bus_speed = e1000_bus_speed_2500;
-        ret_val = e1000_read_pcie_cap_reg(hw,
-                                      PCI_EX_LINK_STATUS,
-                                      &pci_ex_link_status);
-        if (ret_val)
-            hw->bus_width = e1000_bus_width_unknown;
-        else
-            hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >>
-                          PCI_EX_LINK_WIDTH_SHIFT;
-        break;
-    case e1000_ich8lan:
-        hw->bus_type = e1000_bus_type_pci_express;
-        hw->bus_speed = e1000_bus_speed_2500;
-        hw->bus_width = e1000_bus_width_pciex_1;
-        break;
-    default:
-        status = E1000_READ_REG(hw, STATUS);
-        hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
-                       e1000_bus_type_pcix : e1000_bus_type_pci;
-
-        if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
-            hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
-                            e1000_bus_speed_66 : e1000_bus_speed_120;
-        } else if (hw->bus_type == e1000_bus_type_pci) {
-            hw->bus_speed = (status & E1000_STATUS_PCI66) ?
-                            e1000_bus_speed_66 : e1000_bus_speed_33;
-        } else {
-            switch (status & E1000_STATUS_PCIX_SPEED) {
-            case E1000_STATUS_PCIX_SPEED_66:
-                hw->bus_speed = e1000_bus_speed_66;
-                break;
-            case E1000_STATUS_PCIX_SPEED_100:
-                hw->bus_speed = e1000_bus_speed_100;
-                break;
-            case E1000_STATUS_PCIX_SPEED_133:
-                hw->bus_speed = e1000_bus_speed_133;
-                break;
-            default:
-                hw->bus_speed = e1000_bus_speed_reserved;
-                break;
-            }
-        }
-        hw->bus_width = (status & E1000_STATUS_BUS64) ?
-                        e1000_bus_width_64 : e1000_bus_width_32;
-        break;
-    }
-}
-
-#ifndef __sparc
-/******************************************************************************
- * Writes a value to one of the devices registers using port I/O (as opposed to
- * memory mapped I/O). Only 82544 and newer devices support port I/O.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset to write to
- * value - value to write
- *****************************************************************************/
-STATIC void
-e1000_write_reg_io(struct e1000_hw *hw,
-                   uint32_t offset,
-                   uint32_t value)
-{
-    unsigned long io_addr = hw->io_base;
-    unsigned long io_data = hw->io_base + 4;
-
-    e1000_io_write(hw, io_addr, offset);
-    e1000_io_write(hw, io_data, value);
-}
-#endif
-
-/******************************************************************************
- * Estimates the cable length.
- *
- * hw - Struct containing variables accessed by shared code
- * min_length - The estimated minimum length
- * max_length - The estimated maximum length
- *
- * returns: - E1000_ERR_XXX
- *            E1000_SUCCESS
- *
- * This function always returns a ranged length (minimum & maximum).
- * So for M88 phy's, this function interprets the one value returned from the
- * register to the minimum and maximum range.
- * For IGP phy's, the function calculates the range by the AGC registers.
- *****************************************************************************/
-STATIC int32_t
-e1000_get_cable_length(struct e1000_hw *hw,
-                       uint16_t *min_length,
-                       uint16_t *max_length)
-{
-    int32_t ret_val;
-    uint16_t agc_value = 0;
-    uint16_t i, phy_data;
-    uint16_t cable_length;
-
-    DEBUGFUNC("e1000_get_cable_length");
-
-    *min_length = *max_length = 0;
-
-    /* Use old method for Phy older than IGP */
-    if (hw->phy_type == e1000_phy_m88) {
-
-        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
-                       M88E1000_PSSR_CABLE_LENGTH_SHIFT;
-
-        /* Convert the enum value to ranged values */
-        switch (cable_length) {
-        case e1000_cable_length_50:
-            *min_length = 0;
-            *max_length = e1000_igp_cable_length_50;
-            break;
-        case e1000_cable_length_50_80:
-            *min_length = e1000_igp_cable_length_50;
-            *max_length = e1000_igp_cable_length_80;
-            break;
-        case e1000_cable_length_80_110:
-            *min_length = e1000_igp_cable_length_80;
-            *max_length = e1000_igp_cable_length_110;
-            break;
-        case e1000_cable_length_110_140:
-            *min_length = e1000_igp_cable_length_110;
-            *max_length = e1000_igp_cable_length_140;
-            break;
-        case e1000_cable_length_140:
-            *min_length = e1000_igp_cable_length_140;
-            *max_length = e1000_igp_cable_length_170;
-            break;
-        default:
-            return -E1000_ERR_PHY;
-        }
-    } else if (hw->phy_type == e1000_phy_gg82563) {
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
-
-        switch (cable_length) {
-        case e1000_gg_cable_length_60:
-            *min_length = 0;
-            *max_length = e1000_igp_cable_length_60;
-            break;
-        case e1000_gg_cable_length_60_115:
-            *min_length = e1000_igp_cable_length_60;
-            *max_length = e1000_igp_cable_length_115;
-            break;
-        case e1000_gg_cable_length_115_150:
-            *min_length = e1000_igp_cable_length_115;
-            *max_length = e1000_igp_cable_length_150;
-            break;
-        case e1000_gg_cable_length_150:
-            *min_length = e1000_igp_cable_length_150;
-            *max_length = e1000_igp_cable_length_180;
-            break;
-        default:
-            return -E1000_ERR_PHY;
-        }
-    } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
-        uint16_t cur_agc_value;
-        uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
-        uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
-                                                         {IGP01E1000_PHY_AGC_A,
-                                                          IGP01E1000_PHY_AGC_B,
-                                                          IGP01E1000_PHY_AGC_C,
-                                                          IGP01E1000_PHY_AGC_D};
-        /* Read the AGC registers for all channels */
-        for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-
-            ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
-
-            /* Value bound check. */
-            if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
-                (cur_agc_value == 0))
-                return -E1000_ERR_PHY;
-
-            agc_value += cur_agc_value;
-
-            /* Update minimal AGC value. */
-            if (min_agc_value > cur_agc_value)
-                min_agc_value = cur_agc_value;
-        }
-
-        /* Remove the minimal AGC result for length < 50m */
-        if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
-            agc_value -= min_agc_value;
-
-            /* Get the average length of the remaining 3 channels */
-            agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
-        } else {
-            /* Get the average length of all the 4 channels. */
-            agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
-        }
-
-        /* Set the range of the calculated length. */
-        *min_length = ((e1000_igp_cable_length_table[agc_value] -
-                       IGP01E1000_AGC_RANGE) > 0) ?
-                       (e1000_igp_cable_length_table[agc_value] -
-                       IGP01E1000_AGC_RANGE) : 0;
-        *max_length = e1000_igp_cable_length_table[agc_value] +
-                      IGP01E1000_AGC_RANGE;
-    } else if (hw->phy_type == e1000_phy_igp_2 ||
-               hw->phy_type == e1000_phy_igp_3) {
-        uint16_t cur_agc_index, max_agc_index = 0;
-        uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
-        uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
-                                                         {IGP02E1000_PHY_AGC_A,
-                                                          IGP02E1000_PHY_AGC_B,
-                                                          IGP02E1000_PHY_AGC_C,
-                                                          IGP02E1000_PHY_AGC_D};
-        /* Read the AGC registers for all channels */
-        for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
-            ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            /* Getting bits 15:9, which represent the combination of course and
-             * fine gain values.  The result is a number that can be put into
-             * the lookup table to obtain the approximate cable length. */
-            cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
-                            IGP02E1000_AGC_LENGTH_MASK;
-
-            /* Array index bound check. */
-            if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
-                (cur_agc_index == 0))
-                return -E1000_ERR_PHY;
-
-            /* Remove min & max AGC values from calculation. */
-            if (e1000_igp_2_cable_length_table[min_agc_index] >
-                e1000_igp_2_cable_length_table[cur_agc_index])
-                min_agc_index = cur_agc_index;
-            if (e1000_igp_2_cable_length_table[max_agc_index] <
-                e1000_igp_2_cable_length_table[cur_agc_index])
-                max_agc_index = cur_agc_index;
-
-            agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
-        }
-
-        agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
-                      e1000_igp_2_cable_length_table[max_agc_index]);
-        agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
-
-        /* Calculate cable length with the error range of +/- 10 meters. */
-        *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
-                       (agc_value - IGP02E1000_AGC_RANGE) : 0;
-        *max_length = agc_value + IGP02E1000_AGC_RANGE;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Check the cable polarity
- *
- * hw - Struct containing variables accessed by shared code
- * polarity - output parameter : 0 - Polarity is not reversed
- *                               1 - Polarity is reversed.
- *
- * returns: - E1000_ERR_XXX
- *            E1000_SUCCESS
- *
- * For phy's older then IGP, this function simply reads the polarity bit in the
- * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
- * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
- * return 0.  If the link speed is 1000 Mbps the polarity status is in the
- * IGP01E1000_PHY_PCS_INIT_REG.
- *****************************************************************************/
-STATIC int32_t
-e1000_check_polarity(struct e1000_hw *hw,
-                     e1000_rev_polarity *polarity)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("e1000_check_polarity");
-
-    if ((hw->phy_type == e1000_phy_m88) ||
-        (hw->phy_type == e1000_phy_gg82563)) {
-        /* return the Polarity bit in the Status register. */
-        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
-                     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
-                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
-
-    } else if (hw->phy_type == e1000_phy_igp ||
-              hw->phy_type == e1000_phy_igp_3 ||
-              hw->phy_type == e1000_phy_igp_2) {
-        /* Read the Status register to check the speed */
-        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
-         * find the polarity status */
-        if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
-           IGP01E1000_PSSR_SPEED_1000MBPS) {
-
-            /* Read the GIG initialization PCS register (0x00B4) */
-            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            /* Check the polarity bits */
-            *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
-                         e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
-        } else {
-            /* For 10 Mbps, read the polarity bit in the status register. (for
-             * 100 Mbps this bit is always 0) */
-            *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
-                         e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
-        }
-    } else if (hw->phy_type == e1000_phy_ife) {
-        ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >>
-                     IFE_PESC_POLARITY_REVERSED_SHIFT) ?
-                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Check if Downshift occured
- *
- * hw - Struct containing variables accessed by shared code
- * downshift - output parameter : 0 - No Downshift ocured.
- *                                1 - Downshift ocured.
- *
- * returns: - E1000_ERR_XXX
- *            E1000_SUCCESS
- *
- * For phy's older then IGP, this function reads the Downshift bit in the Phy
- * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
- * Link Health register.  In IGP this bit is latched high, so the driver must
- * read it immediately after link is established.
- *****************************************************************************/
-STATIC int32_t
-e1000_check_downshift(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t phy_data;
-
-    DEBUGFUNC("e1000_check_downshift");
-
-    if (hw->phy_type == e1000_phy_igp ||
-        hw->phy_type == e1000_phy_igp_3 ||
-        hw->phy_type == e1000_phy_igp_2) {
-        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
-    } else if ((hw->phy_type == e1000_phy_m88) ||
-               (hw->phy_type == e1000_phy_gg82563)) {
-        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
-                               M88E1000_PSSR_DOWNSHIFT_SHIFT;
-    } else if (hw->phy_type == e1000_phy_ife) {
-        /* e1000_phy_ife supports 10/100 speed only */
-        hw->speed_downgraded = FALSE;
-    }
-
-    return E1000_SUCCESS;
-}
-
-#ifndef FIFO_WORKAROUND
-/*****************************************************************************
- *
- * Workaround for the Tanacross TX fifo failure.
- *
- * hw - Struct containing variables accessed by shared code
- * length - Length of next outgoing frame
- *
- *
- * returns: - E1000_ERR_FIFO_WRAP if the next packet cannot be transmitted yet
- *            E1000_SUCCESS if the next packet can be transmitted
- *
- *****************************************************************************/
-int32_t
-e1000_82547_fifo_workaround(struct e1000_hw *hw,
-                            uint16_t length)
-{
-    uint32_t tctl;
-    uint16_t fifo_space, fifo_pkt_len;
-
-    /* get the length as seen by the FIFO of the next real packet to
-     * be transmitted
-     */
-    fifo_pkt_len =  E1000_ROUNDUP(length + E1000_FIFO_HDR_SIZE,
-                                  E1000_FIFO_GRANULARITY);
-
-    if (fifo_pkt_len > E1000_82547_FIFO_PAD + E1000_FIFO_HDR_SIZE) {
-        fifo_space = hw->tx_fifo_size - hw->tx_fifo_head;
-
-        if ((hw->tx_fifo_head + fifo_pkt_len) >=
-            (hw->tx_fifo_size + E1000_82547_FIFO_PAD)) {
-            if (E1000_READ_REG(hw, TDT) != E1000_READ_REG(hw, TDH))
-                return -E1000_ERR_FIFO_WRAP;
-
-            if (E1000_READ_REG(hw, TDFT) != E1000_READ_REG(hw, TDFH))
-                return -E1000_ERR_FIFO_WRAP;
-
-            if (E1000_READ_REG(hw, TDFTS) != E1000_READ_REG(hw, TDFHS))
-                return -E1000_ERR_FIFO_WRAP;
-
-            /* Disable the tx unit to avoid further pointer movement */
-            tctl = E1000_READ_REG(hw, TCTL);
-            E1000_WRITE_REG(hw, TCTL, tctl & ~E1000_TCTL_EN);
-
-            /* Reset the fifo pointers. */
-            E1000_WRITE_REG(hw, TDFT, hw->tx_fifo_start);
-            E1000_WRITE_REG(hw, TDFH, hw->tx_fifo_start);
-            E1000_WRITE_REG(hw, TDFTS, hw->tx_fifo_start);
-            E1000_WRITE_REG(hw, TDFHS, hw->tx_fifo_start);
-
-            /* Re-enabling tx unit */
-            E1000_WRITE_REG(hw, TCTL, tctl);
-            E1000_WRITE_FLUSH(hw);
-
-            hw->tx_fifo_head = 0;
-
-        }
-    }
-    return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * Updates the SW calculated TX FIFO head pointer.
- *
- * hw - Struct containing variables accessed by shared code
- * length - Length of next outgoing frame
- ****************************************************************************/
-void
-e1000_update_tx_fifo_head(struct e1000_hw *hw,
-                          uint32_t length)
-{
-    hw->tx_fifo_head += E1000_ROUNDUP(length + E1000_FIFO_HDR_SIZE,
-                                      E1000_FIFO_GRANULARITY);
-
-    if (hw->tx_fifo_head > hw->tx_fifo_size)
-        hw->tx_fifo_head -= hw->tx_fifo_size;
-
-    return;
-}
-
-#endif /* FIFO_WORKAROUND */
-/*****************************************************************************
- *
- * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
- * gigabit link is achieved to improve link quality.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- *            E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-STATIC int32_t
-e1000_config_dsp_after_link_change(struct e1000_hw *hw,
-                                   boolean_t link_up)
-{
-    int32_t ret_val;
-    uint16_t phy_data, phy_saved_data, speed, duplex, i;
-    uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
-                                        {IGP01E1000_PHY_AGC_PARAM_A,
-                                        IGP01E1000_PHY_AGC_PARAM_B,
-                                        IGP01E1000_PHY_AGC_PARAM_C,
-                                        IGP01E1000_PHY_AGC_PARAM_D};
-    uint16_t min_length, max_length;
-
-    DEBUGFUNC("e1000_config_dsp_after_link_change");
-
-    if (hw->phy_type != e1000_phy_igp)
-        return E1000_SUCCESS;
-
-    if (link_up) {
-        ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
-        if (ret_val) {
-            DEBUGOUT("Error getting link speed and duplex\n");
-            return ret_val;
-        }
-
-        if (speed == SPEED_1000) {
-
-            ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
-            if (ret_val)
-                return ret_val;
-
-            if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
-                min_length >= e1000_igp_cable_length_50) {
-
-                for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-                    ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
-                                                 &phy_data);
-                    if (ret_val)
-                        return ret_val;
-
-                    phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
-
-                    ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
-                                                  phy_data);
-                    if (ret_val)
-                        return ret_val;
-                }
-                hw->dsp_config_state = e1000_dsp_config_activated;
-            }
-
-            if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
-               (min_length < e1000_igp_cable_length_50)) {
-
-                uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
-                uint32_t idle_errs = 0;
-
-                /* clear previous idle error counts */
-                ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
-                                             &phy_data);
-                if (ret_val)
-                    return ret_val;
-
-                for (i = 0; i < ffe_idle_err_timeout; i++) {
-                    usec_delay(1000);
-                    ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
-                                                 &phy_data);
-                    if (ret_val)
-                        return ret_val;
-
-                    idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
-                    if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
-                        hw->ffe_config_state = e1000_ffe_config_active;
-
-                        ret_val = e1000_write_phy_reg(hw,
-                                    IGP01E1000_PHY_DSP_FFE,
-                                    IGP01E1000_PHY_DSP_FFE_CM_CP);
-                        if (ret_val)
-                            return ret_val;
-                        break;
-                    }
-
-                    if (idle_errs)
-                        ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
-                }
-            }
-        }
-    } else {
-        if (hw->dsp_config_state == e1000_dsp_config_activated) {
-            /* Save off the current value of register 0x2F5B to be restored at
-             * the end of the routines. */
-            ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
-            if (ret_val)
-                return ret_val;
-
-            /* Disable the PHY transmitter */
-            ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
-
-            if (ret_val)
-                return ret_val;
-
-            msec_delay_irq(20);
-
-            ret_val = e1000_write_phy_reg(hw, 0x0000,
-                                          IGP01E1000_IEEE_FORCE_GIGA);
-            if (ret_val)
-                return ret_val;
-            for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-                ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
-                if (ret_val)
-                    return ret_val;
-
-                phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
-                phy_data |=  IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
-
-                ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
-                if (ret_val)
-                    return ret_val;
-            }
-
-            ret_val = e1000_write_phy_reg(hw, 0x0000,
-                                          IGP01E1000_IEEE_RESTART_AUTONEG);
-            if (ret_val)
-                return ret_val;
-
-            msec_delay_irq(20);
-
-            /* Now enable the transmitter */
-            ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
-            if (ret_val)
-                return ret_val;
-
-            hw->dsp_config_state = e1000_dsp_config_enabled;
-        }
-
-        if (hw->ffe_config_state == e1000_ffe_config_active) {
-            /* Save off the current value of register 0x2F5B to be restored at
-             * the end of the routines. */
-            ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
-            if (ret_val)
-                return ret_val;
-
-            /* Disable the PHY transmitter */
-            ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
-
-            if (ret_val)
-                return ret_val;
-
-            msec_delay_irq(20);
-
-            ret_val = e1000_write_phy_reg(hw, 0x0000,
-                                          IGP01E1000_IEEE_FORCE_GIGA);
-            if (ret_val)
-                return ret_val;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
-                                          IGP01E1000_PHY_DSP_FFE_DEFAULT);
-            if (ret_val)
-                return ret_val;
-
-            ret_val = e1000_write_phy_reg(hw, 0x0000,
-                                          IGP01E1000_IEEE_RESTART_AUTONEG);
-            if (ret_val)
-                return ret_val;
-
-            msec_delay_irq(20);
-
-            /* Now enable the transmitter */
-            ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
-            if (ret_val)
-                return ret_val;
-
-            hw->ffe_config_state = e1000_ffe_config_enabled;
-        }
-    }
-    return E1000_SUCCESS;
-}
-
-#ifndef FIFO_WORKAROUND
-/***************************************************************************
- *
- * Workaround for the 82547 long TTL on noisy 100HD hubs.
- *
- * This function, specific to 82547 hardware only, needs to be called every
- * second.  It checks if a parallel detect fault has occurred.  If a fault
- * occurred, disable/enable the DSP reset mechanism up to 5 times (once per
- * second).  If link is established, stop the workaround and ensure the DSP
- * reset is enabled.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- *            E1000_SUCCESS in any other case
- *
- ****************************************************************************/
-int32_t
-e1000_igp_ttl_workaround(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t phy_data = 0;
-    uint16_t dsp_value = DSP_RESET_ENABLE;
-
-    /* The workaround needed only for B-0 silicon HW */
-    if (((hw->mac_type != e1000_82541) && (hw->mac_type != e1000_82547)) ||
-         (!hw->ttl_wa_activation)) {
-        return E1000_SUCCESS;
-    }
-
-    /* Check for link first */
-    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    if (phy_data & MII_SR_LINK_STATUS) {
-        /* If link is established during the workaround, the DSP mechanism must
-         * be enabled. */
-        if (hw->dsp_reset_counter) {
-            hw->dsp_reset_counter = 0;
-            dsp_value = DSP_RESET_ENABLE;
-        } else
-            return E1000_SUCCESS;
-    } else {
-        if (hw->dsp_reset_counter == 0) {
-            /* Workaround not activated, check if it needs activation */
-            ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
-            if (ret_val)
-                return ret_val;
-            /* Activate the workaround if there was a parallel detect fault */
-            if (phy_data & NWAY_ER_PAR_DETECT_FAULT)
-                hw->dsp_reset_counter++;
-            else
-                return E1000_SUCCESS;
-        }
-
-        if (hw->dsp_reset_counter) {
-            /* After 5 times, stop the workaround */
-            if (hw->dsp_reset_counter > E1000_MAX_DSP_RESETS) {
-                hw->dsp_reset_counter = 0;
-                dsp_value = DSP_RESET_ENABLE;
-            } else {
-                dsp_value = (hw->dsp_reset_counter & 1) ? DSP_RESET_DISABLE :
-                            DSP_RESET_ENABLE;
-                hw->dsp_reset_counter++;
-            }
-        }
-    }
-
-    ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_RESET, dsp_value);
-    if (ret_val)
-        return ret_val;
-
-    return E1000_SUCCESS;
-}
-
-#endif /* FIFO_WORKAROUND */
-/*****************************************************************************
- * Set PHY to class A mode
- * Assumes the following operations will follow to enable the new class mode.
- *  1. Do a PHY soft reset
- *  2. Restart auto-negotiation or force link.
- *
- * hw - Struct containing variables accessed by shared code
- ****************************************************************************/
-static int32_t
-e1000_set_phy_mode(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t eeprom_data;
-
-    DEBUGFUNC("e1000_set_phy_mode");
-
-    if ((hw->mac_type == e1000_82545_rev_3) &&
-        (hw->media_type == e1000_media_type_copper)) {
-        ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
-        if (ret_val) {
-            return ret_val;
-        }
-
-        if ((eeprom_data != EEPROM_RESERVED_WORD) &&
-            (eeprom_data & EEPROM_PHY_CLASS_A)) {
-            ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
-            if (ret_val)
-                return ret_val;
-            ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
-            if (ret_val)
-                return ret_val;
-
-            hw->phy_reset_disable = FALSE;
-        }
-    }
-
-    return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * This function sets the lplu state according to the active flag.  When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- *            E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-STATIC int32_t
-e1000_set_d3_lplu_state(struct e1000_hw *hw,
-                        boolean_t active)
-{
-    uint32_t phy_ctrl = 0;
-    int32_t ret_val;
-    uint16_t phy_data;
-    DEBUGFUNC("e1000_set_d3_lplu_state");
-
-    if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
-        && hw->phy_type != e1000_phy_igp_3)
-        return E1000_SUCCESS;
-
-    /* During driver activity LPLU should not be used or it will attain link
-     * from the lowest speeds starting from 10Mbps. The capability is used for
-     * Dx transitions and states */
-    if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
-        ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
-        if (ret_val)
-            return ret_val;
-    } else if (hw->mac_type == e1000_ich8lan) {
-        /* MAC writes into PHY register based on the state transition
-         * and start auto-negotiation. SW driver can overwrite the settings
-         * in CSR PHY power control E1000_PHY_CTRL register. */
-        phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
-    } else {
-        ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    if (!active) {
-        if (hw->mac_type == e1000_82541_rev_2 ||
-            hw->mac_type == e1000_82547_rev_2) {
-            phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
-            if (ret_val)
-                return ret_val;
-        } else {
-            if (hw->mac_type == e1000_ich8lan) {
-                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
-                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
-            } else {
-                phy_data &= ~IGP02E1000_PM_D3_LPLU;
-                ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
-                                              phy_data);
-                if (ret_val)
-                    return ret_val;
-            }
-        }
-
-        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
-         * Dx states where the power conservation is most important.  During
-         * driver activity we should enable SmartSpeed, so performance is
-         * maintained. */
-        if (hw->smart_speed == e1000_smart_speed_on) {
-            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-        } else if (hw->smart_speed == e1000_smart_speed_off) {
-            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
-    } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
-               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
-               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
-
-        if (hw->mac_type == e1000_82541_rev_2 ||
-            hw->mac_type == e1000_82547_rev_2) {
-            phy_data |= IGP01E1000_GMII_FLEX_SPD;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
-            if (ret_val)
-                return ret_val;
-        } else {
-            if (hw->mac_type == e1000_ich8lan) {
-                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
-                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
-            } else {
-                phy_data |= IGP02E1000_PM_D3_LPLU;
-                ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
-                                              phy_data);
-                if (ret_val)
-                    return ret_val;
-            }
-        }
-
-        /* When LPLU is enabled we should disable SmartSpeed */
-        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
-        if (ret_val)
-            return ret_val;
-
-    }
-    return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * This function sets the lplu d0 state according to the active flag.  When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- *            E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-STATIC int32_t
-e1000_set_d0_lplu_state(struct e1000_hw *hw,
-                        boolean_t active)
-{
-    uint32_t phy_ctrl = 0;
-    int32_t ret_val;
-    uint16_t phy_data;
-    DEBUGFUNC("e1000_set_d0_lplu_state");
-
-    if (hw->mac_type <= e1000_82547_rev_2)
-        return E1000_SUCCESS;
-
-    if (hw->mac_type == e1000_ich8lan) {
-        phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
-    } else {
-        ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    if (!active) {
-        if (hw->mac_type == e1000_ich8lan) {
-            phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
-            E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
-        } else {
-            phy_data &= ~IGP02E1000_PM_D0_LPLU;
-            ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
-        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
-         * Dx states where the power conservation is most important.  During
-         * driver activity we should enable SmartSpeed, so performance is
-         * maintained. */
-        if (hw->smart_speed == e1000_smart_speed_on) {
-            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-        } else if (hw->smart_speed == e1000_smart_speed_off) {
-            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
-
-    } else {
-
-        if (hw->mac_type == e1000_ich8lan) {
-            phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
-            E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
-        } else {
-            phy_data |= IGP02E1000_PM_D0_LPLU;
-            ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
-        /* When LPLU is enabled we should disable SmartSpeed */
-        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
-        if (ret_val)
-            return ret_val;
-
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Change VCO speed register to improve Bit Error Rate performance of SERDES.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static int32_t
-e1000_set_vco_speed(struct e1000_hw *hw)
-{
-    int32_t  ret_val;
-    uint16_t default_page = 0;
-    uint16_t phy_data;
-
-    DEBUGFUNC("e1000_set_vco_speed");
-
-    switch (hw->mac_type) {
-    case e1000_82545_rev_3:
-    case e1000_82546_rev_3:
-       break;
-    default:
-        return E1000_SUCCESS;
-    }
-
-    /* Set PHY register 30, page 5, bit 8 to 0 */
-
-    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
-    if (ret_val)
-        return ret_val;
-
-    /* Set PHY register 30, page 4, bit 11 to 1 */
-
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_data |= M88E1000_PHY_VCO_REG_BIT11;
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
-    if (ret_val)
-        return ret_val;
-
-    return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function reads the cookie from ARC ram.
- *
- * returns: - E1000_SUCCESS .
- ****************************************************************************/
-STATIC int32_t
-e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
-{
-    uint8_t i;
-    uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
-    uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
-
-    length = (length >> 2);
-    offset = (offset >> 2);
-
-    for (i = 0; i < length; i++) {
-        *((uint32_t *) buffer + i) =
-            E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
-    }
-    return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function checks whether the HOST IF is enabled for command operaton
- * and also checks whether the previous command is completed.
- * It busy waits in case of previous command is not completed.
- *
- * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
- *            timeout
- *          - E1000_SUCCESS for success.
- ****************************************************************************/
-STATIC int32_t
-e1000_mng_enable_host_if(struct e1000_hw * hw)
-{
-    uint32_t hicr;
-    uint8_t i;
-
-    /* Check that the host interface is enabled. */
-    hicr = E1000_READ_REG(hw, HICR);
-    if ((hicr & E1000_HICR_EN) == 0) {
-        DEBUGOUT("E1000_HOST_EN bit disabled.\n");
-        return -E1000_ERR_HOST_INTERFACE_COMMAND;
-    }
-    /* check the previous command is completed */
-    for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
-        hicr = E1000_READ_REG(hw, HICR);
-        if (!(hicr & E1000_HICR_C))
-            break;
-        msec_delay_irq(1);
-    }
-
-    if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
-        DEBUGOUT("Previous command timeout failed .\n");
-        return -E1000_ERR_HOST_INTERFACE_COMMAND;
-    }
-    return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- * This function writes the buffer content at the offset given on the host if.
- * It also does alignment considerations to do the writes in most efficient way.
- * Also fills up the sum of the buffer in *buffer parameter.
- *
- * returns  - E1000_SUCCESS for success.
- ****************************************************************************/
-STATIC int32_t
-e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
-                        uint16_t length, uint16_t offset, uint8_t *sum)
-{
-    uint8_t *tmp;
-    uint8_t *bufptr = buffer;
-    uint32_t data = 0;
-    uint16_t remaining, i, j, prev_bytes;
-
-    /* sum = only sum of the data and it is not checksum */
-
-    if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
-        return -E1000_ERR_PARAM;
-    }
-
-    tmp = (uint8_t *)&data;
-    prev_bytes = offset & 0x3;
-    offset &= 0xFFFC;
-    offset >>= 2;
-
-    if (prev_bytes) {
-        data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
-        for (j = prev_bytes; j < sizeof(uint32_t); j++) {
-            *(tmp + j) = *bufptr++;
-            *sum += *(tmp + j);
-        }
-        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
-        length -= j - prev_bytes;
-        offset++;
-    }
-
-    remaining = length & 0x3;
-    length -= remaining;
-
-    /* Calculate length in DWORDs */
-    length >>= 2;
-
-    /* The device driver writes the relevant command block into the
-     * ram area. */
-    for (i = 0; i < length; i++) {
-        for (j = 0; j < sizeof(uint32_t); j++) {
-            *(tmp + j) = *bufptr++;
-            *sum += *(tmp + j);
-        }
-
-        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
-    }
-    if (remaining) {
-        for (j = 0; j < sizeof(uint32_t); j++) {
-            if (j < remaining)
-                *(tmp + j) = *bufptr++;
-            else
-                *(tmp + j) = 0;
-
-            *sum += *(tmp + j);
-        }
-        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
-    }
-
-    return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function writes the command header after does the checksum calculation.
- *
- * returns  - E1000_SUCCESS for success.
- ****************************************************************************/
-STATIC int32_t
-e1000_mng_write_cmd_header(struct e1000_hw * hw,
-                           struct e1000_host_mng_command_header * hdr)
-{
-    uint16_t i;
-    uint8_t sum;
-    uint8_t *buffer;
-
-    /* Write the whole command header structure which includes sum of
-     * the buffer */
-
-    uint16_t length = sizeof(struct e1000_host_mng_command_header);
-
-    sum = hdr->checksum;
-    hdr->checksum = 0;
-
-    buffer = (uint8_t *) hdr;
-    i = length;
-    while (i--)
-        sum += buffer[i];
-
-    hdr->checksum = 0 - sum;
-
-    length >>= 2;
-    /* The device driver writes the relevant command block into the ram area. */
-    for (i = 0; i < length; i++) {
-        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
-        E1000_WRITE_FLUSH(hw);
-    }
-
-    return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function indicates to ARC that a new command is pending which completes
- * one write operation by the driver.
- *
- * returns  - E1000_SUCCESS for success.
- ****************************************************************************/
-STATIC int32_t
-e1000_mng_write_commit(struct e1000_hw * hw)
-{
-    uint32_t hicr;
-
-    hicr = E1000_READ_REG(hw, HICR);
-    /* Setting this bit tells the ARC that a new command is pending. */
-    E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
-
-    return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function checks the mode of the firmware.
- *
- * returns  - TRUE when the mode is IAMT or FALSE.
- ****************************************************************************/
-boolean_t
-e1000_check_mng_mode(struct e1000_hw *hw)
-{
-    uint32_t fwsm;
-
-    fwsm = E1000_READ_REG(hw, FWSM);
-
-    if (hw->mac_type == e1000_ich8lan) {
-        if ((fwsm & E1000_FWSM_MODE_MASK) ==
-            (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
-            return TRUE;
-    } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
-               (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
-        return TRUE;
-
-    return FALSE;
-}
-
-
-/*****************************************************************************
- * This function writes the dhcp info .
- ****************************************************************************/
-int32_t
-e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
-                          uint16_t length)
-{
-    int32_t ret_val;
-    struct e1000_host_mng_command_header hdr;
-
-    hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
-    hdr.command_length = length;
-    hdr.reserved1 = 0;
-    hdr.reserved2 = 0;
-    hdr.checksum = 0;
-
-    ret_val = e1000_mng_enable_host_if(hw);
-    if (ret_val == E1000_SUCCESS) {
-        ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
-                                          &(hdr.checksum));
-        if (ret_val == E1000_SUCCESS) {
-            ret_val = e1000_mng_write_cmd_header(hw, &hdr);
-            if (ret_val == E1000_SUCCESS)
-                ret_val = e1000_mng_write_commit(hw);
-        }
-    }
-    return ret_val;
-}
-
-
-/*****************************************************************************
- * This function calculates the checksum.
- *
- * returns  - checksum of buffer contents.
- ****************************************************************************/
-STATIC uint8_t
-e1000_calculate_mng_checksum(char *buffer, uint32_t length)
-{
-    uint8_t sum = 0;
-    uint32_t i;
-
-    if (!buffer)
-        return 0;
-
-    for (i=0; i < length; i++)
-        sum += buffer[i];
-
-    return (uint8_t) (0 - sum);
-}
-
-/*****************************************************************************
- * This function checks whether tx pkt filtering needs to be enabled or not.
- *
- * returns  - TRUE for packet filtering or FALSE.
- ****************************************************************************/
-boolean_t
-e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
-{
-    /* called in init as well as watchdog timer functions */
-
-    int32_t ret_val, checksum;
-    boolean_t tx_filter = FALSE;
-    struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
-    uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
-
-    if (e1000_check_mng_mode(hw)) {
-        ret_val = e1000_mng_enable_host_if(hw);
-        if (ret_val == E1000_SUCCESS) {
-            ret_val = e1000_host_if_read_cookie(hw, buffer);
-            if (ret_val == E1000_SUCCESS) {
-                checksum = hdr->checksum;
-                hdr->checksum = 0;
-                if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
-                    checksum == e1000_calculate_mng_checksum((char *)buffer,
-                                               E1000_MNG_DHCP_COOKIE_LENGTH)) {
-                    if (hdr->status &
-                        E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
-                        tx_filter = TRUE;
-                } else
-                    tx_filter = TRUE;
-            } else
-                tx_filter = TRUE;
-        }
-    }
-
-    hw->tx_pkt_filtering = tx_filter;
-    return tx_filter;
-}
-
-/******************************************************************************
- * Verifies the hardware needs to allow ARPs to be processed by the host
- *
- * hw - Struct containing variables accessed by shared code
- *
- * returns: - TRUE/FALSE
- *
- *****************************************************************************/
-uint32_t
-e1000_enable_mng_pass_thru(struct e1000_hw *hw)
-{
-    uint32_t manc;
-    uint32_t fwsm, factps;
-
-    if (hw->asf_firmware_present) {
-        manc = E1000_READ_REG(hw, MANC);
-
-        if (!(manc & E1000_MANC_RCV_TCO_EN) ||
-            !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
-            return FALSE;
-        if (e1000_arc_subsystem_valid(hw) == TRUE) {
-            fwsm = E1000_READ_REG(hw, FWSM);
-            factps = E1000_READ_REG(hw, FACTPS);
-
-            if (((fwsm & E1000_FWSM_MODE_MASK) ==
-                (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
-                (factps & E1000_FACTPS_MNGCG))
-                return TRUE;
-        } else
-            if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
-                return TRUE;
-    }
-    return FALSE;
-}
-
-static int32_t
-e1000_polarity_reversal_workaround(struct e1000_hw *hw)
-{
-    int32_t ret_val;
-    uint16_t mii_status_reg;
-    uint16_t i;
-
-    /* Polarity reversal workaround for forced 10F/10H links. */
-
-    /* Disable the transmitter on the PHY */
-
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
-    if (ret_val)
-        return ret_val;
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
-    if (ret_val)
-        return ret_val;
-
-    /* This loop will early-out if the NO link condition has been met. */
-    for (i = PHY_FORCE_TIME; i > 0; i--) {
-        /* Read the MII Status Register and wait for Link Status bit
-         * to be clear.
-         */
-
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-
-        if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
-        msec_delay_irq(100);
-    }
-
-    /* Recommended delay time after link has been lost */
-    msec_delay_irq(1000);
-
-    /* Now we will re-enable th transmitter on the PHY */
-
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
-    if (ret_val)
-        return ret_val;
-    msec_delay_irq(50);
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
-    if (ret_val)
-        return ret_val;
-    msec_delay_irq(50);
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
-    if (ret_val)
-        return ret_val;
-    msec_delay_irq(50);
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
-    if (ret_val)
-        return ret_val;
-
-    /* This loop will early-out if the link condition has been met. */
-    for (i = PHY_FORCE_TIME; i > 0; i--) {
-        /* Read the MII Status Register and wait for Link Status bit
-         * to be set.
-         */
-
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-
-        if (mii_status_reg & MII_SR_LINK_STATUS) break;
-        msec_delay_irq(100);
-    }
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Disables PCI-Express master access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - none.
- *
- ***************************************************************************/
-STATIC void
-e1000_set_pci_express_master_disable(struct e1000_hw *hw)
-{
-    uint32_t ctrl;
-
-    DEBUGFUNC("e1000_set_pci_express_master_disable");
-
-    if (hw->bus_type != e1000_bus_type_pci_express)
-        return;
-
-    ctrl = E1000_READ_REG(hw, CTRL);
-    ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
-    E1000_WRITE_REG(hw, CTRL, ctrl);
-}
-
-/*******************************************************************************
- *
- * Disables PCI-Express master access and verifies there are no pending requests
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
- *            caused the master requests to be disabled.
- *            E1000_SUCCESS master requests disabled.
- *
- ******************************************************************************/
-int32_t
-e1000_disable_pciex_master(struct e1000_hw *hw)
-{
-    int32_t timeout = MASTER_DISABLE_TIMEOUT;   /* 80ms */
-
-    DEBUGFUNC("e1000_disable_pciex_master");
-
-    if (hw->bus_type != e1000_bus_type_pci_express)
-        return E1000_SUCCESS;
-
-    e1000_set_pci_express_master_disable(hw);
-
-    while (timeout) {
-        if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
-            break;
-        else
-            usec_delay(100);
-        timeout--;
-    }
-
-    if (!timeout) {
-        DEBUGOUT("Master requests are pending.\n");
-        return -E1000_ERR_MASTER_REQUESTS_PENDING;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/*******************************************************************************
- *
- * Check for EEPROM Auto Read bit done.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to reset MAC
- *            E1000_SUCCESS at any other case.
- *
- ******************************************************************************/
-STATIC int32_t
-e1000_get_auto_rd_done(struct e1000_hw *hw)
-{
-    int32_t timeout = AUTO_READ_DONE_TIMEOUT;
-
-    DEBUGFUNC("e1000_get_auto_rd_done");
-
-    switch (hw->mac_type) {
-    default:
-        msec_delay(5);
-        break;
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_82573:
-    case e1000_80003es2lan:
-    case e1000_ich8lan:
-        while (timeout) {
-            if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
-                break;
-            else msec_delay(1);
-            timeout--;
-        }
-
-        if (!timeout) {
-            DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
-            return -E1000_ERR_RESET;
-        }
-        break;
-    }
-
-    /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
-     * Need to wait for PHY configuration completion before accessing NVM
-     * and PHY. */
-    if (hw->mac_type == e1000_82573)
-        msec_delay(25);
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- * Checks if the PHY configuration is done
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to reset MAC
- *            E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-STATIC int32_t
-e1000_get_phy_cfg_done(struct e1000_hw *hw)
-{
-    int32_t timeout = PHY_CFG_TIMEOUT;
-    uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
-
-    DEBUGFUNC("e1000_get_phy_cfg_done");
-
-    switch (hw->mac_type) {
-    default:
-        msec_delay_irq(10);
-        break;
-    case e1000_80003es2lan:
-        /* Separate *_CFG_DONE_* bit for each port */
-        if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
-            cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
-        /* Fall Through */
-    case e1000_82571:
-    case e1000_82572:
-        while (timeout) {
-            if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
-                break;
-            else
-                msec_delay(1);
-            timeout--;
-        }
-        if (!timeout) {
-            DEBUGOUT("MNG configuration cycle has not completed.\n");
-        }
-        break;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Using the combination of SMBI and SWESMBI semaphore bits when resetting
- * adapter or Eeprom access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
- *            E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-STATIC int32_t
-e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
-{
-    int32_t timeout;
-    uint32_t swsm;
-
-    DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
-
-    if (!hw->eeprom_semaphore_present)
-        return E1000_SUCCESS;
-
-    if (hw->mac_type == e1000_80003es2lan) {
-        /* Get the SW semaphore. */
-        if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
-            return -E1000_ERR_EEPROM;
-    }
-
-    /* Get the FW semaphore. */
-    timeout = hw->eeprom.word_size + 1;
-    while (timeout) {
-        swsm = E1000_READ_REG(hw, SWSM);
-        swsm |= E1000_SWSM_SWESMBI;
-        E1000_WRITE_REG(hw, SWSM, swsm);
-        /* if we managed to set the bit we got the semaphore. */
-        swsm = E1000_READ_REG(hw, SWSM);
-        if (swsm & E1000_SWSM_SWESMBI)
-            break;
-
-        usec_delay(50);
-        timeout--;
-    }
-
-    if (!timeout) {
-        /* Release semaphores */
-        e1000_put_hw_eeprom_semaphore(hw);
-        DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
-        return -E1000_ERR_EEPROM;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- * This function clears HW semaphore bits.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - None.
- *
- ***************************************************************************/
-STATIC void
-e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
-{
-    uint32_t swsm;
-
-    DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
-
-    if (!hw->eeprom_semaphore_present)
-        return;
-
-    swsm = E1000_READ_REG(hw, SWSM);
-    if (hw->mac_type == e1000_80003es2lan) {
-        /* Release both semaphores. */
-        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
-    } else
-        swsm &= ~(E1000_SWSM_SWESMBI);
-    E1000_WRITE_REG(hw, SWSM, swsm);
-}
-
-/***************************************************************************
- *
- * Obtaining software semaphore bit (SMBI) before resetting PHY.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to obtain semaphore.
- *            E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-STATIC int32_t
-e1000_get_software_semaphore(struct e1000_hw *hw)
-{
-    int32_t timeout = hw->eeprom.word_size + 1;
-    uint32_t swsm;
-
-    DEBUGFUNC("e1000_get_software_semaphore");
-
-    if (hw->mac_type != e1000_80003es2lan) {
-        return E1000_SUCCESS;
-    }
-
-    while (timeout) {
-        swsm = E1000_READ_REG(hw, SWSM);
-        /* If SMBI bit cleared, it is now set and we hold the semaphore */
-        if (!(swsm & E1000_SWSM_SMBI))
-            break;
-        msec_delay_irq(1);
-        timeout--;
-    }
-
-    if (!timeout) {
-        DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
-        return -E1000_ERR_RESET;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Release semaphore bit (SMBI).
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-STATIC void
-e1000_release_software_semaphore(struct e1000_hw *hw)
-{
-    uint32_t swsm;
-
-    DEBUGFUNC("e1000_release_software_semaphore");
-
-    if (hw->mac_type != e1000_80003es2lan) {
-        return;
-    }
-
-    swsm = E1000_READ_REG(hw, SWSM);
-    /* Release the SW semaphores.*/
-    swsm &= ~E1000_SWSM_SMBI;
-    E1000_WRITE_REG(hw, SWSM, swsm);
-}
-
-/******************************************************************************
- * Checks if PHY reset is blocked due to SOL/IDER session, for example.
- * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
- * the caller to figure out how to deal with it.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * returns: - E1000_BLK_PHY_RESET
- *            E1000_SUCCESS
- *
- *****************************************************************************/
-int32_t
-e1000_check_phy_reset_block(struct e1000_hw *hw)
-{
-    uint32_t manc = 0;
-    uint32_t fwsm = 0;
-
-    if (hw->mac_type == e1000_ich8lan) {
-        fwsm = E1000_READ_REG(hw, FWSM);
-        return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
-                                            : E1000_BLK_PHY_RESET;
-    }
-
-    if (hw->mac_type > e1000_82547_rev_2)
-        manc = E1000_READ_REG(hw, MANC);
-    return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
-        E1000_BLK_PHY_RESET : E1000_SUCCESS;
-}
-
-STATIC uint8_t
-e1000_arc_subsystem_valid(struct e1000_hw *hw)
-{
-    uint32_t fwsm;
-
-    /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
-     * may not be provided a DMA clock when no manageability features are
-     * enabled.  We do not want to perform any reads/writes to these registers
-     * if this is the case.  We read FWSM to determine the manageability mode.
-     */
-    switch (hw->mac_type) {
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_82573:
-    case e1000_80003es2lan:
-        fwsm = E1000_READ_REG(hw, FWSM);
-        if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
-            return TRUE;
-        break;
-    case e1000_ich8lan:
-        return TRUE;
-    default:
-        break;
-    }
-    return FALSE;
-}
-
-
-/******************************************************************************
- * Configure PCI-Ex no-snoop
- *
- * hw - Struct containing variables accessed by shared code.
- * no_snoop - Bitmap of no-snoop events.
- *
- * returns: E1000_SUCCESS
- *
- *****************************************************************************/
-STATIC int32_t
-e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
-{
-    uint32_t gcr_reg = 0;
-
-    DEBUGFUNC("e1000_set_pci_ex_no_snoop");
-
-    if (hw->bus_type == e1000_bus_type_unknown)
-        e1000_get_bus_info(hw);
-
-    if (hw->bus_type != e1000_bus_type_pci_express)
-        return E1000_SUCCESS;
-
-    if (no_snoop) {
-        gcr_reg = E1000_READ_REG(hw, GCR);
-        gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
-        gcr_reg |= no_snoop;
-        E1000_WRITE_REG(hw, GCR, gcr_reg);
-    }
-    if (hw->mac_type == e1000_ich8lan) {
-        uint32_t ctrl_ext;
-
-        E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
-
-        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
-        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
-        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
-    }
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Get software semaphore FLAG bit (SWFLAG).
- * SWFLAG is used to synchronize the access to all shared resource between
- * SW, FW and HW.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-STATIC int32_t
-e1000_get_software_flag(struct e1000_hw *hw)
-{
-    int32_t timeout = PHY_CFG_TIMEOUT;
-    uint32_t extcnf_ctrl;
-
-    DEBUGFUNC("e1000_get_software_flag");
-
-    if (hw->mac_type == e1000_ich8lan) {
-        while (timeout) {
-            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
-            extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
-            E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
-
-            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
-            if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
-                break;
-            msec_delay_irq(1);
-            timeout--;
-        }
-
-        if (!timeout) {
-            DEBUGOUT("FW or HW locks the resource too long.\n");
-            return -E1000_ERR_CONFIG;
-        }
-    }
-
-    return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Release software semaphore FLAG bit (SWFLAG).
- * SWFLAG is used to synchronize the access to all shared resource between
- * SW, FW and HW.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-STATIC void
-e1000_release_software_flag(struct e1000_hw *hw)
-{
-    uint32_t extcnf_ctrl;
-
-    DEBUGFUNC("e1000_release_software_flag");
-
-    if (hw->mac_type == e1000_ich8lan) {
-        extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
-        extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
-        E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
-    }
-
-    return;
-}
-
-
-/******************************************************************************
- * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
- * register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-STATIC int32_t
-e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
-                       uint16_t *data)
-{
-    int32_t  error = E1000_SUCCESS;
-    uint32_t flash_bank = 0;
-    uint32_t act_offset = 0;
-    uint32_t bank_offset = 0;
-    uint16_t word = 0;
-    uint16_t i = 0;
-
-    /* We need to know which is the valid flash bank.  In the event
-     * that we didn't allocate eeprom_shadow_ram, we may not be
-     * managing flash_bank.  So it cannot be trusted and needs
-     * to be updated with each read.
-     */
-    /* Value of bit 22 corresponds to the flash bank we're on. */
-    flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
-
-    /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
-    bank_offset = flash_bank * (hw->flash_bank_size * 2);
-
-    error = e1000_get_software_flag(hw);
-    if (error != E1000_SUCCESS)
-        return error;
-
-    for (i = 0; i < words; i++) {
-        if (hw->eeprom_shadow_ram != NULL &&
-            hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
-            data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
-        } else {
-            /* The NVM part needs a byte offset, hence * 2 */
-            act_offset = bank_offset + ((offset + i) * 2);
-            error = e1000_read_ich8_word(hw, act_offset, &word);
-            if (error != E1000_SUCCESS)
-                break;
-            data[i] = word;
-        }
-    }
-
-    e1000_release_software_flag(hw);
-
-    return error;
-}
-
-/******************************************************************************
- * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
- * register.  Actually, writes are written to the shadow ram cache in the hw
- * structure hw->e1000_shadow_ram.  e1000_commit_shadow_ram flushes this to
- * the NVM, which occurs when the NVM checksum is updated.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to write
- * words - number of words to write
- * data - words to write to the EEPROM
- *****************************************************************************/
-STATIC int32_t
-e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
-                        uint16_t *data)
-{
-    uint32_t i = 0;
-    int32_t error = E1000_SUCCESS;
-
-    error = e1000_get_software_flag(hw);
-    if (error != E1000_SUCCESS)
-        return error;
-
-    /* A driver can write to the NVM only if it has eeprom_shadow_ram
-     * allocated.  Subsequent reads to the modified words are read from
-     * this cached structure as well.  Writes will only go into this
-     * cached structure unless it's followed by a call to
-     * e1000_update_eeprom_checksum() where it will commit the changes
-     * and clear the "modified" field.
-     */
-    if (hw->eeprom_shadow_ram != NULL) {
-        for (i = 0; i < words; i++) {
-            if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
-                hw->eeprom_shadow_ram[offset+i].modified = TRUE;
-                hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
-            } else {
-                error = -E1000_ERR_EEPROM;
-                break;
-            }
-        }
-    } else {
-        /* Drivers have the option to not allocate eeprom_shadow_ram as long
-         * as they don't perform any NVM writes.  An attempt in doing so
-         * will result in this error.
-         */
-        error = -E1000_ERR_EEPROM;
-    }
-
-    e1000_release_software_flag(hw);
-
-    return error;
-}
-
-/******************************************************************************
- * This function does initial flash setup so that a new read/write/erase cycle
- * can be started.
- *
- * hw - The pointer to the hw structure
- ****************************************************************************/
-STATIC int32_t
-e1000_ich8_cycle_init(struct e1000_hw *hw)
-{
-    union ich8_hws_flash_status hsfsts;
-    int32_t error = E1000_ERR_EEPROM;
-    int32_t i     = 0;
-
-    DEBUGFUNC("e1000_ich8_cycle_init");
-
-    hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-
-    /* May be check the Flash Des Valid bit in Hw status */
-    if (hsfsts.hsf_status.fldesvalid == 0) {
-        DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.");
-        return error;
-    }
-
-    /* Clear FCERR in Hw status by writing 1 */
-    /* Clear DAEL in Hw status by writing a 1 */
-    hsfsts.hsf_status.flcerr = 1;
-    hsfsts.hsf_status.dael = 1;
-
-    E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
-
-    /* Either we should have a hardware SPI cycle in progress bit to check
-     * against, in order to start a new cycle or FDONE bit should be changed
-     * in the hardware so that it is 1 after harware reset, which can then be
-     * used as an indication whether a cycle is in progress or has been
-     * completed .. we should also have some software semaphore mechanism to
-     * guard FDONE or the cycle in progress bit so that two threads access to
-     * those bits can be sequentiallized or a way so that 2 threads dont
-     * start the cycle at the same time */
-
-    if (hsfsts.hsf_status.flcinprog == 0) {
-        /* There is no cycle running at present, so we can start a cycle */
-        /* Begin by setting Flash Cycle Done. */
-        hsfsts.hsf_status.flcdone = 1;
-        E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
-        error = E1000_SUCCESS;
-    } else {
-        /* otherwise poll for sometime so the current cycle has a chance
-         * to end before giving up. */
-        for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
-            hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-            if (hsfsts.hsf_status.flcinprog == 0) {
-                error = E1000_SUCCESS;
-                break;
-            }
-            usec_delay(1);
-        }
-        if (error == E1000_SUCCESS) {
-            /* Successful in waiting for previous cycle to timeout,
-             * now set the Flash Cycle Done. */
-            hsfsts.hsf_status.flcdone = 1;
-            E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
-        } else {
-            DEBUGOUT("Flash controller busy, cannot get access");
-        }
-    }
-    return error;
-}
-
-/******************************************************************************
- * This function starts a flash cycle and waits for its completion
- *
- * hw - The pointer to the hw structure
- ****************************************************************************/
-STATIC int32_t
-e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
-{
-    union ich8_hws_flash_ctrl hsflctl;
-    union ich8_hws_flash_status hsfsts;
-    int32_t error = E1000_ERR_EEPROM;
-    uint32_t i = 0;
-
-    /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
-    hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
-    hsflctl.hsf_ctrl.flcgo = 1;
-    E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
-    /* wait till FDONE bit is set to 1 */
-    do {
-        hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-        if (hsfsts.hsf_status.flcdone == 1)
-            break;
-        usec_delay(1);
-        i++;
-    } while (i < timeout);
-    if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
-        error = E1000_SUCCESS;
-    }
-    return error;
-}
-
-/******************************************************************************
- * Reads a byte or word from the NVM using the ICH8 flash access registers.
- *
- * hw - The pointer to the hw structure
- * index - The index of the byte or word to read.
- * size - Size of data to read, 1=byte 2=word
- * data - Pointer to the word to store the value read.
- *****************************************************************************/
-STATIC int32_t
-e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
-                     uint32_t size, uint16_t* data)
-{
-    union ich8_hws_flash_status hsfsts;
-    union ich8_hws_flash_ctrl hsflctl;
-    uint32_t flash_linear_address;
-    uint32_t flash_data = 0;
-    int32_t error = -E1000_ERR_EEPROM;
-    int32_t count = 0;
-
-    DEBUGFUNC("e1000_read_ich8_data");
-
-    if (size < 1  || size > 2 || data == 0x0 ||
-        index > ICH_FLASH_LINEAR_ADDR_MASK)
-        return error;
-
-    flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
-                           hw->flash_base_addr;
-
-    do {
-        usec_delay(1);
-        /* Steps */
-        error = e1000_ich8_cycle_init(hw);
-        if (error != E1000_SUCCESS)
-            break;
-
-        hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
-        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
-        hsflctl.hsf_ctrl.fldbcount = size - 1;
-        hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
-        E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
-        /* Write the last 24 bits of index into Flash Linear address field in
-         * Flash Address */
-        /* TODO: TBD maybe check the index against the size of flash */
-
-        E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
-
-        error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
-
-        /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
-         * sequence a few more times, else read in (shift in) the Flash Data0,
-         * the order is least significant byte first msb to lsb */
-        if (error == E1000_SUCCESS) {
-            flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0);
-            if (size == 1) {
-                *data = (uint8_t)(flash_data & 0x000000FF);
-            } else if (size == 2) {
-                *data = (uint16_t)(flash_data & 0x0000FFFF);
-            }
-            break;
-        } else {
-            /* If we've gotten here, then things are probably completely hosed,
-             * but if the error condition is detected, it won't hurt to give
-             * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
-             */
-            hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-            if (hsfsts.hsf_status.flcerr == 1) {
-                /* Repeat for some time before giving up. */
-                continue;
-            } else if (hsfsts.hsf_status.flcdone == 0) {
-                DEBUGOUT("Timeout error - flash cycle did not complete.");
-                break;
-            }
-        }
-    } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-
-    return error;
-}
-
-/******************************************************************************
- * Writes One /two bytes to the NVM using the ICH8 flash access registers.
- *
- * hw - The pointer to the hw structure
- * index - The index of the byte/word to read.
- * size - Size of data to read, 1=byte 2=word
- * data - The byte(s) to write to the NVM.
- *****************************************************************************/
-STATIC int32_t
-e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
-                      uint16_t data)
-{
-    union ich8_hws_flash_status hsfsts;
-    union ich8_hws_flash_ctrl hsflctl;
-    uint32_t flash_linear_address;
-    uint32_t flash_data = 0;
-    int32_t error = -E1000_ERR_EEPROM;
-    int32_t count = 0;
-
-    DEBUGFUNC("e1000_write_ich8_data");
-
-    if (size < 1  || size > 2 || data > size * 0xff ||
-        index > ICH_FLASH_LINEAR_ADDR_MASK)
-        return error;
-
-    flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
-                           hw->flash_base_addr;
-
-    do {
-        usec_delay(1);
-        /* Steps */
-        error = e1000_ich8_cycle_init(hw);
-        if (error != E1000_SUCCESS)
-            break;
-
-        hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
-        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
-        hsflctl.hsf_ctrl.fldbcount = size -1;
-        hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
-        E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
-        /* Write the last 24 bits of index into Flash Linear address field in
-         * Flash Address */
-        E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
-
-        if (size == 1)
-            flash_data = (uint32_t)data & 0x00FF;
-        else
-            flash_data = (uint32_t)data;
-
-        E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
-
-        /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
-         * sequence a few more times else done */
-        error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
-        if (error == E1000_SUCCESS) {
-            break;
-        } else {
-            /* If we're here, then things are most likely completely hosed,
-             * but if the error condition is detected, it won't hurt to give
-             * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
-             */
-            hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-            if (hsfsts.hsf_status.flcerr == 1) {
-                /* Repeat for some time before giving up. */
-                continue;
-            } else if (hsfsts.hsf_status.flcdone == 0) {
-                DEBUGOUT("Timeout error - flash cycle did not complete.");
-                break;
-            }
-        }
-    } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-
-    return error;
-}
-
-/******************************************************************************
- * Reads a single byte from the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to e1000_hw structure
- * index - The index of the byte to read.
- * data - Pointer to a byte to store the value read.
- *****************************************************************************/
-STATIC int32_t
-e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
-{
-    int32_t status = E1000_SUCCESS;
-    uint16_t word = 0;
-
-    status = e1000_read_ich8_data(hw, index, 1, &word);
-    if (status == E1000_SUCCESS) {
-        *data = (uint8_t)word;
-    }
-
-    return status;
-}
-
-/******************************************************************************
- * Writes a single byte to the NVM using the ICH8 flash access registers.
- * Performs verification by reading back the value and then going through
- * a retry algorithm before giving up.
- *
- * hw - pointer to e1000_hw structure
- * index - The index of the byte to write.
- * byte - The byte to write to the NVM.
- *****************************************************************************/
-STATIC int32_t
-e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
-{
-    int32_t error = E1000_SUCCESS;
-    int32_t program_retries = 0;
-
-    DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
-
-    error = e1000_write_ich8_byte(hw, index, byte);
-
-    if (error != E1000_SUCCESS) {
-        for (program_retries = 0; program_retries < 100; program_retries++) {
-            DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index);
-            error = e1000_write_ich8_byte(hw, index, byte);
-            usec_delay(100);
-            if (error == E1000_SUCCESS)
-                break;
-        }
-    }
-
-    if (program_retries == 100)
-        error = E1000_ERR_EEPROM;
-
-    return error;
-}
-
-/******************************************************************************
- * Writes a single byte to the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to e1000_hw structure
- * index - The index of the byte to read.
- * data - The byte to write to the NVM.
- *****************************************************************************/
-STATIC int32_t
-e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
-{
-    int32_t status = E1000_SUCCESS;
-    uint16_t word = (uint16_t)data;
-
-    status = e1000_write_ich8_data(hw, index, 1, word);
-
-    return status;
-}
-
-/******************************************************************************
- * Reads a word from the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to e1000_hw structure
- * index - The starting byte index of the word to read.
- * data - Pointer to a word to store the value read.
- *****************************************************************************/
-STATIC int32_t
-e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
-{
-    int32_t status = E1000_SUCCESS;
-    status = e1000_read_ich8_data(hw, index, 2, data);
-    return status;
-}
-
-
-/******************************************************************************
- * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
- * based.
- *
- * hw - pointer to e1000_hw structure
- * bank - 0 for first bank, 1 for second bank
- *
- * Note that this function may actually erase as much as 8 or 64 KBytes.  The
- * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the
- * bank size may be 4, 8 or 64 KBytes
- *****************************************************************************/
-int32_t
-e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank)
-{
-    union ich8_hws_flash_status hsfsts;
-    union ich8_hws_flash_ctrl hsflctl;
-    uint32_t flash_linear_address;
-    int32_t  count = 0;
-    int32_t  error = E1000_ERR_EEPROM;
-    int32_t  iteration;
-    int32_t  sub_sector_size = 0;
-    int32_t  bank_size;
-    int32_t  j = 0;
-    int32_t  error_flag = 0;
-
-    hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-
-    /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
-    /* 00: The Hw sector is 256 bytes, hence we need to erase 16
-     *     consecutive sectors.  The start index for the nth Hw sector can be
-     *     calculated as bank * 4096 + n * 256
-     * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
-     *     The start index for the nth Hw sector can be calculated
-     *     as bank * 4096
-     * 10: The HW sector is 8K bytes
-     * 11: The Hw sector size is 64K bytes */
-    if (hsfsts.hsf_status.berasesz == 0x0) {
-        /* Hw sector size 256 */
-        sub_sector_size = ICH_FLASH_SEG_SIZE_256;
-        bank_size = ICH_FLASH_SECTOR_SIZE;
-        iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256;
-    } else if (hsfsts.hsf_status.berasesz == 0x1) {
-        bank_size = ICH_FLASH_SEG_SIZE_4K;
-        iteration = 1;
-    } else if (hsfsts.hsf_status.berasesz == 0x3) {
-        bank_size = ICH_FLASH_SEG_SIZE_64K;
-        iteration = 1;
-    } else {
-        return error;
-    }
-
-    for (j = 0; j < iteration ; j++) {
-        do {
-            count++;
-            /* Steps */
-            error = e1000_ich8_cycle_init(hw);
-            if (error != E1000_SUCCESS) {
-                error_flag = 1;
-                break;
-            }
-
-            /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
-             * Control */
-            hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
-            hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
-            E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
-            /* Write the last 24 bits of an index within the block into Flash
-             * Linear address field in Flash Address.  This probably needs to
-             * be calculated here based off the on-chip erase sector size and
-             * the software bank size (4, 8 or 64 KBytes) */
-            flash_linear_address = bank * bank_size + j * sub_sector_size;
-            flash_linear_address += hw->flash_base_addr;
-            flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK;
-
-            E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
-
-            error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT);
-            /* Check if FCERR is set to 1.  If 1, clear it and try the whole
-             * sequence a few more times else Done */
-            if (error == E1000_SUCCESS) {
-                break;
-            } else {
-                hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-                if (hsfsts.hsf_status.flcerr == 1) {
-                    /* repeat for some time before giving up */
-                    continue;
-                } else if (hsfsts.hsf_status.flcdone == 0) {
-                    error_flag = 1;
-                    break;
-                }
-            }
-        } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
-        if (error_flag == 1)
-            break;
-    }
-    if (error_flag != 1)
-        error = E1000_SUCCESS;
-    return error;
-}
-
-
-STATIC int32_t
-e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
-                                      uint32_t cnf_base_addr, uint32_t cnf_size)
-{
-    uint32_t ret_val = E1000_SUCCESS;
-    uint16_t word_addr, reg_data, reg_addr;
-    uint16_t i;
-
-    /* cnf_base_addr is in DWORD */
-    word_addr = (uint16_t)(cnf_base_addr << 1);
-
-    /* cnf_size is returned in size of dwords */
-    for (i = 0; i < cnf_size; i++) {
-        ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
-        if (ret_val)
-            return ret_val;
-
-        ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
-        if (ret_val)
-            return ret_val;
-
-        ret_val = e1000_get_software_flag(hw);
-        if (ret_val != E1000_SUCCESS)
-            return ret_val;
-
-        ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
-
-        e1000_release_software_flag(hw);
-    }
-
-    return ret_val;
-}
-
-
-/******************************************************************************
- * This function initializes the PHY from the NVM on ICH8 platforms. This
- * is needed due to an issue where the NVM configuration is not properly
- * autoloaded after power transitions. Therefore, after each PHY reset, we
- * will load the configuration data out of the NVM manually.
- *
- * hw: Struct containing variables accessed by shared code
- *****************************************************************************/
-STATIC int32_t
-e1000_init_lcd_from_nvm(struct e1000_hw *hw)
-{
-    uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
-
-    if (hw->phy_type != e1000_phy_igp_3)
-          return E1000_SUCCESS;
-
-    /* Check if SW needs configure the PHY */
-    reg_data = E1000_READ_REG(hw, FEXTNVM);
-    if (!(reg_data & FEXTNVM_SW_CONFIG))
-        return E1000_SUCCESS;
-
-    /* Wait for basic configuration completes before proceeding*/
-    loop = 0;
-    do {
-        reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
-        usec_delay(100);
-        loop++;
-    } while ((!reg_data) && (loop < 50));
-
-    /* Clear the Init Done bit for the next init event */
-    reg_data = E1000_READ_REG(hw, STATUS);
-    reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
-    E1000_WRITE_REG(hw, STATUS, reg_data);
-
-    /* Make sure HW does not configure LCD from PHY extended configuration
-       before SW configuration */
-    reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
-    if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
-        reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
-        cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
-        cnf_size >>= 16;
-        if (cnf_size) {
-            reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
-            cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
-            /* cnf_base_addr is in DWORD */
-            cnf_base_addr >>= 16;
-
-            /* Configure LCD from extended configuration region. */
-            ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
-                                                            cnf_size);
-            if (ret_val)
-                return ret_val;
-        }
-    }
-
-    return E1000_SUCCESS;
-}
-
--- a/usr/src/uts/common/io/e1000g/e1000_hw.h	Mon Aug 20 23:01:08 2007 -0700
+++ b/usr/src/uts/common/io/e1000g/e1000_hw.h	Tue Aug 21 00:30:10 2007 -0700
@@ -24,3419 +24,700 @@
  */
 
 /*
- * e1000_hw.h
- * Structures, enums, and macros for the MAC
- * IntelVersion: 1.290.2.1
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
  */
-
 #ifndef _E1000_HW_H_
-#define _E1000_HW_H_
+#define	_E1000_HW_H_
 
 #pragma ident	"%Z%%M%	%I%	%E% SMI"
 
-#include "e1000_osdep.h"
+#ifdef __cplusplus
+extern "C" {
+#endif
 
+#include "e1000_osdep.h"
+#include "e1000_regs.h"
+#include "e1000_defines.h"
 
-/* Forward declarations of structures used by the shared code */
 struct e1000_hw;
-struct e1000_hw_stats;
 
-/* Enumerated types specific to the e1000 hardware */
-/* Media Access Controlers */
+#define	E1000_DEV_ID_82542			0x1000
+#define	E1000_DEV_ID_82543GC_FIBER		0x1001
+#define	E1000_DEV_ID_82543GC_COPPER		0x1004
+#define	E1000_DEV_ID_82544EI_COPPER		0x1008
+#define	E1000_DEV_ID_82544EI_FIBER		0x1009
+#define	E1000_DEV_ID_82544GC_COPPER		0x100C
+#define	E1000_DEV_ID_82544GC_LOM		0x100D
+#define	E1000_DEV_ID_82540EM			0x100E
+#define	E1000_DEV_ID_82540EM_LOM		0x1015
+#define	E1000_DEV_ID_82540EP_LOM		0x1016
+#define	E1000_DEV_ID_82540EP			0x1017
+#define	E1000_DEV_ID_82540EP_LP			0x101E
+#define	E1000_DEV_ID_82545EM_COPPER		0x100F
+#define	E1000_DEV_ID_82545EM_FIBER		0x1011
+#define	E1000_DEV_ID_82545GM_COPPER		0x1026
+#define	E1000_DEV_ID_82545GM_FIBER		0x1027
+#define	E1000_DEV_ID_82545GM_SERDES		0x1028
+#define	E1000_DEV_ID_82546EB_COPPER		0x1010
+#define	E1000_DEV_ID_82546EB_FIBER		0x1012
+#define	E1000_DEV_ID_82546EB_QUAD_COPPER	0x101D
+#define	E1000_DEV_ID_82546GB_COPPER		0x1079
+#define	E1000_DEV_ID_82546GB_FIBER		0x107A
+#define	E1000_DEV_ID_82546GB_SERDES		0x107B
+#define	E1000_DEV_ID_82546GB_PCIE		0x108A
+#define	E1000_DEV_ID_82546GB_QUAD_COPPER	0x1099
+#define	E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3	0x10B5
+#define	E1000_DEV_ID_82541EI			0x1013
+#define	E1000_DEV_ID_82541EI_MOBILE		0x1018
+#define	E1000_DEV_ID_82541ER_LOM		0x1014
+#define	E1000_DEV_ID_82541ER			0x1078
+#define	E1000_DEV_ID_82541GI			0x1076
+#define	E1000_DEV_ID_82541GI_LF			0x107C
+#define	E1000_DEV_ID_82541GI_MOBILE		0x1077
+#define	E1000_DEV_ID_82547EI			0x1019
+#define	E1000_DEV_ID_82547EI_MOBILE		0x101A
+#define	E1000_DEV_ID_82547GI			0x1075
+#define	E1000_DEV_ID_82571EB_COPPER		0x105E
+#define	E1000_DEV_ID_82571EB_FIBER		0x105F
+#define	E1000_DEV_ID_82571EB_SERDES		0x1060
+#define	E1000_DEV_ID_82571EB_SERDES_DUAL	0x10D9
+#define	E1000_DEV_ID_82571EB_SERDES_QUAD	0x10DA
+#define	E1000_DEV_ID_82571EB_QUAD_COPPER	0x10A4
+#define	E1000_DEV_ID_82571PT_QUAD_COPPER	0x10D5
+#define	E1000_DEV_ID_82571EB_QUAD_FIBER		0x10A5
+#define	E1000_DEV_ID_82571EB_QUAD_COPPER_LP	0x10BC
+#define	E1000_DEV_ID_82572EI_COPPER		0x107D
+#define	E1000_DEV_ID_82572EI_FIBER		0x107E
+#define	E1000_DEV_ID_82572EI_SERDES		0x107F
+#define	E1000_DEV_ID_82572EI			0x10B9
+#define	E1000_DEV_ID_82573E			0x108B
+#define	E1000_DEV_ID_82573E_IAMT		0x108C
+#define	E1000_DEV_ID_82573L			0x109A
+#define	E1000_DEV_ID_80003ES2LAN_COPPER_DPT	0x1096
+#define	E1000_DEV_ID_80003ES2LAN_SERDES_DPT	0x1098
+#define	E1000_DEV_ID_80003ES2LAN_COPPER_SPT	0x10BA
+#define	E1000_DEV_ID_80003ES2LAN_SERDES_SPT	0x10BB
+#define	E1000_DEV_ID_ICH8_IGP_M_AMT		0x1049
+#define	E1000_DEV_ID_ICH8_IGP_AMT		0x104A
+#define	E1000_DEV_ID_ICH8_IGP_C			0x104B
+#define	E1000_DEV_ID_ICH8_IFE			0x104C
+#define	E1000_DEV_ID_ICH8_IFE_GT		0x10C4
+#define	E1000_DEV_ID_ICH8_IFE_G			0x10C5
+#define	E1000_DEV_ID_ICH8_IGP_M			0x104D
+#define	E1000_DEV_ID_ICH9_IGP_AMT		0x10BD
+#define	E1000_DEV_ID_ICH9_IGP_M_AMT		0x10BE
+#define	E1000_DEV_ID_ICH9_IGP_M			0x10BF
+#define	E1000_DEV_ID_ICH9_IGP_C			0x294C
+#define	E1000_DEV_ID_ICH9_IFE			0x10C0
+#define	E1000_DEV_ID_ICH9_IFE_GT		0x10C3
+#define	E1000_DEV_ID_ICH9_IFE_G			0x10C2
+
+#define	E1000_REVISION_0	0
+#define	E1000_REVISION_1	1
+#define	E1000_REVISION_2	2
+#define	E1000_REVISION_3	3
+#define	E1000_REVISION_4	4
+
+#define	E1000_FUNC_0	0
+#define	E1000_FUNC_1	1
+
 typedef enum {
-    e1000_undefined = 0,
-    e1000_82542_rev2_0,
-    e1000_82542_rev2_1,
-    e1000_82543,
-    e1000_82544,
-    e1000_82540,
-    e1000_82545,
-    e1000_82545_rev_3,
-    e1000_82546,
-    e1000_82546_rev_3,
-    e1000_82541,
-    e1000_82541_rev_2,
-    e1000_82547,
-    e1000_82547_rev_2,
-    e1000_82571,
-    e1000_82572,
-    e1000_82573,
-    e1000_80003es2lan,
-    e1000_ich8lan,
-    e1000_num_macs
+	e1000_undefined = 0,
+	e1000_82542,
+	e1000_82543,
+	e1000_82544,
+	e1000_82540,
+	e1000_82545,
+	e1000_82545_rev_3,
+	e1000_82546,
+	e1000_82546_rev_3,
+	e1000_82541,
+	e1000_82541_rev_2,
+	e1000_82547,
+	e1000_82547_rev_2,
+	e1000_82571,
+	e1000_82572,
+	e1000_82573,
+	e1000_80003es2lan,
+	e1000_ich8lan,
+	e1000_ich9lan,
+	e1000_num_macs	/* List is 1-based, so subtract 1 for true count. */
 } e1000_mac_type;
 
 typedef enum {
-    e1000_eeprom_uninitialized = 0,
-    e1000_eeprom_spi,
-    e1000_eeprom_microwire,
-    e1000_eeprom_flash,
-    e1000_eeprom_ich8,
-    e1000_eeprom_none, /* No NVM support */
-    e1000_num_eeprom_types
-} e1000_eeprom_type;
-
-/* Media Types */
-typedef enum {
-    e1000_media_type_copper = 0,
-    e1000_media_type_fiber = 1,
-    e1000_media_type_internal_serdes = 2,
-    e1000_num_media_types
+	e1000_media_type_unknown = 0,
+	e1000_media_type_copper = 1,
+	e1000_media_type_fiber = 2,
+	e1000_media_type_internal_serdes = 3,
+	e1000_num_media_types
 } e1000_media_type;
 
 typedef enum {
-    e1000_10_half = 0,
-    e1000_10_full = 1,
-    e1000_100_half = 2,
-    e1000_100_full = 3
-} e1000_speed_duplex_type;
+	e1000_nvm_unknown = 0,
+	e1000_nvm_none,
+	e1000_nvm_eeprom_spi,
+	e1000_nvm_eeprom_microwire,
+	e1000_nvm_flash_hw,
+	e1000_nvm_flash_sw
+} e1000_nvm_type;
+
+typedef enum {
+	e1000_nvm_override_none = 0,
+	e1000_nvm_override_spi_small,
+	e1000_nvm_override_spi_large,
+	e1000_nvm_override_microwire_small,
+	e1000_nvm_override_microwire_large
+} e1000_nvm_override;
 
-struct e1000_shadow_ram {
-    uint16_t    eeprom_word;
-    boolean_t   modified;
-};
+typedef enum {
+	e1000_phy_unknown = 0,
+	e1000_phy_none,
+	e1000_phy_m88,
+	e1000_phy_igp,
+	e1000_phy_igp_2,
+	e1000_phy_gg82563,
+	e1000_phy_igp_3,
+	e1000_phy_ife,
+	e1000_phy_bm,
+	e1000_phy_vf
+} e1000_phy_type;
 
-/* PCI bus types */
 typedef enum {
-    e1000_bus_type_unknown = 0,
-    e1000_bus_type_pci,
-    e1000_bus_type_pcix,
-    e1000_bus_type_pci_express,
-    e1000_bus_type_reserved
+	e1000_bus_type_unknown = 0,
+	e1000_bus_type_pci,
+	e1000_bus_type_pcix,
+	e1000_bus_type_pci_express,
+	e1000_bus_type_reserved
 } e1000_bus_type;
 
-/* PCI bus speeds */
 typedef enum {
-    e1000_bus_speed_unknown = 0,
-    e1000_bus_speed_33,
-    e1000_bus_speed_66,
-    e1000_bus_speed_100,
-    e1000_bus_speed_120,
-    e1000_bus_speed_133,
-    e1000_bus_speed_2500,
-    e1000_bus_speed_reserved
+	e1000_bus_speed_unknown = 0,
+	e1000_bus_speed_33,
+	e1000_bus_speed_66,
+	e1000_bus_speed_100,
+	e1000_bus_speed_120,
+	e1000_bus_speed_133,
+	e1000_bus_speed_2500,
+	e1000_bus_speed_reserved
 } e1000_bus_speed;
 
-/* PCI bus widths */
 typedef enum {
-    e1000_bus_width_unknown = 0,
-    /* These PCIe values should literally match the possible return values
-     * from config space */
-    e1000_bus_width_pciex_1 = 1,
-    e1000_bus_width_pciex_2 = 2,
-    e1000_bus_width_pciex_4 = 4,
-    e1000_bus_width_32,
-    e1000_bus_width_64,
-    e1000_bus_width_reserved
+	e1000_bus_width_unknown = 0,
+	e1000_bus_width_pcie_x1,
+	e1000_bus_width_pcie_x2,
+	e1000_bus_width_pcie_x4 = 4,
+	e1000_bus_width_32,
+	e1000_bus_width_64,
+	e1000_bus_width_reserved
 } e1000_bus_width;
 
-/* PHY status info structure and supporting enums */
 typedef enum {
-    e1000_cable_length_50 = 0,
-    e1000_cable_length_50_80,
-    e1000_cable_length_80_110,
-    e1000_cable_length_110_140,
-    e1000_cable_length_140,
-    e1000_cable_length_undefined = 0xFF
-} e1000_cable_length;
-
-typedef enum {
-    e1000_gg_cable_length_60 = 0,
-    e1000_gg_cable_length_60_115 = 1,
-    e1000_gg_cable_length_115_150 = 2,
-    e1000_gg_cable_length_150 = 4
-} e1000_gg_cable_length;
+	e1000_1000t_rx_status_not_ok = 0,
+	e1000_1000t_rx_status_ok,
+	e1000_1000t_rx_status_undefined = 0xFF
+} e1000_1000t_rx_status;
 
 typedef enum {
-    e1000_igp_cable_length_10  = 10,
-    e1000_igp_cable_length_20  = 20,
-    e1000_igp_cable_length_30  = 30,
-    e1000_igp_cable_length_40  = 40,
-    e1000_igp_cable_length_50  = 50,
-    e1000_igp_cable_length_60  = 60,
-    e1000_igp_cable_length_70  = 70,
-    e1000_igp_cable_length_80  = 80,
-    e1000_igp_cable_length_90  = 90,
-    e1000_igp_cable_length_100 = 100,
-    e1000_igp_cable_length_110 = 110,
-    e1000_igp_cable_length_115 = 115,
-    e1000_igp_cable_length_120 = 120,
-    e1000_igp_cable_length_130 = 130,
-    e1000_igp_cable_length_140 = 140,
-    e1000_igp_cable_length_150 = 150,
-    e1000_igp_cable_length_160 = 160,
-    e1000_igp_cable_length_170 = 170,
-    e1000_igp_cable_length_180 = 180
-} e1000_igp_cable_length;
-
-typedef enum {
-    e1000_10bt_ext_dist_enable_normal = 0,
-    e1000_10bt_ext_dist_enable_lower,
-    e1000_10bt_ext_dist_enable_undefined = 0xFF
-} e1000_10bt_ext_dist_enable;
-
-typedef enum {
-    e1000_rev_polarity_normal = 0,
-    e1000_rev_polarity_reversed,
-    e1000_rev_polarity_undefined = 0xFF
+	e1000_rev_polarity_normal = 0,
+	e1000_rev_polarity_reversed,
+	e1000_rev_polarity_undefined = 0xFF
 } e1000_rev_polarity;
 
 typedef enum {
-    e1000_downshift_normal = 0,
-    e1000_downshift_activated,
-    e1000_downshift_undefined = 0xFF
-} e1000_downshift;
-
-typedef enum {
-    e1000_smart_speed_default = 0,
-    e1000_smart_speed_on,
-    e1000_smart_speed_off
-} e1000_smart_speed;
-
-typedef enum {
-    e1000_polarity_reversal_enabled = 0,
-    e1000_polarity_reversal_disabled,
-    e1000_polarity_reversal_undefined = 0xFF
-} e1000_polarity_reversal;
-
-typedef enum {
-    e1000_auto_x_mode_manual_mdi = 0,
-    e1000_auto_x_mode_manual_mdix,
-    e1000_auto_x_mode_auto1,
-    e1000_auto_x_mode_auto2,
-    e1000_auto_x_mode_undefined = 0xFF
-} e1000_auto_x_mode;
+	e1000_fc_none = 0,
+	e1000_fc_rx_pause,
+	e1000_fc_tx_pause,
+	e1000_fc_full,
+	e1000_fc_default = 0xFF
+} e1000_fc_mode;
 
 typedef enum {
-    e1000_1000t_rx_status_not_ok = 0,
-    e1000_1000t_rx_status_ok,
-    e1000_1000t_rx_status_undefined = 0xFF
-} e1000_1000t_rx_status;
-
-typedef enum {
-    e1000_phy_m88 = 0,
-    e1000_phy_igp,
-    e1000_phy_igp_2,
-    e1000_phy_gg82563,
-    e1000_phy_igp_3,
-    e1000_phy_ife,
-    e1000_phy_undefined = 0xFF
-} e1000_phy_type;
-
-typedef enum {
-    e1000_ms_hw_default = 0,
-    e1000_ms_force_master,
-    e1000_ms_force_slave,
-    e1000_ms_auto
-} e1000_ms_type;
-
-typedef enum {
-    e1000_ffe_config_enabled = 0,
-    e1000_ffe_config_active,
-    e1000_ffe_config_blocked
+	e1000_ffe_config_enabled = 0,
+	e1000_ffe_config_active,
+	e1000_ffe_config_blocked
 } e1000_ffe_config;
 
 typedef enum {
-    e1000_dsp_config_disabled = 0,
-    e1000_dsp_config_enabled,
-    e1000_dsp_config_activated,
-    e1000_dsp_config_undefined = 0xFF
+	e1000_dsp_config_disabled = 0,
+	e1000_dsp_config_enabled,
+	e1000_dsp_config_activated,
+	e1000_dsp_config_undefined = 0xFF
 } e1000_dsp_config;
 
-struct e1000_phy_info {
-    e1000_cable_length cable_length;
-    e1000_10bt_ext_dist_enable extended_10bt_distance;
-    e1000_rev_polarity cable_polarity;
-    e1000_downshift downshift;
-    e1000_polarity_reversal polarity_correction;
-    e1000_auto_x_mode mdix_mode;
-    e1000_1000t_rx_status local_rx;
-    e1000_1000t_rx_status remote_rx;
-};
-
-struct e1000_phy_stats {
-    uint32_t idle_errors;
-    uint32_t receive_errors;
-};
-
-struct e1000_eeprom_info {
-    e1000_eeprom_type type;
-    uint16_t word_size;
-    uint16_t opcode_bits;
-    uint16_t address_bits;
-    uint16_t delay_usec;
-    uint16_t page_size;
-    boolean_t use_eerd;
-    boolean_t use_eewr;
-};
-
-/* Flex ASF Information */
-#define E1000_HOST_IF_MAX_SIZE  2048
-
-typedef enum {
-    e1000_byte_align = 0,
-    e1000_word_align = 1,
-    e1000_dword_align = 2
-} e1000_align_type;
-
-
-
-/* Error Codes */
-#define E1000_SUCCESS      0
-#define E1000_ERR_EEPROM   1
-#define E1000_ERR_PHY      2
-#define E1000_ERR_CONFIG   3
-#define E1000_ERR_PARAM    4
-#define E1000_ERR_MAC_TYPE 5
-#define E1000_ERR_PHY_TYPE 6
-#ifndef FIFO_WORKAROUND
-#define E1000_ERR_HOSTIF   7
-#define E1000_ERR_FIFO_WRAP 8
-#endif /* FIFO_WORKAROUND */
-#define E1000_ERR_RESET   9
-#define E1000_ERR_MASTER_REQUESTS_PENDING 10
-#define E1000_ERR_HOST_INTERFACE_COMMAND 11
-#define E1000_BLK_PHY_RESET   12
-#define E1000_ERR_SWFW_SYNC 13
-
-#define E1000_BYTE_SWAP_WORD(_value) ((((_value) & 0x00ff) << 8) | \
-                                     (((_value) & 0xff00) >> 8))
-
-/* Function prototypes */
-/* Initialization */
-int32_t e1000_reset_hw(struct e1000_hw *hw);
-int32_t e1000_init_hw(struct e1000_hw *hw);
-int32_t e1000_set_mac_type(struct e1000_hw *hw);
-void e1000_set_media_type(struct e1000_hw *hw);
-
-/* Link Configuration */
-int32_t e1000_setup_link(struct e1000_hw *hw);
-int32_t e1000_phy_setup_autoneg(struct e1000_hw *hw);
-void e1000_config_collision_dist(struct e1000_hw *hw);
-int32_t e1000_check_for_link(struct e1000_hw *hw);
-int32_t e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, uint16_t *duplex);
-int32_t e1000_force_mac_fc(struct e1000_hw *hw);
-
-
-/* PHY */
-int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data);
-int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data);
-int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
-int32_t e1000_phy_reset(struct e1000_hw *hw);
-int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
-int32_t e1000_validate_mdi_setting(struct e1000_hw *hw);
-
-void e1000_phy_powerdown_workaround(struct e1000_hw *hw);
-
-/* EEPROM Functions */
-int32_t e1000_init_eeprom_params(struct e1000_hw *hw);
-
-/* MNG HOST IF functions */
-uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw);
-
-#define E1000_MNG_DHCP_TX_PAYLOAD_CMD   64
-#define E1000_HI_MAX_MNG_DATA_LENGTH    0x6F8   /* Host Interface data length */
-
-#define E1000_MNG_DHCP_COMMAND_TIMEOUT  10      /* Time in ms to process MNG command */
-#define E1000_MNG_DHCP_COOKIE_OFFSET    0x6F0   /* Cookie offset */
-#define E1000_MNG_DHCP_COOKIE_LENGTH    0x10    /* Cookie length */
-#define E1000_MNG_IAMT_MODE             0x3
-#define E1000_MNG_ICH_IAMT_MODE         0x2
-#define E1000_IAMT_SIGNATURE            0x544D4149 /* Intel(R) Active Management Technology signature */
-
-#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */
-#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT    0x2 /* DHCP parsing enabled */
-#define E1000_VFTA_ENTRY_SHIFT                       0x5
-#define E1000_VFTA_ENTRY_MASK                        0x7F
-#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK              0x1F
-
-struct e1000_host_mng_command_header {
-    uint8_t command_id;
-    uint8_t checksum;
-    uint16_t reserved1;
-    uint16_t reserved2;
-    uint16_t command_length;
-};
-
-struct e1000_host_mng_command_info {
-    struct e1000_host_mng_command_header command_header;  /* Command Head/Command Result Head has 4 bytes */
-    uint8_t command_data[E1000_HI_MAX_MNG_DATA_LENGTH];   /* Command data can length 0..0x658*/
-};
-#ifdef E1000_BIG_ENDIAN
-struct e1000_host_mng_dhcp_cookie{
-    uint32_t signature;
-    uint16_t vlan_id;
-    uint8_t reserved0;
-    uint8_t status;
-    uint32_t reserved1;
-    uint8_t checksum;
-    uint8_t reserved3;
-    uint16_t reserved2;
-};
-#else
-struct e1000_host_mng_dhcp_cookie{
-    uint32_t signature;
-    uint8_t status;
-    uint8_t reserved0;
-    uint16_t vlan_id;
-    uint32_t reserved1;
-    uint16_t reserved2;
-    uint8_t reserved3;
-    uint8_t checksum;
-};
-#endif
-
-int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num);
-int32_t e1000_mng_write_dhcp_info(struct e1000_hw *hw, uint8_t *buffer,
-                                  uint16_t length);
-boolean_t e1000_check_mng_mode(struct e1000_hw *hw);
-boolean_t e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
-int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data);
-int32_t e1000_validate_eeprom_checksum(struct e1000_hw *hw);
-int32_t e1000_update_eeprom_checksum(struct e1000_hw *hw);
-int32_t e1000_write_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data);
-int32_t e1000_read_mac_addr(struct e1000_hw * hw);
-
-
-/* Filters (multicast, vlan, receive) */
-void e1000_mc_addr_list_update(struct e1000_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count);
-uint32_t e1000_hash_mc_addr(struct e1000_hw *hw, uint8_t * mc_addr);
-void e1000_mta_set(struct e1000_hw *hw, uint32_t hash_value);
-void e1000_rar_set(struct e1000_hw *hw, uint8_t * mc_addr, uint32_t rar_index);
-void e1000_write_vfta(struct e1000_hw *hw, uint32_t offset, uint32_t value);
-
-/* LED functions */
-int32_t e1000_setup_led(struct e1000_hw *hw);
-int32_t e1000_cleanup_led(struct e1000_hw *hw);
-int32_t e1000_led_on(struct e1000_hw *hw);
-int32_t e1000_led_off(struct e1000_hw *hw);
-int32_t e1000_blink_led_start(struct e1000_hw *hw);
-
-/* Adaptive IFS Functions */
-
-/* Everything else */
-void e1000_clear_hw_cntrs(struct e1000_hw *hw);
-
-void e1000_reset_adaptive(struct e1000_hw *hw);
-void e1000_update_adaptive(struct e1000_hw *hw);
-void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, uint32_t frame_len, uint8_t * mac_addr);
-void e1000_get_bus_info(struct e1000_hw *hw);
-void e1000_pci_set_mwi(struct e1000_hw *hw);
-void e1000_pci_clear_mwi(struct e1000_hw *hw);
-void e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t * value);
-void e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t * value);
-int32_t e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value);
-/* Port I/O is only supported on 82544 and newer */
-uint32_t e1000_io_read(struct e1000_hw *hw, unsigned long port);
-void e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value);
-int32_t e1000_disable_pciex_master(struct e1000_hw *hw);
-int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
-
-#ifndef FIFO_WORKAROUND
-int32_t e1000_igp_ttl_workaround(struct e1000_hw *hw);
-void e1000_update_tx_fifo_head(struct e1000_hw *hw, uint32_t length);
-int32_t e1000_82547_fifo_workaround(struct e1000_hw *hw, uint16_t length);
-#endif /* FIFO_WORKAROUND */
-
-
-#ifndef E1000_READ_REG_IO
-#define E1000_READ_REG_IO(a, reg) \
-    e1000_read_reg_io((a), E1000_##reg)
-#define E1000_WRITE_REG_IO(a, reg, val) \
-    e1000_write_reg_io((a), E1000_##reg, val)
-#endif
-
-/* PCI Device IDs */
-#define E1000_DEV_ID_82542               0x1000
-#define E1000_DEV_ID_82543GC_FIBER       0x1001
-#define E1000_DEV_ID_82543GC_COPPER      0x1004
-#define E1000_DEV_ID_82544EI_COPPER      0x1008
-#define E1000_DEV_ID_82544EI_FIBER       0x1009
-#define E1000_DEV_ID_82544GC_COPPER      0x100C
-#define E1000_DEV_ID_82544GC_LOM         0x100D
-#define E1000_DEV_ID_82540EM             0x100E
-#define E1000_DEV_ID_82540EM_LOM         0x1015
-#define E1000_DEV_ID_82540EP_LOM         0x1016
-#define E1000_DEV_ID_82540EP             0x1017
-#define E1000_DEV_ID_82540EP_LP          0x101E
-#define E1000_DEV_ID_82545EM_COPPER      0x100F
-#define E1000_DEV_ID_82545EM_FIBER       0x1011
-#define E1000_DEV_ID_82545GM_COPPER      0x1026
-#define E1000_DEV_ID_82545GM_FIBER       0x1027
-#define E1000_DEV_ID_82545GM_SERDES      0x1028
-#define E1000_DEV_ID_82546EB_COPPER      0x1010
-#define E1000_DEV_ID_82546EB_FIBER       0x1012
-#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
-#define E1000_DEV_ID_82541EI             0x1013
-#define E1000_DEV_ID_82541EI_MOBILE      0x1018
-#define E1000_DEV_ID_82541ER_LOM         0x1014
-#define E1000_DEV_ID_82541ER             0x1078
-#define E1000_DEV_ID_82547GI             0x1075
-#define E1000_DEV_ID_82541GI             0x1076
-#define E1000_DEV_ID_82541GI_MOBILE      0x1077
-#define E1000_DEV_ID_82541GI_LF          0x107C
-#define E1000_DEV_ID_82546GB_COPPER      0x1079
-#define E1000_DEV_ID_82546GB_FIBER       0x107A
-#define E1000_DEV_ID_82546GB_SERDES      0x107B
-#define E1000_DEV_ID_82546GB_PCIE        0x108A
-#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
-#define E1000_DEV_ID_82547EI             0x1019
-#define E1000_DEV_ID_82547EI_MOBILE      0x101A
-#define E1000_DEV_ID_82571EB_COPPER      0x105E
-#define E1000_DEV_ID_82571EB_FIBER       0x105F
-#define E1000_DEV_ID_82571EB_SERDES      0x1060
-#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
-#define E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE  0x10BC
-#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5
-#define E1000_DEV_ID_82572EI_COPPER      0x107D
-#define E1000_DEV_ID_82572EI_FIBER       0x107E
-#define E1000_DEV_ID_82572EI_SERDES      0x107F
-#define E1000_DEV_ID_82572EI             0x10B9
-#define E1000_DEV_ID_82573E              0x108B
-#define E1000_DEV_ID_82573E_IAMT         0x108C
-#define E1000_DEV_ID_82573L              0x109A
-#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
-#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT     0x1096
-#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT     0x1098
-#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT     0x10BA
-#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT     0x10BB
-
-#define E1000_DEV_ID_ICH8_IGP_M_AMT      0x1049
-#define E1000_DEV_ID_ICH8_IGP_AMT        0x104A
-#define E1000_DEV_ID_ICH8_IGP_C          0x104B
-#define E1000_DEV_ID_ICH8_IFE            0x104C
-#define E1000_DEV_ID_ICH8_IFE_GT         0x10C4
-#define E1000_DEV_ID_ICH8_IFE_G          0x10C5
-#define E1000_DEV_ID_ICH8_IGP_M          0x104D
-
-
-#define NODE_ADDRESS_SIZE 6
-#define ETH_LENGTH_OF_ADDRESS 6
-
-/* MAC decode size is 128K - This is the size of BAR0 */
-#define MAC_DECODE_SIZE (128 * 1024)
-
-#define E1000_82542_2_0_REV_ID 2
-#define E1000_82542_2_1_REV_ID 3
-#define E1000_REVISION_0       0
-#define E1000_REVISION_1       1
-#define E1000_REVISION_2       2
-#define E1000_REVISION_3       3
-
-#define SPEED_10    10
-#define SPEED_100   100
-#define SPEED_1000  1000
-#define HALF_DUPLEX 1
-#define FULL_DUPLEX 2
-
-/* The sizes (in bytes) of a ethernet packet */
-#define ENET_HEADER_SIZE             14
-#define MAXIMUM_ETHERNET_FRAME_SIZE  1518 /* With FCS */
-#define MINIMUM_ETHERNET_FRAME_SIZE  64   /* With FCS */
-#define ETHERNET_FCS_SIZE            4
-#define MAXIMUM_ETHERNET_PACKET_SIZE \
-    (MAXIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
-#define MINIMUM_ETHERNET_PACKET_SIZE \
-    (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
-#define CRC_LENGTH                   ETHERNET_FCS_SIZE
-#define MAX_JUMBO_FRAME_SIZE         0x3F00
-
-
-/* 802.1q VLAN Packet Sizes */
-#define VLAN_TAG_SIZE  4     /* 802.3ac tag (not DMAed) */
-
-/* Ethertype field values */
-#define ETHERNET_IEEE_VLAN_TYPE 0x8100  /* 802.3ac packet */
-#define ETHERNET_IP_TYPE        0x0800  /* IP packets */
-#define ETHERNET_ARP_TYPE       0x0806  /* Address Resolution Protocol (ARP) */
-
-/* Packet Header defines */
-#define IP_PROTOCOL_TCP    6
-#define IP_PROTOCOL_UDP    0x11
-
-/* This defines the bits that are set in the Interrupt Mask
- * Set/Read Register.  Each bit is documented below:
- *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- *   o RXSEQ  = Receive Sequence Error
- */
-#define POLL_IMS_ENABLE_MASK ( \
-    E1000_IMS_RXDMT0 |         \
-    E1000_IMS_RXSEQ)
-
-/* This defines the bits that are set in the Interrupt Mask
- * Set/Read Register.  Each bit is documented below:
- *   o RXT0   = Receiver Timer Interrupt (ring 0)
- *   o TXDW   = Transmit Descriptor Written Back
- *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- *   o RXSEQ  = Receive Sequence Error
- *   o LSC    = Link Status Change
- */
-#define IMS_ENABLE_MASK ( \
-    E1000_IMS_RXT0   |    \
-    E1000_IMS_TXDW   |    \
-    E1000_IMS_RXDMT0 |    \
-    E1000_IMS_RXSEQ  |    \
-    E1000_IMS_LSC)
-
-
-/* Additional interrupts need to be handled for e1000_ich8lan:
-    DSW = The FW changed the status of the DISSW bit in FWSM
-    PHYINT = The LAN connected device generates an interrupt
-    EPRST = Manageability reset event */
-#define IMS_ICH8LAN_ENABLE_MASK (\
-    E1000_IMS_DSW   | \
-    E1000_IMS_PHYINT | \
-    E1000_IMS_EPRST)
-
-
-/* Number of high/low register pairs in the RAR. The RAR (Receive Address
- * Registers) holds the directed and multicast addresses that we monitor. We
- * reserve one of these spots for our directed address, allowing us room for
- * E1000_RAR_ENTRIES - 1 multicast addresses.
- */
-#define E1000_RAR_ENTRIES 15
-
-#define E1000_RAR_ENTRIES_ICH8LAN  6
-
-#define MIN_NUMBER_OF_DESCRIPTORS  8
-#define MAX_NUMBER_OF_DESCRIPTORS  0xFFF8
-
 /* Receive Descriptor */
 struct e1000_rx_desc {
-    uint64_t buffer_addr; /* Address of the descriptor's data buffer */
-    uint16_t length;     /* Length of data DMAed into data buffer */
-    uint16_t csum;       /* Packet checksum */
-    uint8_t status;      /* Descriptor status */
-    uint8_t errors;      /* Descriptor Errors */
-    uint16_t special;
+	u64 buffer_addr;	/* Address of the descriptor's data buffer */
+	u16 length;		/* Length of data DMAed into data buffer */
+	u16 csum;		/* Packet checksum */
+	u8 status;		/* Descriptor status */
+	u8 errors;		/* Descriptor Errors */
+	u16 special;
 };
 
 /* Receive Descriptor - Extended */
 union e1000_rx_desc_extended {
-    struct {
-        uint64_t buffer_addr;
-        uint64_t reserved;
-    } read;
-    struct {
-        struct {
-            uint32_t mrq;              /* Multiple Rx Queues */
-            union {
-                uint32_t rss;          /* RSS Hash */
-                struct {
-                    uint16_t ip_id;    /* IP id */
-                    uint16_t csum;     /* Packet Checksum */
-                } csum_ip;
-            } hi_dword;
-        } lower;
-        struct {
-            uint32_t status_error;     /* ext status/error */
-            uint16_t length;
-            uint16_t vlan;             /* VLAN tag */
-        } upper;
-    } wb;  /* writeback */
-};
-
-#define MAX_PS_BUFFERS 4
-/* Receive Descriptor - Packet Split */
-union e1000_rx_desc_packet_split {
-    struct {
-        /* one buffer for protocol header(s), three data buffers */
-        uint64_t buffer_addr[MAX_PS_BUFFERS];
-    } read;
-    struct {
-        struct {
-            uint32_t mrq;              /* Multiple Rx Queues */
-            union {
-                uint32_t rss;          /* RSS Hash */
-                struct {
-                    uint16_t ip_id;    /* IP id */
-                    uint16_t csum;     /* Packet Checksum */
-                } csum_ip;
-            } hi_dword;
-        } lower;
-        struct {
-            uint32_t status_error;     /* ext status/error */
-            uint16_t length0;          /* length of buffer 0 */
-            uint16_t vlan;             /* VLAN tag */
-        } middle;
-        struct {
-            uint16_t header_status;
-            uint16_t length[3];        /* length of buffers 1-3 */
-        } upper;
-        uint64_t reserved;
-    } wb; /* writeback */
+	struct {
+		u64 buffer_addr;
+		u64 reserved;
+	} read;
+	struct {
+		struct {
+			u32 mrq;	/* Multiple Rx Queues */
+			union {
+				u32 rss;	/* RSS Hash */
+				struct {
+					u16 ip_id;	/* IP id */
+					u16 csum;	/* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			u32 status_error;	/* ext status/error */
+			u16 length;
+			u16 vlan;	/* VLAN tag */
+		} upper;
+	} wb;			/* writeback */
 };
 
-/* Receive Decriptor bit definitions */
-#define E1000_RXD_STAT_DD       0x01    /* Descriptor Done */
-#define E1000_RXD_STAT_EOP      0x02    /* End of Packet */
-#define E1000_RXD_STAT_IXSM     0x04    /* Ignore checksum */
-#define E1000_RXD_STAT_VP       0x08    /* IEEE VLAN Packet */
-#define E1000_RXD_STAT_UDPCS    0x10    /* UDP xsum caculated */
-#define E1000_RXD_STAT_TCPCS    0x20    /* TCP xsum calculated */
-#define E1000_RXD_STAT_IPCS     0x40    /* IP xsum calculated */
-#define E1000_RXD_STAT_PIF      0x80    /* passed in-exact filter */
-#define E1000_RXD_STAT_IPIDV    0x200   /* IP identification valid */
-#define E1000_RXD_STAT_UDPV     0x400   /* Valid UDP checksum */
-#define E1000_RXD_STAT_ACK      0x8000  /* ACK Packet indication */
-#define E1000_RXD_ERR_CE        0x01    /* CRC Error */
-#define E1000_RXD_ERR_SE        0x02    /* Symbol Error */
-#define E1000_RXD_ERR_SEQ       0x04    /* Sequence Error */
-#define E1000_RXD_ERR_CXE       0x10    /* Carrier Extension Error */
-#define E1000_RXD_ERR_TCPE      0x20    /* TCP/UDP Checksum Error */
-#define E1000_RXD_ERR_IPE       0x40    /* IP Checksum Error */
-#define E1000_RXD_ERR_RXE       0x80    /* Rx Data Error */
-#define E1000_RXD_SPC_VLAN_MASK 0x0FFF  /* VLAN ID is in lower 12 bits */
-#define E1000_RXD_SPC_PRI_MASK  0xE000  /* Priority is in upper 3 bits */
-#define E1000_RXD_SPC_PRI_SHIFT 13
-#define E1000_RXD_SPC_CFI_MASK  0x1000  /* CFI is bit 12 */
-#define E1000_RXD_SPC_CFI_SHIFT 12
-
-#define E1000_RXDEXT_STATERR_CE    0x01000000
-#define E1000_RXDEXT_STATERR_SE    0x02000000
-#define E1000_RXDEXT_STATERR_SEQ   0x04000000
-#define E1000_RXDEXT_STATERR_CXE   0x10000000
-#define E1000_RXDEXT_STATERR_TCPE  0x20000000
-#define E1000_RXDEXT_STATERR_IPE   0x40000000
-#define E1000_RXDEXT_STATERR_RXE   0x80000000
-
-#define E1000_RXDPS_HDRSTAT_HDRSP        0x00008000
-#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK  0x000003FF
-
-/* mask to determine if packets should be dropped due to frame errors */
-#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
-    E1000_RXD_ERR_CE  |                \
-    E1000_RXD_ERR_SE  |                \
-    E1000_RXD_ERR_SEQ |                \
-    E1000_RXD_ERR_CXE |                \
-    E1000_RXD_ERR_RXE)
-
-
-/* Same mask, but for extended and packet split descriptors */
-#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
-    E1000_RXDEXT_STATERR_CE  |            \
-    E1000_RXDEXT_STATERR_SE  |            \
-    E1000_RXDEXT_STATERR_SEQ |            \
-    E1000_RXDEXT_STATERR_CXE |            \
-    E1000_RXDEXT_STATERR_RXE)
-
+#define	MAX_PS_BUFFERS 4
+/* Receive Descriptor - Packet Split */
+union e1000_rx_desc_packet_split {
+	struct {
+		/* one buffer for protocol header(s), three data buffers */
+		u64 buffer_addr[MAX_PS_BUFFERS];
+	} read;
+	struct {
+		struct {
+			u32 mrq;	/* Multiple Rx Queues */
+			union {
+				u32 rss;	/* RSS Hash */
+				struct {
+					u16 ip_id;	/* IP id */
+					u16 csum;	/* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			u32 status_error;	/* ext status/error */
+			u16 length0;	/* length of buffer 0 */
+			u16 vlan;	/* VLAN tag */
+		} middle;
+		struct {
+			u16 header_status;
+			u16 length[3];	/* length of buffers 1-3 */
+		} upper;
+		u64 reserved;
+	} wb;			/* writeback */
+};
 
 /* Transmit Descriptor */
 struct e1000_tx_desc {
-    uint64_t buffer_addr;       /* Address of the descriptor's data buffer */
-    union {
-        uint32_t data;
-        struct {
-            uint16_t length;    /* Data buffer length */
-            uint8_t cso;        /* Checksum offset */
-            uint8_t cmd;        /* Descriptor control */
-        } flags;
-    } lower;
-    union {
-        uint32_t data;
-        struct {
-            uint8_t status;     /* Descriptor status */
-            uint8_t css;        /* Checksum start */
-            uint16_t special;
-        } fields;
-    } upper;
+	u64 buffer_addr;	/* Address of the descriptor's data buffer */
+	union {
+		u32 data;
+		struct {
+			u16 length;	/* Data buffer length */
+			u8 cso;	/* Checksum offset */
+			u8 cmd;	/* Descriptor control */
+		} flags;
+	} lower;
+	union {
+		u32 data;
+		struct {
+			u8 status;	/* Descriptor status */
+			u8 css;	/* Checksum start */
+			u16 special;
+		} fields;
+	} upper;
 };
 
-/* Transmit Descriptor bit definitions */
-#define E1000_TXD_DTYP_D     0x00100000 /* Data Descriptor */
-#define E1000_TXD_DTYP_C     0x00000000 /* Context Descriptor */
-#define E1000_TXD_POPTS_IXSM 0x01       /* Insert IP checksum */
-#define E1000_TXD_POPTS_TXSM 0x02       /* Insert TCP/UDP checksum */
-#define E1000_TXD_CMD_EOP    0x01000000 /* End of Packet */
-#define E1000_TXD_CMD_IFCS   0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_TXD_CMD_IC     0x04000000 /* Insert Checksum */
-#define E1000_TXD_CMD_RS     0x08000000 /* Report Status */
-#define E1000_TXD_CMD_RPS    0x10000000 /* Report Packet Sent */
-#define E1000_TXD_CMD_DEXT   0x20000000 /* Descriptor extension (0 = legacy) */
-#define E1000_TXD_CMD_VLE    0x40000000 /* Add VLAN tag */
-#define E1000_TXD_CMD_IDE    0x80000000 /* Enable Tidv register */
-#define E1000_TXD_STAT_DD    0x00000001 /* Descriptor Done */
-#define E1000_TXD_STAT_EC    0x00000002 /* Excess Collisions */
-#define E1000_TXD_STAT_LC    0x00000004 /* Late Collisions */
-#define E1000_TXD_STAT_TU    0x00000008 /* Transmit underrun */
-#define E1000_TXD_CMD_TCP    0x01000000 /* TCP packet */
-#define E1000_TXD_CMD_IP     0x02000000 /* IP packet */
-#define E1000_TXD_CMD_TSE    0x04000000 /* TCP Seg enable */
-#define E1000_TXD_STAT_TC    0x00000004 /* Tx Underrun */
-
 /* Offload Context Descriptor */
 struct e1000_context_desc {
-    union {
-        uint32_t ip_config;
-        struct {
-            uint8_t ipcss;      /* IP checksum start */
-            uint8_t ipcso;      /* IP checksum offset */
-            uint16_t ipcse;     /* IP checksum end */
-        } ip_fields;
-    } lower_setup;
-    union {
-        uint32_t tcp_config;
-        struct {
-            uint8_t tucss;      /* TCP checksum start */
-            uint8_t tucso;      /* TCP checksum offset */
-            uint16_t tucse;     /* TCP checksum end */
-        } tcp_fields;
-    } upper_setup;
-    uint32_t cmd_and_length;    /* */
-    union {
-        uint32_t data;
-        struct {
-            uint8_t status;     /* Descriptor status */
-            uint8_t hdr_len;    /* Header length */
-            uint16_t mss;       /* Maximum segment size */
-        } fields;
-    } tcp_seg_setup;
+	union {
+		u32 ip_config;
+		struct {
+			u8 ipcss;	/* IP checksum start */
+			u8 ipcso;	/* IP checksum offset */
+			u16 ipcse;	/* IP checksum end */
+		} ip_fields;
+	} lower_setup;
+	union {
+		u32 tcp_config;
+		struct {
+			u8 tucss;	/* TCP checksum start */
+			u8 tucso;	/* TCP checksum offset */
+			u16 tucse;	/* TCP checksum end */
+		} tcp_fields;
+	} upper_setup;
+	u32 cmd_and_length;
+	union {
+		u32 data;
+		struct {
+			u8 status;	/* Descriptor status */
+			u8 hdr_len;	/* Header length */
+			u16 mss;	/* Maximum segment size */
+		} fields;
+	} tcp_seg_setup;
 };
 
 /* Offload data descriptor */
 struct e1000_data_desc {
-    uint64_t buffer_addr;       /* Address of the descriptor's buffer address */
-    union {
-        uint32_t data;
-        struct {
-            uint16_t length;    /* Data buffer length */
-            uint8_t typ_len_ext;        /* */
-            uint8_t cmd;        /* */
-        } flags;
-    } lower;
-    union {
-        uint32_t data;
-        struct {
-            uint8_t status;     /* Descriptor status */
-            uint8_t popts;      /* Packet Options */
-            uint16_t special;   /* */
-        } fields;
-    } upper;
-};
-
-/* Filters */
-#define E1000_NUM_UNICAST          16   /* Unicast filter entries */
-#define E1000_MC_TBL_SIZE          128  /* Multicast Filter Table (4096 bits) */
-#define E1000_VLAN_FILTER_TBL_SIZE 128  /* VLAN Filter Table (4096 bits) */
-
-#define E1000_NUM_UNICAST_ICH8LAN  7
-#define E1000_MC_TBL_SIZE_ICH8LAN  32
-
-
-/* Receive Address Register */
-struct e1000_rar {
-    volatile uint32_t low;      /* receive address low */
-    volatile uint32_t high;     /* receive address high */
-};
-
-/* Number of entries in the Multicast Table Array (MTA). */
-#define E1000_NUM_MTA_REGISTERS 128
-#define E1000_NUM_MTA_REGISTERS_ICH8LAN 32
-
-/* IPv4 Address Table Entry */
-struct e1000_ipv4_at_entry {
-    volatile uint32_t ipv4_addr;        /* IP Address (RW) */
-    volatile uint32_t reserved;
-};
-
-/* Four wakeup IP addresses are supported */
-#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
-#define E1000_IP4AT_SIZE                  E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
-#define E1000_IP4AT_SIZE_ICH8LAN          3
-#define E1000_IP6AT_SIZE                  1
-
-/* IPv6 Address Table Entry */
-struct e1000_ipv6_at_entry {
-    volatile uint8_t ipv6_addr[16];
-};
-
-/* Flexible Filter Length Table Entry */
-struct e1000_fflt_entry {
-    volatile uint32_t length;   /* Flexible Filter Length (RW) */
-    volatile uint32_t reserved;
-};
-
-/* Flexible Filter Mask Table Entry */
-struct e1000_ffmt_entry {
-    volatile uint32_t mask;     /* Flexible Filter Mask (RW) */
-    volatile uint32_t reserved;
-};
-
-/* Flexible Filter Value Table Entry */
-struct e1000_ffvt_entry {
-    volatile uint32_t value;    /* Flexible Filter Value (RW) */
-    volatile uint32_t reserved;
+	u64 buffer_addr;	/* Address of the descriptor's buffer address */
+	union {
+		u32 data;
+		struct {
+			u16 length;	/* Data buffer length */
+			u8 typ_len_ext;
+			u8 cmd;
+		} flags;
+	} lower;
+	union {
+		u32 data;
+		struct {
+			u8 status;	/* Descriptor status */
+			u8 popts;	/* Packet Options */
+			u16 special;
+		} fields;
+	} upper;
 };
 
-/* Four Flexible Filters are supported */
-#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
-
-/* Each Flexible Filter is at most 128 (0x80) bytes in length */
-#define E1000_FLEXIBLE_FILTER_SIZE_MAX  128
-
-#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
-#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
-#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
-
-#define E1000_DISABLE_SERDES_LOOPBACK   0x0400
-
-/* Register Set. (82543, 82544)
- *
- * Registers are defined to be 32 bits and  should be accessed as 32 bit values.
- * These registers are physically located on the NIC, but are mapped into the
- * host memory address space.
- *
- * RW - register is both readable and writable
- * RO - register is read only
- * WO - register is write only
- * R/clr - register is read only and is cleared when read
- * A - register array
- */
-#define E1000_CTRL     0x00000  /* Device Control - RW */
-#define E1000_CTRL_DUP 0x00004  /* Device Control Duplicate (Shadow) - RW */
-#define E1000_STATUS   0x00008  /* Device Status - RO */
-#define E1000_EECD     0x00010  /* EEPROM/Flash Control - RW */
-#define E1000_EERD     0x00014  /* EEPROM Read - RW */
-#define E1000_CTRL_EXT 0x00018  /* Extended Device Control - RW */
-#define E1000_FLA      0x0001C  /* Flash Access - RW */
-#define E1000_MDIC     0x00020  /* MDI Control - RW */
-#define E1000_SCTL     0x00024  /* SerDes Control - RW */
-#define E1000_FEXTNVM  0x00028  /* Future Extended NVM register */
-#define E1000_FCAL     0x00028  /* Flow Control Address Low - RW */
-#define E1000_FCAH     0x0002C  /* Flow Control Address High -RW */
-#define E1000_FCT      0x00030  /* Flow Control Type - RW */
-#define E1000_VET      0x00038  /* VLAN Ether Type - RW */
-#define E1000_ICR      0x000C0  /* Interrupt Cause Read - R/clr */
-#define E1000_ITR      0x000C4  /* Interrupt Throttling Rate - RW */
-#define E1000_ICS      0x000C8  /* Interrupt Cause Set - WO */
-#define E1000_IMS      0x000D0  /* Interrupt Mask Set - RW */
-#define E1000_IMC      0x000D8  /* Interrupt Mask Clear - WO */
-#define E1000_IAM      0x000E0  /* Interrupt Acknowledge Auto Mask */
-#define E1000_RCTL     0x00100  /* RX Control - RW */
-#define E1000_RDTR1    0x02820  /* RX Delay Timer (1) - RW */
-#define E1000_RDBAL1   0x02900  /* RX Descriptor Base Address Low (1) - RW */
-#define E1000_RDBAH1   0x02904  /* RX Descriptor Base Address High (1) - RW */
-#define E1000_RDLEN1   0x02908  /* RX Descriptor Length (1) - RW */
-#define E1000_RDH1     0x02910  /* RX Descriptor Head (1) - RW */
-#define E1000_RDT1     0x02918  /* RX Descriptor Tail (1) - RW */
-#define E1000_FCTTV    0x00170  /* Flow Control Transmit Timer Value - RW */
-#define E1000_TXCW     0x00178  /* TX Configuration Word - RW */
-#define E1000_RXCW     0x00180  /* RX Configuration Word - RO */
-#define E1000_TCTL     0x00400  /* TX Control - RW */
-#define E1000_TCTL_EXT 0x00404  /* Extended TX Control - RW */
-#define E1000_TIPG     0x00410  /* TX Inter-packet gap -RW */
-#define E1000_TBT      0x00448  /* TX Burst Timer - RW */
-#define E1000_AIT      0x00458  /* Adaptive Interframe Spacing Throttle - RW */
-#define E1000_LEDCTL   0x00E00  /* LED Control - RW */
-#define E1000_EXTCNF_CTRL  0x00F00  /* Extended Configuration Control */
-#define E1000_EXTCNF_SIZE  0x00F08  /* Extended Configuration Size */
-#define E1000_PHY_CTRL     0x00F10  /* PHY Control Register in CSR */
-#define FEXTNVM_SW_CONFIG  0x0001
-#define E1000_PBA      0x01000  /* Packet Buffer Allocation - RW */
-#define E1000_PBS      0x01008  /* Packet Buffer Size */
-#define E1000_EEMNGCTL 0x01010  /* MNG EEprom Control */
-#define E1000_FLASH_UPDATES 1000
-#define E1000_EEARBC   0x01024  /* EEPROM Auto Read Bus Control */
-#define E1000_FLASHT   0x01028  /* FLASH Timer Register */
-#define E1000_EEWR     0x0102C  /* EEPROM Write Register - RW */
-#define E1000_FLSWCTL  0x01030  /* FLASH control register */
-#define E1000_FLSWDATA 0x01034  /* FLASH data register */
-#define E1000_FLSWCNT  0x01038  /* FLASH Access Counter */
-#define E1000_FLOP     0x0103C  /* FLASH Opcode Register */
-#define E1000_ERT      0x02008  /* Early Rx Threshold - RW */
-#define E1000_FCRTL    0x02160  /* Flow Control Receive Threshold Low - RW */
-#define E1000_FCRTH    0x02168  /* Flow Control Receive Threshold High - RW */
-#define E1000_PSRCTL   0x02170  /* Packet Split Receive Control - RW */
-#define E1000_RDBAL    0x02800  /* RX Descriptor Base Address Low - RW */
-#define E1000_RDBAH    0x02804  /* RX Descriptor Base Address High - RW */
-#define E1000_RDLEN    0x02808  /* RX Descriptor Length - RW */
-#define E1000_RDH      0x02810  /* RX Descriptor Head - RW */
-#define E1000_RDT      0x02818  /* RX Descriptor Tail - RW */
-#define E1000_RDTR     0x02820  /* RX Delay Timer - RW */
-#define E1000_RDBAL0   E1000_RDBAL /* RX Desc Base Address Low (0) - RW */
-#define E1000_RDBAH0   E1000_RDBAH /* RX Desc Base Address High (0) - RW */
-#define E1000_RDLEN0   E1000_RDLEN /* RX Desc Length (0) - RW */
-#define E1000_RDH0     E1000_RDH   /* RX Desc Head (0) - RW */
-#define E1000_RDT0     E1000_RDT   /* RX Desc Tail (0) - RW */
-#define E1000_RDTR0    E1000_RDTR  /* RX Delay Timer (0) - RW */
-#define E1000_RXDCTL   0x02828  /* RX Descriptor Control queue 0 - RW */
-#define E1000_RXDCTL1  0x02928  /* RX Descriptor Control queue 1 - RW */
-#define E1000_RADV     0x0282C  /* RX Interrupt Absolute Delay Timer - RW */
-#define E1000_RSRPD    0x02C00  /* RX Small Packet Detect - RW */
-#define E1000_RAID     0x02C08  /* Receive Ack Interrupt Delay - RW */
-#define E1000_TXDMAC   0x03000  /* TX DMA Control - RW */
-#define E1000_KABGTXD  0x03004  /* AFE Band Gap Transmit Ref Data */
-#define E1000_TDFH     0x03410  /* TX Data FIFO Head - RW */
-#define E1000_TDFT     0x03418  /* TX Data FIFO Tail - RW */
-#define E1000_TDFHS    0x03420  /* TX Data FIFO Head Saved - RW */
-#define E1000_TDFTS    0x03428  /* TX Data FIFO Tail Saved - RW */
-#define E1000_TDFPC    0x03430  /* TX Data FIFO Packet Count - RW */
-#define E1000_TDBAL    0x03800  /* TX Descriptor Base Address Low - RW */
-#define E1000_TDBAH    0x03804  /* TX Descriptor Base Address High - RW */
-#define E1000_TDLEN    0x03808  /* TX Descriptor Length - RW */
-#define E1000_TDH      0x03810  /* TX Descriptor Head - RW */
-#define E1000_TDT      0x03818  /* TX Descripotr Tail - RW */
-#define E1000_TIDV     0x03820  /* TX Interrupt Delay Value - RW */
-#define E1000_TXDCTL   0x03828  /* TX Descriptor Control - RW */
-#define E1000_TADV     0x0382C  /* TX Interrupt Absolute Delay Val - RW */
-#define E1000_TSPMT    0x03830  /* TCP Segmentation PAD & Min Threshold - RW */
-#define E1000_TARC0    0x03840  /* TX Arbitration Count (0) */
-#define E1000_TDBAL1   0x03900  /* TX Desc Base Address Low (1) - RW */
-#define E1000_TDBAH1   0x03904  /* TX Desc Base Address High (1) - RW */
-#define E1000_TDLEN1   0x03908  /* TX Desc Length (1) - RW */
-#define E1000_TDH1     0x03910  /* TX Desc Head (1) - RW */
-#define E1000_TDT1     0x03918  /* TX Desc Tail (1) - RW */
-#define E1000_TXDCTL1  0x03928  /* TX Descriptor Control (1) - RW */
-#define E1000_TARC1    0x03940  /* TX Arbitration Count (1) */
-#define E1000_CRCERRS  0x04000  /* CRC Error Count - R/clr */
-#define E1000_ALGNERRC 0x04004  /* Alignment Error Count - R/clr */
-#define E1000_SYMERRS  0x04008  /* Symbol Error Count - R/clr */
-#define E1000_RXERRC   0x0400C  /* Receive Error Count - R/clr */
-#define E1000_MPC      0x04010  /* Missed Packet Count - R/clr */
-#define E1000_SCC      0x04014  /* Single Collision Count - R/clr */
-#define E1000_ECOL     0x04018  /* Excessive Collision Count - R/clr */
-#define E1000_MCC      0x0401C  /* Multiple Collision Count - R/clr */
-#define E1000_LATECOL  0x04020  /* Late Collision Count - R/clr */
-#define E1000_COLC     0x04028  /* Collision Count - R/clr */
-#define E1000_DC       0x04030  /* Defer Count - R/clr */
-#define E1000_TNCRS    0x04034  /* TX-No CRS - R/clr */
-#define E1000_SEC      0x04038  /* Sequence Error Count - R/clr */
-#define E1000_CEXTERR  0x0403C  /* Carrier Extension Error Count - R/clr */
-#define E1000_RLEC     0x04040  /* Receive Length Error Count - R/clr */
-#define E1000_XONRXC   0x04048  /* XON RX Count - R/clr */
-#define E1000_XONTXC   0x0404C  /* XON TX Count - R/clr */
-#define E1000_XOFFRXC  0x04050  /* XOFF RX Count - R/clr */
-#define E1000_XOFFTXC  0x04054  /* XOFF TX Count - R/clr */
-#define E1000_FCRUC    0x04058  /* Flow Control RX Unsupported Count- R/clr */
-#define E1000_PRC64    0x0405C  /* Packets RX (64 bytes) - R/clr */
-#define E1000_PRC127   0x04060  /* Packets RX (65-127 bytes) - R/clr */
-#define E1000_PRC255   0x04064  /* Packets RX (128-255 bytes) - R/clr */
-#define E1000_PRC511   0x04068  /* Packets RX (255-511 bytes) - R/clr */
-#define E1000_PRC1023  0x0406C  /* Packets RX (512-1023 bytes) - R/clr */
-#define E1000_PRC1522  0x04070  /* Packets RX (1024-1522 bytes) - R/clr */
-#define E1000_GPRC     0x04074  /* Good Packets RX Count - R/clr */
-#define E1000_BPRC     0x04078  /* Broadcast Packets RX Count - R/clr */
-#define E1000_MPRC     0x0407C  /* Multicast Packets RX Count - R/clr */
-#define E1000_GPTC     0x04080  /* Good Packets TX Count - R/clr */
-#define E1000_GORCL    0x04088  /* Good Octets RX Count Low - R/clr */
-#define E1000_GORCH    0x0408C  /* Good Octets RX Count High - R/clr */
-#define E1000_GOTCL    0x04090  /* Good Octets TX Count Low - R/clr */
-#define E1000_GOTCH    0x04094  /* Good Octets TX Count High - R/clr */
-#define E1000_RNBC     0x040A0  /* RX No Buffers Count - R/clr */
-#define E1000_RUC      0x040A4  /* RX Undersize Count - R/clr */
-#define E1000_RFC      0x040A8  /* RX Fragment Count - R/clr */
-#define E1000_ROC      0x040AC  /* RX Oversize Count - R/clr */
-#define E1000_RJC      0x040B0  /* RX Jabber Count - R/clr */
-#define E1000_MGTPRC   0x040B4  /* Management Packets RX Count - R/clr */
-#define E1000_MGTPDC   0x040B8  /* Management Packets Dropped Count - R/clr */
-#define E1000_MGTPTC   0x040BC  /* Management Packets TX Count - R/clr */
-#define E1000_TORL     0x040C0  /* Total Octets RX Low - R/clr */
-#define E1000_TORH     0x040C4  /* Total Octets RX High - R/clr */
-#define E1000_TOTL     0x040C8  /* Total Octets TX Low - R/clr */
-#define E1000_TOTH     0x040CC  /* Total Octets TX High - R/clr */
-#define E1000_TPR      0x040D0  /* Total Packets RX - R/clr */
-#define E1000_TPT      0x040D4  /* Total Packets TX - R/clr */
-#define E1000_PTC64    0x040D8  /* Packets TX (64 bytes) - R/clr */
-#define E1000_PTC127   0x040DC  /* Packets TX (65-127 bytes) - R/clr */
-#define E1000_PTC255   0x040E0  /* Packets TX (128-255 bytes) - R/clr */
-#define E1000_PTC511   0x040E4  /* Packets TX (256-511 bytes) - R/clr */
-#define E1000_PTC1023  0x040E8  /* Packets TX (512-1023 bytes) - R/clr */
-#define E1000_PTC1522  0x040EC  /* Packets TX (1024-1522 Bytes) - R/clr */
-#define E1000_MPTC     0x040F0  /* Multicast Packets TX Count - R/clr */
-#define E1000_BPTC     0x040F4  /* Broadcast Packets TX Count - R/clr */
-#define E1000_TSCTC    0x040F8  /* TCP Segmentation Context TX - R/clr */
-#define E1000_TSCTFC   0x040FC  /* TCP Segmentation Context TX Fail - R/clr */
-#define E1000_IAC      0x04100  /* Interrupt Assertion Count */
-#define E1000_ICRXPTC  0x04104  /* Interrupt Cause Rx Packet Timer Expire Count */
-#define E1000_ICRXATC  0x04108  /* Interrupt Cause Rx Absolute Timer Expire Count */
-#define E1000_ICTXPTC  0x0410C  /* Interrupt Cause Tx Packet Timer Expire Count */
-#define E1000_ICTXATC  0x04110  /* Interrupt Cause Tx Absolute Timer Expire Count */
-#define E1000_ICTXQEC  0x04118  /* Interrupt Cause Tx Queue Empty Count */
-#define E1000_ICTXQMTC 0x0411C  /* Interrupt Cause Tx Queue Minimum Threshold Count */
-#define E1000_ICRXDMTC 0x04120  /* Interrupt Cause Rx Descriptor Minimum Threshold Count */
-#define E1000_ICRXOC   0x04124  /* Interrupt Cause Receiver Overrun Count */
-#define E1000_RXCSUM   0x05000  /* RX Checksum Control - RW */
-#define E1000_RFCTL    0x05008  /* Receive Filter Control*/
-#define E1000_MTA      0x05200  /* Multicast Table Array - RW Array */
-#define E1000_RA       0x05400  /* Receive Address - RW Array */
-#define E1000_VFTA     0x05600  /* VLAN Filter Table Array - RW Array */
-#define E1000_WUC      0x05800  /* Wakeup Control - RW */
-#define E1000_WUFC     0x05808  /* Wakeup Filter Control - RW */
-#define E1000_WUS      0x05810  /* Wakeup Status - RO */
-#define E1000_MANC     0x05820  /* Management Control - RW */
-#define E1000_IPAV     0x05838  /* IP Address Valid - RW */
-#define E1000_IP4AT    0x05840  /* IPv4 Address Table - RW Array */
-#define E1000_IP6AT    0x05880  /* IPv6 Address Table - RW Array */
-#define E1000_WUPL     0x05900  /* Wakeup Packet Length - RW */
-#define E1000_WUPM     0x05A00  /* Wakeup Packet Memory - RO A */
-#define E1000_FFLT     0x05F00  /* Flexible Filter Length Table - RW Array */
-#define E1000_HOST_IF  0x08800  /* Host Interface */
-#define E1000_FFMT     0x09000  /* Flexible Filter Mask Table - RW Array */
-#define E1000_FFVT     0x09800  /* Flexible Filter Value Table - RW Array */
-
-#define E1000_KUMCTRLSTA 0x00034 /* MAC-PHY interface - RW */
-#define E1000_MDPHYA     0x0003C  /* PHY address - RW */
-#define E1000_MANC2H     0x05860  /* Managment Control To Host - RW */
-#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
-
-#define E1000_GCR       0x05B00 /* PCI-Ex Control */
-#define E1000_GSCL_1    0x05B10 /* PCI-Ex Statistic Control #1 */
-#define E1000_GSCL_2    0x05B14 /* PCI-Ex Statistic Control #2 */
-#define E1000_GSCL_3    0x05B18 /* PCI-Ex Statistic Control #3 */
-#define E1000_GSCL_4    0x05B1C /* PCI-Ex Statistic Control #4 */
-#define E1000_FACTPS    0x05B30 /* Function Active and Power State to MNG */
-#define E1000_SWSM      0x05B50 /* SW Semaphore */
-#define E1000_FWSM      0x05B54 /* FW Semaphore */
-#define E1000_FFLT_DBG  0x05F04 /* Debug Register */
-#define E1000_HICR      0x08F00 /* Host Inteface Control */
-
-/* RSS registers */
-#define E1000_CPUVEC    0x02C10 /* CPU Vector Register - RW */
-#define E1000_MRQC      0x05818 /* Multiple Receive Control - RW */
-#define E1000_RETA      0x05C00 /* Redirection Table - RW Array */
-#define E1000_RSSRK     0x05C80 /* RSS Random Key - RW Array */
-#define E1000_RSSIM     0x05864 /* RSS Interrupt Mask */
-#define E1000_RSSIR     0x05868 /* RSS Interrupt Request */
-/* Register Set (82542)
- *
- * Some of the 82542 registers are located at different offsets than they are
- * in more current versions of the 8254x. Despite the difference in location,
- * the registers function in the same manner.
- */
-#define E1000_82542_CTRL     E1000_CTRL
-#define E1000_82542_CTRL_DUP E1000_CTRL_DUP
-#define E1000_82542_STATUS   E1000_STATUS
-#define E1000_82542_EECD     E1000_EECD
-#define E1000_82542_EERD     E1000_EERD
-#define E1000_82542_CTRL_EXT E1000_CTRL_EXT
-#define E1000_82542_FLA      E1000_FLA
-#define E1000_82542_MDIC     E1000_MDIC
-#define E1000_82542_SCTL     E1000_SCTL
-#define E1000_82542_FEXTNVM  E1000_FEXTNVM
-#define E1000_82542_FCAL     E1000_FCAL
-#define E1000_82542_FCAH     E1000_FCAH
-#define E1000_82542_FCT      E1000_FCT
-#define E1000_82542_VET      E1000_VET
-#define E1000_82542_RA       0x00040
-#define E1000_82542_ICR      E1000_ICR
-#define E1000_82542_ITR      E1000_ITR
-#define E1000_82542_ICS      E1000_ICS
-#define E1000_82542_IMS      E1000_IMS
-#define E1000_82542_IMC      E1000_IMC
-#define E1000_82542_RCTL     E1000_RCTL
-#define E1000_82542_RDTR     0x00108
-#define E1000_82542_RDBAL    0x00110
-#define E1000_82542_RDBAH    0x00114
-#define E1000_82542_RDLEN    0x00118
-#define E1000_82542_RDH      0x00120
-#define E1000_82542_RDT      0x00128
-#define E1000_82542_RDTR0    E1000_82542_RDTR
-#define E1000_82542_RDBAL0   E1000_82542_RDBAL
-#define E1000_82542_RDBAH0   E1000_82542_RDBAH
-#define E1000_82542_RDLEN0   E1000_82542_RDLEN
-#define E1000_82542_RDH0     E1000_82542_RDH
-#define E1000_82542_RDT0     E1000_82542_RDT
-#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication
-                                                       * RX Control - RW */
-#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8))
-#define E1000_82542_RDBAH3   0x02B04 /* RX Desc Base High Queue 3 - RW */
-#define E1000_82542_RDBAL3   0x02B00 /* RX Desc Low Queue 3 - RW */
-#define E1000_82542_RDLEN3   0x02B08 /* RX Desc Length Queue 3 - RW */
-#define E1000_82542_RDH3     0x02B10 /* RX Desc Head Queue 3 - RW */
-#define E1000_82542_RDT3     0x02B18 /* RX Desc Tail Queue 3 - RW */
-#define E1000_82542_RDBAL2   0x02A00 /* RX Desc Base Low Queue 2 - RW */
-#define E1000_82542_RDBAH2   0x02A04 /* RX Desc Base High Queue 2 - RW */
-#define E1000_82542_RDLEN2   0x02A08 /* RX Desc Length Queue 2 - RW */
-#define E1000_82542_RDH2     0x02A10 /* RX Desc Head Queue 2 - RW */
-#define E1000_82542_RDT2     0x02A18 /* RX Desc Tail Queue 2 - RW */
-#define E1000_82542_RDTR1    0x00130
-#define E1000_82542_RDBAL1   0x00138
-#define E1000_82542_RDBAH1   0x0013C
-#define E1000_82542_RDLEN1   0x00140
-#define E1000_82542_RDH1     0x00148
-#define E1000_82542_RDT1     0x00150
-#define E1000_82542_FCRTH    0x00160
-#define E1000_82542_FCRTL    0x00168
-#define E1000_82542_FCTTV    E1000_FCTTV
-#define E1000_82542_TXCW     E1000_TXCW
-#define E1000_82542_RXCW     E1000_RXCW
-#define E1000_82542_MTA      0x00200
-#define E1000_82542_TCTL     E1000_TCTL
-#define E1000_82542_TCTL_EXT E1000_TCTL_EXT
-#define E1000_82542_TIPG     E1000_TIPG
-#define E1000_82542_TDBAL    0x00420
-#define E1000_82542_TDBAH    0x00424
-#define E1000_82542_TDLEN    0x00428
-#define E1000_82542_TDH      0x00430
-#define E1000_82542_TDT      0x00438
-#define E1000_82542_TIDV     0x00440
-#define E1000_82542_TBT      E1000_TBT
-#define E1000_82542_AIT      E1000_AIT
-#define E1000_82542_VFTA     0x00600
-#define E1000_82542_LEDCTL   E1000_LEDCTL
-#define E1000_82542_PBA      E1000_PBA
-#define E1000_82542_PBS      E1000_PBS
-#define E1000_82542_EEMNGCTL E1000_EEMNGCTL
-#define E1000_82542_EEARBC   E1000_EEARBC
-#define E1000_82542_FLASHT   E1000_FLASHT
-#define E1000_82542_EEWR     E1000_EEWR
-#define E1000_82542_FLSWCTL  E1000_FLSWCTL
-#define E1000_82542_FLSWDATA E1000_FLSWDATA
-#define E1000_82542_FLSWCNT  E1000_FLSWCNT
-#define E1000_82542_FLOP     E1000_FLOP
-#define E1000_82542_EXTCNF_CTRL  E1000_EXTCNF_CTRL
-#define E1000_82542_EXTCNF_SIZE  E1000_EXTCNF_SIZE
-#define E1000_82542_PHY_CTRL E1000_PHY_CTRL
-#define E1000_82542_ERT      E1000_ERT
-#define E1000_82542_RXDCTL   E1000_RXDCTL
-#define E1000_82542_RXDCTL1  E1000_RXDCTL1
-#define E1000_82542_RADV     E1000_RADV
-#define E1000_82542_RSRPD    E1000_RSRPD
-#define E1000_82542_TXDMAC   E1000_TXDMAC
-#define E1000_82542_KABGTXD  E1000_KABGTXD
-#define E1000_82542_TDFHS    E1000_TDFHS
-#define E1000_82542_TDFTS    E1000_TDFTS
-#define E1000_82542_TDFPC    E1000_TDFPC
-#define E1000_82542_TXDCTL   E1000_TXDCTL
-#define E1000_82542_TADV     E1000_TADV
-#define E1000_82542_TSPMT    E1000_TSPMT
-#define E1000_82542_CRCERRS  E1000_CRCERRS
-#define E1000_82542_ALGNERRC E1000_ALGNERRC
-#define E1000_82542_SYMERRS  E1000_SYMERRS
-#define E1000_82542_RXERRC   E1000_RXERRC
-#define E1000_82542_MPC      E1000_MPC
-#define E1000_82542_SCC      E1000_SCC
-#define E1000_82542_ECOL     E1000_ECOL
-#define E1000_82542_MCC      E1000_MCC
-#define E1000_82542_LATECOL  E1000_LATECOL
-#define E1000_82542_COLC     E1000_COLC
-#define E1000_82542_DC       E1000_DC
-#define E1000_82542_TNCRS    E1000_TNCRS
-#define E1000_82542_SEC      E1000_SEC
-#define E1000_82542_CEXTERR  E1000_CEXTERR
-#define E1000_82542_RLEC     E1000_RLEC
-#define E1000_82542_XONRXC   E1000_XONRXC
-#define E1000_82542_XONTXC   E1000_XONTXC
-#define E1000_82542_XOFFRXC  E1000_XOFFRXC
-#define E1000_82542_XOFFTXC  E1000_XOFFTXC
-#define E1000_82542_FCRUC    E1000_FCRUC
-#define E1000_82542_PRC64    E1000_PRC64
-#define E1000_82542_PRC127   E1000_PRC127
-#define E1000_82542_PRC255   E1000_PRC255
-#define E1000_82542_PRC511   E1000_PRC511
-#define E1000_82542_PRC1023  E1000_PRC1023
-#define E1000_82542_PRC1522  E1000_PRC1522
-#define E1000_82542_GPRC     E1000_GPRC
-#define E1000_82542_BPRC     E1000_BPRC
-#define E1000_82542_MPRC     E1000_MPRC
-#define E1000_82542_GPTC     E1000_GPTC
-#define E1000_82542_GORCL    E1000_GORCL
-#define E1000_82542_GORCH    E1000_GORCH
-#define E1000_82542_GOTCL    E1000_GOTCL
-#define E1000_82542_GOTCH    E1000_GOTCH
-#define E1000_82542_RNBC     E1000_RNBC
-#define E1000_82542_RUC      E1000_RUC
-#define E1000_82542_RFC      E1000_RFC
-#define E1000_82542_ROC      E1000_ROC
-#define E1000_82542_RJC      E1000_RJC
-#define E1000_82542_MGTPRC   E1000_MGTPRC
-#define E1000_82542_MGTPDC   E1000_MGTPDC
-#define E1000_82542_MGTPTC   E1000_MGTPTC
-#define E1000_82542_TORL     E1000_TORL
-#define E1000_82542_TORH     E1000_TORH
-#define E1000_82542_TOTL     E1000_TOTL
-#define E1000_82542_TOTH     E1000_TOTH
-#define E1000_82542_TPR      E1000_TPR
-#define E1000_82542_TPT      E1000_TPT
-#define E1000_82542_PTC64    E1000_PTC64
-#define E1000_82542_PTC127   E1000_PTC127
-#define E1000_82542_PTC255   E1000_PTC255
-#define E1000_82542_PTC511   E1000_PTC511
-#define E1000_82542_PTC1023  E1000_PTC1023
-#define E1000_82542_PTC1522  E1000_PTC1522
-#define E1000_82542_MPTC     E1000_MPTC
-#define E1000_82542_BPTC     E1000_BPTC
-#define E1000_82542_TSCTC    E1000_TSCTC
-#define E1000_82542_TSCTFC   E1000_TSCTFC
-#define E1000_82542_RXCSUM   E1000_RXCSUM
-#define E1000_82542_WUC      E1000_WUC
-#define E1000_82542_WUFC     E1000_WUFC
-#define E1000_82542_WUS      E1000_WUS
-#define E1000_82542_MANC     E1000_MANC
-#define E1000_82542_IPAV     E1000_IPAV
-#define E1000_82542_IP4AT    E1000_IP4AT
-#define E1000_82542_IP6AT    E1000_IP6AT
-#define E1000_82542_WUPL     E1000_WUPL
-#define E1000_82542_WUPM     E1000_WUPM
-#define E1000_82542_FFLT     E1000_FFLT
-#define E1000_82542_TDFH     0x08010
-#define E1000_82542_TDFT     0x08018
-#define E1000_82542_FFMT     E1000_FFMT
-#define E1000_82542_FFVT     E1000_FFVT
-#define E1000_82542_HOST_IF  E1000_HOST_IF
-#define E1000_82542_IAM         E1000_IAM
-#define E1000_82542_EEMNGCTL    E1000_EEMNGCTL
-#define E1000_82542_PSRCTL      E1000_PSRCTL
-#define E1000_82542_RAID        E1000_RAID
-#define E1000_82542_TARC0       E1000_TARC0
-#define E1000_82542_TDBAL1      E1000_TDBAL1
-#define E1000_82542_TDBAH1      E1000_TDBAH1
-#define E1000_82542_TDLEN1      E1000_TDLEN1
-#define E1000_82542_TDH1        E1000_TDH1
-#define E1000_82542_TDT1        E1000_TDT1
-#define E1000_82542_TXDCTL1     E1000_TXDCTL1
-#define E1000_82542_TARC1       E1000_TARC1
-#define E1000_82542_RFCTL       E1000_RFCTL
-#define E1000_82542_GCR         E1000_GCR
-#define E1000_82542_GSCL_1      E1000_GSCL_1
-#define E1000_82542_GSCL_2      E1000_GSCL_2
-#define E1000_82542_GSCL_3      E1000_GSCL_3
-#define E1000_82542_GSCL_4      E1000_GSCL_4
-#define E1000_82542_FACTPS      E1000_FACTPS
-#define E1000_82542_SWSM        E1000_SWSM
-#define E1000_82542_FWSM        E1000_FWSM
-#define E1000_82542_FFLT_DBG    E1000_FFLT_DBG
-#define E1000_82542_IAC         E1000_IAC
-#define E1000_82542_ICRXPTC     E1000_ICRXPTC
-#define E1000_82542_ICRXATC     E1000_ICRXATC
-#define E1000_82542_ICTXPTC     E1000_ICTXPTC
-#define E1000_82542_ICTXATC     E1000_ICTXATC
-#define E1000_82542_ICTXQEC     E1000_ICTXQEC
-#define E1000_82542_ICTXQMTC    E1000_ICTXQMTC
-#define E1000_82542_ICRXDMTC    E1000_ICRXDMTC
-#define E1000_82542_ICRXOC      E1000_ICRXOC
-#define E1000_82542_HICR        E1000_HICR
-
-#define E1000_82542_CPUVEC      E1000_CPUVEC
-#define E1000_82542_MRQC        E1000_MRQC
-#define E1000_82542_RETA        E1000_RETA
-#define E1000_82542_RSSRK       E1000_RSSRK
-#define E1000_82542_RSSIM       E1000_RSSIM
-#define E1000_82542_RSSIR       E1000_RSSIR
-#define E1000_82542_KUMCTRLSTA E1000_KUMCTRLSTA
-#define E1000_82542_SW_FW_SYNC E1000_SW_FW_SYNC
-
 /* Statistics counters collected by the MAC */
 struct e1000_hw_stats {
-    uint64_t crcerrs;
-    uint64_t algnerrc;
-    uint64_t symerrs;
-    uint64_t rxerrc;
-    uint64_t mpc;
-    uint64_t scc;
-    uint64_t ecol;
-    uint64_t mcc;
-    uint64_t latecol;
-    uint64_t colc;
-    uint64_t dc;
-    uint64_t tncrs;
-    uint64_t sec;
-    uint64_t cexterr;
-    uint64_t rlec;
-    uint64_t xonrxc;
-    uint64_t xontxc;
-    uint64_t xoffrxc;
-    uint64_t xofftxc;
-    uint64_t fcruc;
-    uint64_t prc64;
-    uint64_t prc127;
-    uint64_t prc255;
-    uint64_t prc511;
-    uint64_t prc1023;
-    uint64_t prc1522;
-    uint64_t gprc;
-    uint64_t bprc;
-    uint64_t mprc;
-    uint64_t gptc;
-    uint64_t gorcl;
-    uint64_t gorch;
-    uint64_t gotcl;
-    uint64_t gotch;
-    uint64_t rnbc;
-    uint64_t ruc;
-    uint64_t rfc;
-    uint64_t roc;
-    uint64_t rjc;
-    uint64_t mgprc;
-    uint64_t mgpdc;
-    uint64_t mgptc;
-    uint64_t torl;
-    uint64_t torh;
-    uint64_t totl;
-    uint64_t toth;
-    uint64_t tpr;
-    uint64_t tpt;
-    uint64_t ptc64;
-    uint64_t ptc127;
-    uint64_t ptc255;
-    uint64_t ptc511;
-    uint64_t ptc1023;
-    uint64_t ptc1522;
-    uint64_t mptc;
-    uint64_t bptc;
-    uint64_t tsctc;
-    uint64_t tsctfc;
-    uint64_t iac;
-    uint64_t icrxptc;
-    uint64_t icrxatc;
-    uint64_t ictxptc;
-    uint64_t ictxatc;
-    uint64_t ictxqec;
-    uint64_t ictxqmtc;
-    uint64_t icrxdmtc;
-    uint64_t icrxoc;
-};
-
-/* Structure containing variables used by the shared code (e1000_hw.c) */
-struct e1000_hw {
-    uint8_t *hw_addr;
-    uint8_t *flash_address;
-    e1000_mac_type mac_type;
-    e1000_phy_type phy_type;
-    uint32_t phy_init_script;
-    e1000_media_type media_type;
-    void *back;
-    struct e1000_shadow_ram *eeprom_shadow_ram;
-    uint32_t flash_bank_size;
-    uint32_t flash_base_addr;
-    uint32_t fc;
-    e1000_bus_speed bus_speed;
-    e1000_bus_width bus_width;
-    e1000_bus_type bus_type;
-    struct e1000_eeprom_info eeprom;
-    e1000_ms_type master_slave;
-    e1000_ms_type original_master_slave;
-    e1000_ffe_config ffe_config_state;
-    uint32_t asf_firmware_present;
-    uint32_t eeprom_semaphore_present;
-    uint32_t swfw_sync_present;
-    uint32_t swfwhw_semaphore_present;
-
-    unsigned long io_base;
-    uint32_t phy_id;
-    uint32_t phy_revision;
-    uint32_t phy_addr;
-    uint32_t original_fc;
-    uint32_t txcw;
-    uint32_t autoneg_failed;
-    uint32_t max_frame_size;
-    uint32_t min_frame_size;
-    uint32_t mc_filter_type;
-    uint32_t num_mc_addrs;
-    uint32_t collision_delta;
-    uint32_t tx_packet_delta;
-    uint32_t ledctl_default;
-    uint32_t ledctl_mode1;
-    uint32_t ledctl_mode2;
-#ifndef FIFO_WORKAROUND
-    uint32_t tx_fifo_size;
-    uint32_t tx_fifo_start;
-    uint32_t tx_fifo_head;
-    uint16_t dsp_reset_counter;
-#endif /* FIFO_WORKAROUND */
-    boolean_t tx_pkt_filtering;
-    struct e1000_host_mng_dhcp_cookie mng_cookie;
-    uint16_t phy_spd_default;
-    uint16_t autoneg_advertised;
-    uint16_t pci_cmd_word;
-    uint16_t fc_high_water;
-    uint16_t fc_low_water;
-    uint16_t fc_pause_time;
-    uint16_t current_ifs_val;
-    uint16_t ifs_min_val;
-    uint16_t ifs_max_val;
-    uint16_t ifs_step_size;
-    uint16_t ifs_ratio;
-    uint16_t device_id;
-    uint16_t vendor_id;
-    uint16_t subsystem_id;
-    uint16_t subsystem_vendor_id;
-    uint8_t revision_id;
-    uint8_t autoneg;
-    uint8_t mdix;
-    uint8_t forced_speed_duplex;
-    uint8_t wait_autoneg_complete;
-    uint8_t dma_fairness;
-    uint8_t mac_addr[NODE_ADDRESS_SIZE];
-    uint8_t perm_mac_addr[NODE_ADDRESS_SIZE];
-    boolean_t disable_polarity_correction;
-    boolean_t speed_downgraded;
-    e1000_smart_speed smart_speed;
-    e1000_dsp_config dsp_config_state;
-    boolean_t get_link_status;
-    boolean_t serdes_link_down;
-    boolean_t tbi_compatibility_en;
-    boolean_t tbi_compatibility_on;
-#ifndef FIFO_WORKAROUND
-    boolean_t ttl_wa_activation;
-    boolean_t adapter_stopped;
-#endif
-    boolean_t laa_is_present;
-    boolean_t phy_reset_disable;
-    boolean_t initialize_hw_bits_disable;
-    boolean_t fc_send_xon;
-    boolean_t fc_strict_ieee;
-    boolean_t report_tx_early;
-    boolean_t adaptive_ifs;
-    boolean_t ifs_params_forced;
-    boolean_t in_ifs_mode;
-    boolean_t mng_reg_access_disabled;
-    boolean_t leave_av_bit_off;
-    boolean_t kmrn_lock_loss_workaround_disabled;
+	u64 crcerrs;
+	u64 algnerrc;
+	u64 symerrs;
+	u64 rxerrc;
+	u64 mpc;
+	u64 scc;
+	u64 ecol;
+	u64 mcc;
+	u64 latecol;
+	u64 colc;
+	u64 dc;
+	u64 tncrs;
+	u64 sec;
+	u64 cexterr;
+	u64 rlec;
+	u64 xonrxc;
+	u64 xontxc;
+	u64 xoffrxc;
+	u64 xofftxc;
+	u64 fcruc;
+	u64 prc64;
+	u64 prc127;
+	u64 prc255;
+	u64 prc511;
+	u64 prc1023;
+	u64 prc1522;
+	u64 gprc;
+	u64 bprc;
+	u64 mprc;
+	u64 gptc;
+	u64 gorcl;
+	u64 gorch;
+	u64 gotcl;
+	u64 gotch;
+	u64 rnbc;
+	u64 ruc;
+	u64 rfc;
+	u64 roc;
+	u64 rjc;
+	u64 mgprc;
+	u64 mgpdc;
+	u64 mgptc;
+	u64 torl;
+	u64 torh;
+	u64 totl;
+	u64 toth;
+	u64 tpr;
+	u64 tpt;
+	u64 ptc64;
+	u64 ptc127;
+	u64 ptc255;
+	u64 ptc511;
+	u64 ptc1023;
+	u64 ptc1522;
+	u64 mptc;
+	u64 bptc;
+	u64 tsctc;
+	u64 tsctfc;
+	u64 iac;
+	u64 icrxptc;
+	u64 icrxatc;
+	u64 ictxptc;
+	u64 ictxatc;
+	u64 ictxqec;
+	u64 ictxqmtc;
+	u64 icrxdmtc;
+	u64 icrxoc;
+	u64 cbtmpc;
+	u64 htdpmc;
+	u64 cbrdpc;
+	u64 cbrmpc;
+	u64 rpthc;
+	u64 hgptc;
+	u64 htcbdpc;
+	u64 hgorcl;
+	u64 hgorch;
+	u64 hgotcl;
+	u64 hgotch;
+	u64 lenerrs;
+	u64 scvpc;
+	u64 hrmpc;
 };
 
-
-#define E1000_EEPROM_SWDPIN0   0x0001   /* SWDPIN 0 EEPROM Value */
-#define E1000_EEPROM_LED_LOGIC 0x0020   /* Led Logic Word */
-#define E1000_EEPROM_RW_REG_DATA   16   /* Offset to data in EEPROM read/write registers */
-#define E1000_EEPROM_RW_REG_DONE   2    /* Offset to READ/WRITE done bit */
-#define E1000_EEPROM_RW_REG_START  1    /* First bit for telling part to start operation */
-#define E1000_EEPROM_RW_ADDR_SHIFT 2    /* Shift to the address bits */
-#define E1000_EEPROM_POLL_WRITE    1    /* Flag for polling for write complete */
-#define E1000_EEPROM_POLL_READ     0    /* Flag for polling for read complete */
-/* Register Bit Masks */
-/* Device Control */
-#define E1000_CTRL_FD       0x00000001  /* Full duplex.0=half; 1=full */
-#define E1000_CTRL_BEM      0x00000002  /* Endian Mode.0=little,1=big */
-#define E1000_CTRL_PRIOR    0x00000004  /* Priority on PCI. 0=rx,1=fair */
-#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
-#define E1000_CTRL_LRST     0x00000008  /* Link reset. 0=normal,1=reset */
-#define E1000_CTRL_TME      0x00000010  /* Test mode. 0=normal,1=test */
-#define E1000_CTRL_SLE      0x00000020  /* Serial Link on 0=dis,1=en */
-#define E1000_CTRL_ASDE     0x00000020  /* Auto-speed detect enable */
-#define E1000_CTRL_SLU      0x00000040  /* Set link up (Force Link) */
-#define E1000_CTRL_ILOS     0x00000080  /* Invert Loss-Of Signal */
-#define E1000_CTRL_SPD_SEL  0x00000300  /* Speed Select Mask */
-#define E1000_CTRL_SPD_10   0x00000000  /* Force 10Mb */
-#define E1000_CTRL_SPD_100  0x00000100  /* Force 100Mb */
-#define E1000_CTRL_SPD_1000 0x00000200  /* Force 1Gb */
-#define E1000_CTRL_BEM32    0x00000400  /* Big Endian 32 mode */
-#define E1000_CTRL_FRCSPD   0x00000800  /* Force Speed */
-#define E1000_CTRL_FRCDPX   0x00001000  /* Force Duplex */
-#define E1000_CTRL_D_UD_EN  0x00002000  /* Dock/Undock enable */
-#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */
-#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through PHYRST_N pin */
-#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external LINK_0 and LINK_1 pins */
-#define E1000_CTRL_SWDPIN0  0x00040000  /* SWDPIN 0 value */
-#define E1000_CTRL_SWDPIN1  0x00080000  /* SWDPIN 1 value */
-#define E1000_CTRL_SWDPIN2  0x00100000  /* SWDPIN 2 value */
-#define E1000_CTRL_SWDPIN3  0x00200000  /* SWDPIN 3 value */
-#define E1000_CTRL_SWDPIO0  0x00400000  /* SWDPIN 0 Input or output */
-#define E1000_CTRL_SWDPIO1  0x00800000  /* SWDPIN 1 input or output */
-#define E1000_CTRL_SWDPIO2  0x01000000  /* SWDPIN 2 input or output */
-#define E1000_CTRL_SWDPIO3  0x02000000  /* SWDPIN 3 input or output */
-#define E1000_CTRL_RST      0x04000000  /* Global reset */
-#define E1000_CTRL_RFCE     0x08000000  /* Receive Flow Control enable */
-#define E1000_CTRL_TFCE     0x10000000  /* Transmit flow control enable */
-#define E1000_CTRL_RTE      0x20000000  /* Routing tag enable */
-#define E1000_CTRL_VME      0x40000000  /* IEEE VLAN mode enable */
-#define E1000_CTRL_PHY_RST  0x80000000  /* PHY Reset */
-#define E1000_CTRL_SW2FW_INT 0x02000000  /* Initiate an interrupt to manageability engine */
-/* Device Status */
-#define E1000_STATUS_FD         0x00000001      /* Full duplex.0=half,1=full */
-#define E1000_STATUS_LU         0x00000002      /* Link up.0=no,1=link */
-#define E1000_STATUS_FUNC_MASK  0x0000000C      /* PCI Function Mask */
-#define E1000_STATUS_FUNC_SHIFT 2
-#define E1000_STATUS_FUNC_0     0x00000000      /* Function 0 */
-#define E1000_STATUS_FUNC_1     0x00000004      /* Function 1 */
-#define E1000_STATUS_TXOFF      0x00000010      /* transmission paused */
-#define E1000_STATUS_TBIMODE    0x00000020      /* TBI mode */
-#define E1000_STATUS_SPEED_MASK 0x000000C0
-#define E1000_STATUS_SPEED_10   0x00000000      /* Speed 10Mb/s */
-#define E1000_STATUS_SPEED_100  0x00000040      /* Speed 100Mb/s */
-#define E1000_STATUS_SPEED_1000 0x00000080      /* Speed 1000Mb/s */
-#define E1000_STATUS_LAN_INIT_DONE 0x00000200   /* Lan Init Completion
-                                                   by EEPROM/Flash */
-#define E1000_STATUS_ASDV       0x00000300      /* Auto speed detect value */
-#define E1000_STATUS_DOCK_CI    0x00000800      /* Change in Dock/Undock state. Clear on write '0'. */
-#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
-#define E1000_STATUS_MTXCKOK    0x00000400      /* MTX clock running OK */
-#define E1000_STATUS_PCI66      0x00000800      /* In 66Mhz slot */
-#define E1000_STATUS_BUS64      0x00001000      /* In 64 bit slot */
-#define E1000_STATUS_PCIX_MODE  0x00002000      /* PCI-X mode */
-#define E1000_STATUS_PCIX_SPEED 0x0000C000      /* PCI-X bus speed */
-#define E1000_STATUS_BMC_SKU_0  0x00100000 /* BMC USB redirect disabled */
-#define E1000_STATUS_BMC_SKU_1  0x00200000 /* BMC SRAM disabled */
-#define E1000_STATUS_BMC_SKU_2  0x00400000 /* BMC SDRAM disabled */
-#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */
-#define E1000_STATUS_BMC_LITE   0x01000000 /* BMC external code execution disabled */
-#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */
-#define E1000_STATUS_FUSE_8       0x04000000
-#define E1000_STATUS_FUSE_9       0x08000000
-#define E1000_STATUS_SERDES0_DIS  0x10000000 /* SERDES disabled on port 0 */
-#define E1000_STATUS_SERDES1_DIS  0x20000000 /* SERDES disabled on port 1 */
-
-/* Constants used to intrepret the masked PCI-X bus speed. */
-#define E1000_STATUS_PCIX_SPEED_66  0x00000000 /* PCI-X bus speed  50-66 MHz */
-#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed  66-100 MHz */
-#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */
-
-/* EEPROM/Flash Control */
-#define E1000_EECD_SK        0x00000001 /* EEPROM Clock */
-#define E1000_EECD_CS        0x00000002 /* EEPROM Chip Select */
-#define E1000_EECD_DI        0x00000004 /* EEPROM Data In */
-#define E1000_EECD_DO        0x00000008 /* EEPROM Data Out */
-#define E1000_EECD_FWE_MASK  0x00000030
-#define E1000_EECD_FWE_DIS   0x00000010 /* Disable FLASH writes */
-#define E1000_EECD_FWE_EN    0x00000020 /* Enable FLASH writes */
-#define E1000_EECD_FWE_SHIFT 4
-#define E1000_EECD_REQ       0x00000040 /* EEPROM Access Request */
-#define E1000_EECD_GNT       0x00000080 /* EEPROM Access Grant */
-#define E1000_EECD_PRES      0x00000100 /* EEPROM Present */
-#define E1000_EECD_SIZE      0x00000200 /* EEPROM Size (0=64 word 1=256 word) */
-#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type
-                                         * (0-small, 1-large) */
-#define E1000_EECD_TYPE      0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */
-#ifndef E1000_EEPROM_GRANT_ATTEMPTS
-#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */
-#endif
-#define E1000_EECD_AUTO_RD          0x00000200  /* EEPROM Auto Read done */
-#define E1000_EECD_SIZE_EX_MASK     0x00007800  /* EEprom Size */
-#define E1000_EECD_SIZE_EX_SHIFT    11
-#define E1000_EECD_NVADDS    0x00018000 /* NVM Address Size */
-#define E1000_EECD_SELSHAD   0x00020000 /* Select Shadow RAM */
-#define E1000_EECD_INITSRAM  0x00040000 /* Initialize Shadow RAM */
-#define E1000_EECD_FLUPD     0x00080000 /* Update FLASH */
-#define E1000_EECD_AUPDEN    0x00100000 /* Enable Autonomous FLASH update */
-#define E1000_EECD_SHADV     0x00200000 /* Shadow RAM Data Valid */
-#define E1000_EECD_SEC1VAL   0x00400000 /* Sector One Valid */
-#define E1000_EECD_SECVAL_SHIFT      22
-#define E1000_STM_OPCODE     0xDB00
-#define E1000_HICR_FW_RESET  0xC0
-
-#define E1000_SHADOW_RAM_WORDS     2048
-#define E1000_ICH_NVM_SIG_WORD     0x13
-#define E1000_ICH_NVM_SIG_MASK     0xC0
-
-/* EEPROM Read */
-#define E1000_EERD_START      0x00000001 /* Start Read */
-#define E1000_EERD_DONE       0x00000010 /* Read Done */
-#define E1000_EERD_ADDR_SHIFT 8
-#define E1000_EERD_ADDR_MASK  0x0000FF00 /* Read Address */
-#define E1000_EERD_DATA_SHIFT 16
-#define E1000_EERD_DATA_MASK  0xFFFF0000 /* Read Data */
-
-/* SPI EEPROM Status Register */
-#define EEPROM_STATUS_RDY_SPI  0x01
-#define EEPROM_STATUS_WEN_SPI  0x02
-#define EEPROM_STATUS_BP0_SPI  0x04
-#define EEPROM_STATUS_BP1_SPI  0x08
-#define EEPROM_STATUS_WPEN_SPI 0x80
+struct e1000_phy_stats {
+	u32 idle_errors;
+	u32 receive_errors;
+};
 
-/* Extended Device Control */
-#define E1000_CTRL_EXT_GPI0_EN   0x00000001 /* Maps SDP4 to GPI0 */
-#define E1000_CTRL_EXT_GPI1_EN   0x00000002 /* Maps SDP5 to GPI1 */
-#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
-#define E1000_CTRL_EXT_GPI2_EN   0x00000004 /* Maps SDP6 to GPI2 */
-#define E1000_CTRL_EXT_GPI3_EN   0x00000008 /* Maps SDP7 to GPI3 */
-#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */
-#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */
-#define E1000_CTRL_EXT_PHY_INT   E1000_CTRL_EXT_SDP5_DATA
-#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */
-#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
-#define E1000_CTRL_EXT_SDP4_DIR  0x00000100 /* Direction of SDP4 0=in 1=out */
-#define E1000_CTRL_EXT_SDP5_DIR  0x00000200 /* Direction of SDP5 0=in 1=out */
-#define E1000_CTRL_EXT_SDP6_DIR  0x00000400 /* Direction of SDP6 0=in 1=out */
-#define E1000_CTRL_EXT_SDP7_DIR  0x00000800 /* Direction of SDP7 0=in 1=out */
-#define E1000_CTRL_EXT_ASDCHK    0x00001000 /* Initiate an ASD sequence */
-#define E1000_CTRL_EXT_EE_RST    0x00002000 /* Reinitialize from EEPROM */
-#define E1000_CTRL_EXT_IPS       0x00004000 /* Invert Power State */
-#define E1000_CTRL_EXT_SPD_BYPS  0x00008000 /* Speed Select Bypass */
-#define E1000_CTRL_EXT_RO_DIS    0x00020000 /* Relaxed Ordering disable */
-#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
-#define E1000_CTRL_EXT_LINK_MODE_TBI  0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000
-#define E1000_CTRL_EXT_LINK_MODE_SERDES  0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_SGMII   0x00800000
-#define E1000_CTRL_EXT_WR_WMARK_MASK  0x03000000
-#define E1000_CTRL_EXT_WR_WMARK_256   0x00000000
-#define E1000_CTRL_EXT_WR_WMARK_320   0x01000000
-#define E1000_CTRL_EXT_WR_WMARK_384   0x02000000
-#define E1000_CTRL_EXT_WR_WMARK_448   0x03000000
-#define E1000_CTRL_EXT_DRV_LOAD       0x10000000 /* Driver loaded bit for FW */
-#define E1000_CTRL_EXT_IAME           0x08000000 /* Interrupt acknowledge Auto-mask */
-#define E1000_CTRL_EXT_INT_TIMER_CLR  0x20000000 /* Clear Interrupt timers after IMS clear */
-#define E1000_CRTL_EXT_PB_PAREN       0x01000000 /* packet buffer parity error detection enabled */
-#define E1000_CTRL_EXT_DF_PAREN       0x02000000 /* descriptor FIFO parity error detection enable */
-#define E1000_CTRL_EXT_GHOST_PAREN    0x40000000
-
-/* MDI Control */
-#define E1000_MDIC_DATA_MASK 0x0000FFFF
-#define E1000_MDIC_REG_MASK  0x001F0000
-#define E1000_MDIC_REG_SHIFT 16
-#define E1000_MDIC_PHY_MASK  0x03E00000
-#define E1000_MDIC_PHY_SHIFT 21
-#define E1000_MDIC_OP_WRITE  0x04000000
-#define E1000_MDIC_OP_READ   0x08000000
-#define E1000_MDIC_READY     0x10000000
-#define E1000_MDIC_INT_EN    0x20000000
-#define E1000_MDIC_ERROR     0x40000000
-
-#define E1000_KUMCTRLSTA_MASK           0x0000FFFF
-#define E1000_KUMCTRLSTA_OFFSET         0x001F0000
-#define E1000_KUMCTRLSTA_OFFSET_SHIFT   16
-#define E1000_KUMCTRLSTA_REN            0x00200000
-
-#define E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL      0x00000000
-#define E1000_KUMCTRLSTA_OFFSET_CTRL           0x00000001
-#define E1000_KUMCTRLSTA_OFFSET_INB_CTRL       0x00000002
-#define E1000_KUMCTRLSTA_OFFSET_DIAG           0x00000003
-#define E1000_KUMCTRLSTA_OFFSET_TIMEOUTS       0x00000004
-#define E1000_KUMCTRLSTA_OFFSET_INB_PARAM      0x00000009
-#define E1000_KUMCTRLSTA_OFFSET_HD_CTRL        0x00000010
-#define E1000_KUMCTRLSTA_OFFSET_M2P_SERDES     0x0000001E
-#define E1000_KUMCTRLSTA_OFFSET_M2P_MODES      0x0000001F
-
-/* FIFO Control */
-#define E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS   0x00000008
-#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS   0x00000800
-
-/* In-Band Control */
-#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT    0x00000500
-#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING  0x00000010
-
-/* Half-Duplex Control */
-#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004
-#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT  0x00000000
-
-#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL       0x0000001E
-
-#define E1000_KUMCTRLSTA_DIAG_FELPBK           0x2000
-#define E1000_KUMCTRLSTA_DIAG_NELPBK           0x1000
-
-#define E1000_KUMCTRLSTA_K0S_100_EN            0x2000
-#define E1000_KUMCTRLSTA_K0S_GBE_EN            0x1000
-#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK   0x0003
-
-#define E1000_KABGTXD_BGSQLBIAS                0x00050000
-
-#define E1000_PHY_CTRL_SPD_EN                  0x00000001
-#define E1000_PHY_CTRL_D0A_LPLU                0x00000002
-#define E1000_PHY_CTRL_NOND0A_LPLU             0x00000004
-#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE      0x00000008
-#define E1000_PHY_CTRL_GBE_DISABLE             0x00000040
-#define E1000_PHY_CTRL_B2B_EN                  0x00000080
-
-/* LED Control */
-#define E1000_LEDCTL_LED0_MODE_MASK       0x0000000F
-#define E1000_LEDCTL_LED0_MODE_SHIFT      0
-#define E1000_LEDCTL_LED0_BLINK_RATE      0x0000020
-#define E1000_LEDCTL_LED0_IVRT            0x00000040
-#define E1000_LEDCTL_LED0_BLINK           0x00000080
-#define E1000_LEDCTL_LED1_MODE_MASK       0x00000F00
-#define E1000_LEDCTL_LED1_MODE_SHIFT      8
-#define E1000_LEDCTL_LED1_BLINK_RATE      0x0002000
-#define E1000_LEDCTL_LED1_IVRT            0x00004000
-#define E1000_LEDCTL_LED1_BLINK           0x00008000
-#define E1000_LEDCTL_LED2_MODE_MASK       0x000F0000
-#define E1000_LEDCTL_LED2_MODE_SHIFT      16
-#define E1000_LEDCTL_LED2_BLINK_RATE      0x00200000
-#define E1000_LEDCTL_LED2_IVRT            0x00400000
-#define E1000_LEDCTL_LED2_BLINK           0x00800000
-#define E1000_LEDCTL_LED3_MODE_MASK       0x0F000000
-#define E1000_LEDCTL_LED3_MODE_SHIFT      24
-#define E1000_LEDCTL_LED3_BLINK_RATE      0x20000000
-#define E1000_LEDCTL_LED3_IVRT            0x40000000
-#define E1000_LEDCTL_LED3_BLINK           0x80000000
-
-#define E1000_LEDCTL_MODE_LINK_10_1000  0x0
-#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
-#define E1000_LEDCTL_MODE_LINK_UP       0x2
-#define E1000_LEDCTL_MODE_ACTIVITY      0x3
-#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
-#define E1000_LEDCTL_MODE_LINK_10       0x5
-#define E1000_LEDCTL_MODE_LINK_100      0x6
-#define E1000_LEDCTL_MODE_LINK_1000     0x7
-#define E1000_LEDCTL_MODE_PCIX_MODE     0x8
-#define E1000_LEDCTL_MODE_FULL_DUPLEX   0x9
-#define E1000_LEDCTL_MODE_COLLISION     0xA
-#define E1000_LEDCTL_MODE_BUS_SPEED     0xB
-#define E1000_LEDCTL_MODE_BUS_SIZE      0xC
-#define E1000_LEDCTL_MODE_PAUSED        0xD
-#define E1000_LEDCTL_MODE_LED_ON        0xE
-#define E1000_LEDCTL_MODE_LED_OFF       0xF
-
-/* Receive Address */
-#define E1000_RAH_AV  0x80000000        /* Receive descriptor valid */
-
-/* Interrupt Cause Read */
-#define E1000_ICR_TXDW          0x00000001 /* Transmit desc written back */
-#define E1000_ICR_TXQE          0x00000002 /* Transmit Queue empty */
-#define E1000_ICR_LSC           0x00000004 /* Link Status Change */
-#define E1000_ICR_RXSEQ         0x00000008 /* rx sequence error */
-#define E1000_ICR_RXDMT0        0x00000010 /* rx desc min. threshold (0) */
-#define E1000_ICR_RXO           0x00000040 /* rx overrun */
-#define E1000_ICR_RXT0          0x00000080 /* rx timer intr (ring 0) */
-#define E1000_ICR_MDAC          0x00000200 /* MDIO access complete */
-#define E1000_ICR_RXCFG         0x00000400 /* RX /c/ ordered set */
-#define E1000_ICR_GPI_EN0       0x00000800 /* GP Int 0 */
-#define E1000_ICR_GPI_EN1       0x00001000 /* GP Int 1 */
-#define E1000_ICR_GPI_EN2       0x00002000 /* GP Int 2 */
-#define E1000_ICR_GPI_EN3       0x00004000 /* GP Int 3 */
-#define E1000_ICR_TXD_LOW       0x00008000
-#define E1000_ICR_SRPD          0x00010000
-#define E1000_ICR_ACK           0x00020000 /* Receive Ack frame */
-#define E1000_ICR_MNG           0x00040000 /* Manageability event */
-#define E1000_ICR_DOCK          0x00080000 /* Dock/Undock */
-#define E1000_ICR_INT_ASSERTED  0x80000000 /* If this bit asserted, the driver should claim the interrupt */
-#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_ICR_HOST_ARB_PAR  0x00400000 /* host arb read buffer parity error */
-#define E1000_ICR_PB_PAR        0x00800000 /* packet buffer parity error */
-#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_ICR_ALL_PARITY    0x03F00000 /* all parity error bits */
-#define E1000_ICR_DSW           0x00000020 /* FW changed the status of DISSW bit in the FWSM */
-#define E1000_ICR_PHYINT        0x00001000 /* LAN connected device generates an interrupt */
-#define E1000_ICR_EPRST         0x00100000 /* ME handware reset occurs */
-
-
-/* Interrupt Cause Set */
-#define E1000_ICS_TXDW      E1000_ICR_TXDW      /* Transmit desc written back */
-#define E1000_ICS_TXQE      E1000_ICR_TXQE      /* Transmit Queue empty */
-#define E1000_ICS_LSC       E1000_ICR_LSC       /* Link Status Change */
-#define E1000_ICS_RXSEQ     E1000_ICR_RXSEQ     /* rx sequence error */
-#define E1000_ICS_RXDMT0    E1000_ICR_RXDMT0    /* rx desc min. threshold */
-#define E1000_ICS_RXO       E1000_ICR_RXO       /* rx overrun */
-#define E1000_ICS_RXT0      E1000_ICR_RXT0      /* rx timer intr */
-#define E1000_ICS_MDAC      E1000_ICR_MDAC      /* MDIO access complete */
-#define E1000_ICS_RXCFG     E1000_ICR_RXCFG     /* RX /c/ ordered set */
-#define E1000_ICS_GPI_EN0   E1000_ICR_GPI_EN0   /* GP Int 0 */
-#define E1000_ICS_GPI_EN1   E1000_ICR_GPI_EN1   /* GP Int 1 */
-#define E1000_ICS_GPI_EN2   E1000_ICR_GPI_EN2   /* GP Int 2 */
-#define E1000_ICS_GPI_EN3   E1000_ICR_GPI_EN3   /* GP Int 3 */
-#define E1000_ICS_TXD_LOW   E1000_ICR_TXD_LOW
-#define E1000_ICS_SRPD      E1000_ICR_SRPD
-#define E1000_ICS_ACK       E1000_ICR_ACK       /* Receive Ack frame */
-#define E1000_ICS_MNG       E1000_ICR_MNG       /* Manageability event */
-#define E1000_ICS_DOCK      E1000_ICR_DOCK      /* Dock/Undock */
-#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_ICS_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR  /* host arb read buffer parity error */
-#define E1000_ICS_PB_PAR        E1000_ICR_PB_PAR        /* packet buffer parity error */
-#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_ICS_DSW       E1000_ICR_DSW
-#define E1000_ICS_PHYINT    E1000_ICR_PHYINT
-#define E1000_ICS_EPRST     E1000_ICR_EPRST
-
+struct e1000_host_mng_dhcp_cookie {
+	u32 signature;
+	u8 status;
+	u8 reserved0;
+	u16 vlan_id;
+	u32 reserved1;
+	u16 reserved2;
+	u8 reserved3;
+	u8 checksum;
+};
 
-/* Interrupt Mask Set */
-#define E1000_IMS_TXDW      E1000_ICR_TXDW      /* Transmit desc written back */
-#define E1000_IMS_TXQE      E1000_ICR_TXQE      /* Transmit Queue empty */
-#define E1000_IMS_LSC       E1000_ICR_LSC       /* Link Status Change */
-#define E1000_IMS_RXSEQ     E1000_ICR_RXSEQ     /* rx sequence error */
-#define E1000_IMS_RXDMT0    E1000_ICR_RXDMT0    /* rx desc min. threshold */
-#define E1000_IMS_RXO       E1000_ICR_RXO       /* rx overrun */
-#define E1000_IMS_RXT0      E1000_ICR_RXT0      /* rx timer intr */
-#define E1000_IMS_MDAC      E1000_ICR_MDAC      /* MDIO access complete */
-#define E1000_IMS_RXCFG     E1000_ICR_RXCFG     /* RX /c/ ordered set */
-#define E1000_IMS_GPI_EN0   E1000_ICR_GPI_EN0   /* GP Int 0 */
-#define E1000_IMS_GPI_EN1   E1000_ICR_GPI_EN1   /* GP Int 1 */
-#define E1000_IMS_GPI_EN2   E1000_ICR_GPI_EN2   /* GP Int 2 */
-#define E1000_IMS_GPI_EN3   E1000_ICR_GPI_EN3   /* GP Int 3 */
-#define E1000_IMS_TXD_LOW   E1000_ICR_TXD_LOW
-#define E1000_IMS_SRPD      E1000_ICR_SRPD
-#define E1000_IMS_ACK       E1000_ICR_ACK       /* Receive Ack frame */
-#define E1000_IMS_MNG       E1000_ICR_MNG       /* Manageability event */
-#define E1000_IMS_DOCK      E1000_ICR_DOCK      /* Dock/Undock */
-#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_IMS_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR  /* host arb read buffer parity error */
-#define E1000_IMS_PB_PAR        E1000_ICR_PB_PAR        /* packet buffer parity error */
-#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_IMS_DSW       E1000_ICR_DSW
-#define E1000_IMS_PHYINT    E1000_ICR_PHYINT
-#define E1000_IMS_EPRST     E1000_ICR_EPRST
-
-
-/* Interrupt Mask Clear */
-#define E1000_IMC_TXDW      E1000_ICR_TXDW      /* Transmit desc written back */
-#define E1000_IMC_TXQE      E1000_ICR_TXQE      /* Transmit Queue empty */
-#define E1000_IMC_LSC       E1000_ICR_LSC       /* Link Status Change */
-#define E1000_IMC_RXSEQ     E1000_ICR_RXSEQ     /* rx sequence error */
-#define E1000_IMC_RXDMT0    E1000_ICR_RXDMT0    /* rx desc min. threshold */
-#define E1000_IMC_RXO       E1000_ICR_RXO       /* rx overrun */
-#define E1000_IMC_RXT0      E1000_ICR_RXT0      /* rx timer intr */
-#define E1000_IMC_MDAC      E1000_ICR_MDAC      /* MDIO access complete */
-#define E1000_IMC_RXCFG     E1000_ICR_RXCFG     /* RX /c/ ordered set */
-#define E1000_IMC_GPI_EN0   E1000_ICR_GPI_EN0   /* GP Int 0 */
-#define E1000_IMC_GPI_EN1   E1000_ICR_GPI_EN1   /* GP Int 1 */
-#define E1000_IMC_GPI_EN2   E1000_ICR_GPI_EN2   /* GP Int 2 */
-#define E1000_IMC_GPI_EN3   E1000_ICR_GPI_EN3   /* GP Int 3 */
-#define E1000_IMC_TXD_LOW   E1000_ICR_TXD_LOW
-#define E1000_IMC_SRPD      E1000_ICR_SRPD
-#define E1000_IMC_ACK       E1000_ICR_ACK       /* Receive Ack frame */
-#define E1000_IMC_MNG       E1000_ICR_MNG       /* Manageability event */
-#define E1000_IMC_DOCK      E1000_ICR_DOCK      /* Dock/Undock */
-#define E1000_IMC_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_IMC_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_IMC_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR  /* host arb read buffer parity error */
-#define E1000_IMC_PB_PAR        E1000_ICR_PB_PAR        /* packet buffer parity error */
-#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_IMC_DSW       E1000_ICR_DSW
-#define E1000_IMC_PHYINT    E1000_ICR_PHYINT
-#define E1000_IMC_EPRST     E1000_ICR_EPRST
-
+/* Host Interface "Rev 1" */
+struct e1000_host_command_header {
+	u8 command_id;
+	u8 command_length;
+	u8 command_options;
+	u8 checksum;
+};
 
-/* Receive Control */
-#define E1000_RCTL_RST            0x00000001    /* Software reset */
-#define E1000_RCTL_EN             0x00000002    /* enable */
-#define E1000_RCTL_SBP            0x00000004    /* store bad packet */
-#define E1000_RCTL_UPE            0x00000008    /* unicast promiscuous enable */
-#define E1000_RCTL_MPE            0x00000010    /* multicast promiscuous enab */
-#define E1000_RCTL_LPE            0x00000020    /* long packet enable */
-#define E1000_RCTL_LBM_NO         0x00000000    /* no loopback mode */
-#define E1000_RCTL_LBM_MAC        0x00000040    /* MAC loopback mode */
-#define E1000_RCTL_LBM_SLP        0x00000080    /* serial link loopback mode */
-#define E1000_RCTL_LBM_TCVR       0x000000C0    /* tcvr loopback mode */
-#define E1000_RCTL_DTYP_MASK      0x00000C00    /* Descriptor type mask */
-#define E1000_RCTL_DTYP_PS        0x00000400    /* Packet Split descriptor */
-#define E1000_RCTL_RDMTS_HALF     0x00000000    /* rx desc min threshold size */
-#define E1000_RCTL_RDMTS_QUAT     0x00000100    /* rx desc min threshold size */
-#define E1000_RCTL_RDMTS_EIGTH    0x00000200    /* rx desc min threshold size */
-#define E1000_RCTL_MO_SHIFT       12            /* multicast offset shift */
-#define E1000_RCTL_MO_0           0x00000000    /* multicast offset 11:0 */
-#define E1000_RCTL_MO_1           0x00001000    /* multicast offset 12:1 */
-#define E1000_RCTL_MO_2           0x00002000    /* multicast offset 13:2 */
-#define E1000_RCTL_MO_3           0x00003000    /* multicast offset 15:4 */
-#define E1000_RCTL_MDR            0x00004000    /* multicast desc ring 0 */
-#define E1000_RCTL_BAM            0x00008000    /* broadcast enable */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
-#define E1000_RCTL_SZ_2048        0x00000000    /* rx buffer size 2048 */
-#define E1000_RCTL_SZ_1024        0x00010000    /* rx buffer size 1024 */
-#define E1000_RCTL_SZ_512         0x00020000    /* rx buffer size 512 */
-#define E1000_RCTL_SZ_256         0x00030000    /* rx buffer size 256 */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
-#define E1000_RCTL_SZ_16384       0x00010000    /* rx buffer size 16384 */
-#define E1000_RCTL_SZ_8192        0x00020000    /* rx buffer size 8192 */
-#define E1000_RCTL_SZ_4096        0x00030000    /* rx buffer size 4096 */
-#define E1000_RCTL_VFE            0x00040000    /* vlan filter enable */
-#define E1000_RCTL_CFIEN          0x00080000    /* canonical form enable */
-#define E1000_RCTL_CFI            0x00100000    /* canonical form indicator */
-#define E1000_RCTL_DPF            0x00400000    /* discard pause frames */
-#define E1000_RCTL_PMCF           0x00800000    /* pass MAC control frames */
-#define E1000_RCTL_BSEX           0x02000000    /* Buffer size extension */
-#define E1000_RCTL_SECRC          0x04000000    /* Strip Ethernet CRC */
-#define E1000_RCTL_FLXBUF_MASK    0x78000000    /* Flexible buffer size */
-#define E1000_RCTL_FLXBUF_SHIFT   27            /* Flexible buffer shift */
-
-/* Use byte values for the following shift parameters
- * Usage:
- *     psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
- *                  E1000_PSRCTL_BSIZE0_MASK) |
- *                ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
- *                  E1000_PSRCTL_BSIZE1_MASK) |
- *                ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
- *                  E1000_PSRCTL_BSIZE2_MASK) |
- *                ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
- *                  E1000_PSRCTL_BSIZE3_MASK))
- * where value0 = [128..16256],  default=256
- *       value1 = [1024..64512], default=4096
- *       value2 = [0..64512],    default=4096
- *       value3 = [0..64512],    default=0
- */
-
-#define E1000_PSRCTL_BSIZE0_MASK   0x0000007F
-#define E1000_PSRCTL_BSIZE1_MASK   0x00003F00
-#define E1000_PSRCTL_BSIZE2_MASK   0x003F0000
-#define E1000_PSRCTL_BSIZE3_MASK   0x3F000000
-
-#define E1000_PSRCTL_BSIZE0_SHIFT  7            /* Shift _right_ 7 */
-#define E1000_PSRCTL_BSIZE1_SHIFT  2            /* Shift _right_ 2 */
-#define E1000_PSRCTL_BSIZE2_SHIFT  6            /* Shift _left_ 6 */
-#define E1000_PSRCTL_BSIZE3_SHIFT 14            /* Shift _left_ 14 */
-
-/* SW_W_SYNC definitions */
-#define E1000_SWFW_EEP_SM     0x0001
-#define E1000_SWFW_PHY0_SM    0x0002
-#define E1000_SWFW_PHY1_SM    0x0004
-#define E1000_SWFW_MAC_CSR_SM 0x0008
-
-/* Receive Descriptor */
-#define E1000_RDT_DELAY 0x0000ffff      /* Delay timer (1=1024us) */
-#define E1000_RDT_FPDB  0x80000000      /* Flush descriptor block */
-#define E1000_RDLEN_LEN 0x0007ff80      /* descriptor length */
-#define E1000_RDH_RDH   0x0000ffff      /* receive descriptor head */
-#define E1000_RDT_RDT   0x0000ffff      /* receive descriptor tail */
-
-/* Flow Control */
-#define E1000_FCRTH_RTH  0x0000FFF8     /* Mask Bits[15:3] for RTH */
-#define E1000_FCRTH_XFCE 0x80000000     /* External Flow Control Enable */
-#define E1000_FCRTL_RTL  0x0000FFF8     /* Mask Bits[15:3] for RTL */
-#define E1000_FCRTL_XONE 0x80000000     /* Enable XON frame transmission */
-
-/* Flow Control Settings */
-#define E1000_FC_NONE     0
-#define E1000_FC_RX_PAUSE 1
-#define E1000_FC_TX_PAUSE 2
-#define E1000_FC_FULL     3
-#define E1000_FC_DEFAULT  0xFF
-
-/* Header split receive */
-#define E1000_RFCTL_ISCSI_DIS           0x00000001
-#define E1000_RFCTL_ISCSI_DWC_MASK      0x0000003E
-#define E1000_RFCTL_ISCSI_DWC_SHIFT     1
-#define E1000_RFCTL_NFSW_DIS            0x00000040
-#define E1000_RFCTL_NFSR_DIS            0x00000080
-#define E1000_RFCTL_NFS_VER_MASK        0x00000300
-#define E1000_RFCTL_NFS_VER_SHIFT       8
-#define E1000_RFCTL_IPV6_DIS            0x00000400
-#define E1000_RFCTL_IPV6_XSUM_DIS       0x00000800
-#define E1000_RFCTL_ACK_DIS             0x00001000
-#define E1000_RFCTL_ACKD_DIS            0x00002000
-#define E1000_RFCTL_IPFRSP_DIS          0x00004000
-#define E1000_RFCTL_EXTEN               0x00008000
-#define E1000_RFCTL_IPV6_EX_DIS         0x00010000
-#define E1000_RFCTL_NEW_IPV6_EXT_DIS    0x00020000
-
-/* Receive Descriptor Control */
-#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */
-#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */
-#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */
-#define E1000_RXDCTL_GRAN    0x01000000 /* RXDCTL Granularity */
+#define	E1000_HI_MAX_DATA_LENGTH	252
+struct e1000_host_command_info {
+	struct e1000_host_command_header command_header;
+	u8 command_data[E1000_HI_MAX_DATA_LENGTH];
+};
 
-/* Transmit Descriptor Control */
-#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
-#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
-#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
-#define E1000_TXDCTL_GRAN    0x01000000 /* TXDCTL Granularity */
-#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
-#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
-#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc.
-                                              still to be processed. */
-/* Transmit Configuration Word */
-#define E1000_TXCW_FD         0x00000020        /* TXCW full duplex */
-#define E1000_TXCW_HD         0x00000040        /* TXCW half duplex */
-#define E1000_TXCW_PAUSE      0x00000080        /* TXCW sym pause request */
-#define E1000_TXCW_ASM_DIR    0x00000100        /* TXCW astm pause direction */
-#define E1000_TXCW_PAUSE_MASK 0x00000180        /* TXCW pause request mask */
-#define E1000_TXCW_RF         0x00003000        /* TXCW remote fault */
-#define E1000_TXCW_NP         0x00008000        /* TXCW next page */
-#define E1000_TXCW_CW         0x0000ffff        /* TxConfigWord mask */
-#define E1000_TXCW_TXC        0x40000000        /* Transmit Config control */
-#define E1000_TXCW_ANE        0x80000000        /* Auto-neg enable */
-
-/* Receive Configuration Word */
-#define E1000_RXCW_CW    0x0000ffff     /* RxConfigWord mask */
-#define E1000_RXCW_NC    0x04000000     /* Receive config no carrier */
-#define E1000_RXCW_IV    0x08000000     /* Receive config invalid */
-#define E1000_RXCW_CC    0x10000000     /* Receive config change */
-#define E1000_RXCW_C     0x20000000     /* Receive config */
-#define E1000_RXCW_SYNCH 0x40000000     /* Receive config synch */
-#define E1000_RXCW_ANC   0x80000000     /* Auto-neg complete */
-
-/* Transmit Control */
-#define E1000_TCTL_RST    0x00000001    /* software reset */
-#define E1000_TCTL_EN     0x00000002    /* enable tx */
-#define E1000_TCTL_BCE    0x00000004    /* busy check enable */
-#define E1000_TCTL_PSP    0x00000008    /* pad short packets */
-#define E1000_TCTL_CT     0x00000ff0    /* collision threshold */
-#define E1000_TCTL_COLD   0x003ff000    /* collision distance */
-#define E1000_TCTL_SWXOFF 0x00400000    /* SW Xoff transmission */
-#define E1000_TCTL_PBE    0x00800000    /* Packet Burst Enable */
-#define E1000_TCTL_RTLC   0x01000000    /* Re-transmit on late collision */
-#define E1000_TCTL_NRTU   0x02000000    /* No Re-transmit on underrun */
-#define E1000_TCTL_MULR   0x10000000    /* Multiple request support */
-/* Extended Transmit Control */
-#define E1000_TCTL_EXT_BST_MASK  0x000003FF /* Backoff Slot Time */
-#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
-
-#define DEFAULT_80003ES2LAN_TCTL_EXT_GCEX   0x00010000
-
-/* Receive Checksum Control */
-#define E1000_RXCSUM_PCSS_MASK 0x000000FF   /* Packet Checksum Start */
-#define E1000_RXCSUM_IPOFL     0x00000100   /* IPv4 checksum offload */
-#define E1000_RXCSUM_TUOFL     0x00000200   /* TCP / UDP checksum offload */
-#define E1000_RXCSUM_IPV6OFL   0x00000400   /* IPv6 checksum offload */
-#define E1000_RXCSUM_IPPCSE    0x00001000   /* IP payload checksum enable */
-#define E1000_RXCSUM_PCSD      0x00002000   /* packet checksum disabled */
-
-/* Multiple Receive Queue Control */
-#define E1000_MRQC_ENABLE_MASK              0x00000003
-#define E1000_MRQC_ENABLE_RSS_2Q            0x00000001
-#define E1000_MRQC_ENABLE_RSS_INT           0x00000004
-#define E1000_MRQC_RSS_FIELD_MASK           0xFFFF0000
-#define E1000_MRQC_RSS_FIELD_IPV4_TCP       0x00010000
-#define E1000_MRQC_RSS_FIELD_IPV4           0x00020000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX    0x00040000
-#define E1000_MRQC_RSS_FIELD_IPV6_EX        0x00080000
-#define E1000_MRQC_RSS_FIELD_IPV6           0x00100000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP       0x00200000
-
-/* Definitions for power management and wakeup registers */
-/* Wake Up Control */
-#define E1000_WUC_APME       0x00000001 /* APM Enable */
-#define E1000_WUC_PME_EN     0x00000002 /* PME Enable */
-#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
-#define E1000_WUC_APMPME     0x00000008 /* Assert PME on APM Wakeup */
-#define E1000_WUC_SPM        0x80000000 /* Enable SPM */
-
-/* Wake Up Filter Control */
-#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
-#define E1000_WUFC_MAG  0x00000002 /* Magic Packet Wakeup Enable */
-#define E1000_WUFC_EX   0x00000004 /* Directed Exact Wakeup Enable */
-#define E1000_WUFC_MC   0x00000008 /* Directed Multicast Wakeup Enable */
-#define E1000_WUFC_BC   0x00000010 /* Broadcast Wakeup Enable */
-#define E1000_WUFC_ARP  0x00000020 /* ARP Request Packet Wakeup Enable */
-#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
-#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
-#define E1000_WUFC_IGNORE_TCO      0x00008000 /* Ignore WakeOn TCO packets */
-#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
-#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
-#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
-#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
-#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
-#define E1000_WUFC_FLX_OFFSET 16       /* Offset to the Flexible Filters bits */
-#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
+/* Host Interface "Rev 2" */
+struct e1000_host_mng_command_header {
+	u8 command_id;
+	u8 checksum;
+	u16 reserved1;
+	u16 reserved2;
+	u16 command_length;
+};
 
-/* Wake Up Status */
-#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */
-#define E1000_WUS_MAG  0x00000002 /* Magic Packet Received */
-#define E1000_WUS_EX   0x00000004 /* Directed Exact Received */
-#define E1000_WUS_MC   0x00000008 /* Directed Multicast Received */
-#define E1000_WUS_BC   0x00000010 /* Broadcast Received */
-#define E1000_WUS_ARP  0x00000020 /* ARP Request Packet Received */
-#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */
-#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */
-#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */
-#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */
-#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */
-#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */
-#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
-
-/* Management Control */
-#define E1000_MANC_SMBUS_EN      0x00000001 /* SMBus Enabled - RO */
-#define E1000_MANC_ASF_EN        0x00000002 /* ASF Enabled - RO */
-#define E1000_MANC_R_ON_FORCE    0x00000004 /* Reset on Force TCO - RO */
-#define E1000_MANC_RMCP_EN       0x00000100 /* Enable RCMP 026Fh Filtering */
-#define E1000_MANC_0298_EN       0x00000200 /* Enable RCMP 0298h Filtering */
-#define E1000_MANC_IPV4_EN       0x00000400 /* Enable IPv4 */
-#define E1000_MANC_IPV6_EN       0x00000800 /* Enable IPv6 */
-#define E1000_MANC_SNAP_EN       0x00001000 /* Accept LLC/SNAP */
-#define E1000_MANC_ARP_EN        0x00002000 /* Enable ARP Request Filtering */
-#define E1000_MANC_NEIGHBOR_EN   0x00004000 /* Enable Neighbor Discovery
-                                             * Filtering */
-#define E1000_MANC_ARP_RES_EN    0x00008000 /* Enable ARP response Filtering */
-#define E1000_MANC_TCO_RESET     0x00010000 /* TCO Reset Occurred */
-#define E1000_MANC_RCV_TCO_EN    0x00020000 /* Receive TCO Packets Enabled */
-#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
-#define E1000_MANC_RCV_ALL       0x00080000 /* Receive All Enabled */
-#define E1000_MANC_BLK_PHY_RST_ON_IDE   0x00040000 /* Block phy resets */
-#define E1000_MANC_EN_MAC_ADDR_FILTER   0x00100000 /* Enable MAC address
-                                                    * filtering */
-#define E1000_MANC_EN_MNG2HOST   0x00200000 /* Enable MNG packets to host
-                                             * memory */
-#define E1000_MANC_EN_IP_ADDR_FILTER    0x00400000 /* Enable IP address
-                                                    * filtering */
-#define E1000_MANC_EN_XSUM_FILTER   0x00800000 /* Enable checksum filtering */
-#define E1000_MANC_BR_EN         0x01000000 /* Enable broadcast filtering */
-#define E1000_MANC_SMB_REQ       0x01000000 /* SMBus Request */
-#define E1000_MANC_SMB_GNT       0x02000000 /* SMBus Grant */
-#define E1000_MANC_SMB_CLK_IN    0x04000000 /* SMBus Clock In */
-#define E1000_MANC_SMB_DATA_IN   0x08000000 /* SMBus Data In */
-#define E1000_MANC_SMB_DATA_OUT  0x10000000 /* SMBus Data Out */
-#define E1000_MANC_SMB_CLK_OUT   0x20000000 /* SMBus Clock Out */
-
-#define E1000_MANC_SMB_DATA_OUT_SHIFT  28 /* SMBus Data Out Shift */
-#define E1000_MANC_SMB_CLK_OUT_SHIFT   29 /* SMBus Clock Out Shift */
-
-/* SW Semaphore Register */
-#define E1000_SWSM_SMBI         0x00000001 /* Driver Semaphore bit */
-#define E1000_SWSM_SWESMBI      0x00000002 /* FW Semaphore bit */
-#define E1000_SWSM_WMNG         0x00000004 /* Wake MNG Clock */
-#define E1000_SWSM_DRV_LOAD     0x00000008 /* Driver Loaded Bit */
-
-/* FW Semaphore Register */
-#define E1000_FWSM_MODE_MASK    0x0000000E /* FW mode */
-#define E1000_FWSM_MODE_SHIFT            1
-#define E1000_FWSM_FW_VALID     0x00008000 /* FW established a valid mode */
-
-#define E1000_FWSM_RSPCIPHY        0x00000040 /* Reset PHY on PCI reset */
-#define E1000_FWSM_DISSW           0x10000000 /* FW disable SW Write Access */
-#define E1000_FWSM_SKUSEL_MASK     0x60000000 /* LAN SKU select */
-#define E1000_FWSM_SKUEL_SHIFT     29
-#define E1000_FWSM_SKUSEL_EMB      0x0 /* Embedded SKU */
-#define E1000_FWSM_SKUSEL_CONS     0x1 /* Consumer SKU */
-#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */
-#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */
-
-/* FFLT Debug Register */
-#define E1000_FFLT_DBG_INVC     0x00100000 /* Invalid /C/ code handling */
-
-typedef enum {
-    e1000_mng_mode_none     = 0,
-    e1000_mng_mode_asf,
-    e1000_mng_mode_pt,
-    e1000_mng_mode_ipmi,
-    e1000_mng_mode_host_interface_only
-} e1000_mng_mode;
-
-/* Host Inteface Control Register */
-#define E1000_HICR_EN           0x00000001  /* Enable Bit - RO */
-#define E1000_HICR_C            0x00000002  /* Driver sets this bit when done
-                                             * to put command in RAM */
-#define E1000_HICR_SV           0x00000004  /* Status Validity */
-#define E1000_HICR_FWR          0x00000080  /* FW reset. Set by the Host */
-
-/* Host Interface Command Interface - Address range 0x8800-0x8EFF */
-#define E1000_HI_MAX_DATA_LENGTH         252 /* Host Interface data length */
-#define E1000_HI_MAX_BLOCK_BYTE_LENGTH  1792 /* Number of bytes in range */
-#define E1000_HI_MAX_BLOCK_DWORD_LENGTH  448 /* Number of dwords in range */
-#define E1000_HI_COMMAND_TIMEOUT         500 /* Time in ms to process HI command */
-
-struct e1000_host_command_header {
-    uint8_t command_id;
-    uint8_t command_length;
-    uint8_t command_options;   /* I/F bits for command, status for return */
-    uint8_t checksum;
-};
-struct e1000_host_command_info {
-    struct e1000_host_command_header command_header;  /* Command Head/Command Result Head has 4 bytes */
-    uint8_t command_data[E1000_HI_MAX_DATA_LENGTH];   /* Command data can length 0..252 */
+#define	E1000_HI_MAX_MNG_DATA_LENGTH	0x6F8
+struct e1000_host_mng_command_info {
+	struct e1000_host_mng_command_header command_header;
+	u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
 };
 
-/* Host SMB register #0 */
-#define E1000_HSMC0R_CLKIN      0x00000001  /* SMB Clock in */
-#define E1000_HSMC0R_DATAIN     0x00000002  /* SMB Data in */
-#define E1000_HSMC0R_DATAOUT    0x00000004  /* SMB Data out */
-#define E1000_HSMC0R_CLKOUT     0x00000008  /* SMB Clock out */
-
-/* Host SMB register #1 */
-#define E1000_HSMC1R_CLKIN      E1000_HSMC0R_CLKIN
-#define E1000_HSMC1R_DATAIN     E1000_HSMC0R_DATAIN
-#define E1000_HSMC1R_DATAOUT    E1000_HSMC0R_DATAOUT
-#define E1000_HSMC1R_CLKOUT     E1000_HSMC0R_CLKOUT
-
-/* FW Status Register */
-#define E1000_FWSTS_FWS_MASK    0x000000FF  /* FW Status */
-
-/* Wake Up Packet Length */
-#define E1000_WUPL_LENGTH_MASK 0x0FFF   /* Only the lower 12 bits are valid */
-
-#define E1000_MDALIGN          4096
-
-/* PCI-Ex registers*/
-
-/* PCI-Ex Control Register */
-#define E1000_GCR_RXD_NO_SNOOP          0x00000001
-#define E1000_GCR_RXDSCW_NO_SNOOP       0x00000002
-#define E1000_GCR_RXDSCR_NO_SNOOP       0x00000004
-#define E1000_GCR_TXD_NO_SNOOP          0x00000008
-#define E1000_GCR_TXDSCW_NO_SNOOP       0x00000010
-#define E1000_GCR_TXDSCR_NO_SNOOP       0x00000020
-
-#define PCI_EX_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP         | \
-                             E1000_GCR_RXDSCW_NO_SNOOP      | \
-                             E1000_GCR_RXDSCR_NO_SNOOP      | \
-                             E1000_GCR_TXD_NO_SNOOP         | \
-                             E1000_GCR_TXDSCW_NO_SNOOP      | \
-                             E1000_GCR_TXDSCR_NO_SNOOP)
-
-#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL
-
-#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
-/* Function Active and Power State to MNG */
-#define E1000_FACTPS_FUNC0_POWER_STATE_MASK         0x00000003
-#define E1000_FACTPS_LAN0_VALID                     0x00000004
-#define E1000_FACTPS_FUNC0_AUX_EN                   0x00000008
-#define E1000_FACTPS_FUNC1_POWER_STATE_MASK         0x000000C0
-#define E1000_FACTPS_FUNC1_POWER_STATE_SHIFT        6
-#define E1000_FACTPS_LAN1_VALID                     0x00000100
-#define E1000_FACTPS_FUNC1_AUX_EN                   0x00000200
-#define E1000_FACTPS_FUNC2_POWER_STATE_MASK         0x00003000
-#define E1000_FACTPS_FUNC2_POWER_STATE_SHIFT        12
-#define E1000_FACTPS_IDE_ENABLE                     0x00004000
-#define E1000_FACTPS_FUNC2_AUX_EN                   0x00008000
-#define E1000_FACTPS_FUNC3_POWER_STATE_MASK         0x000C0000
-#define E1000_FACTPS_FUNC3_POWER_STATE_SHIFT        18
-#define E1000_FACTPS_SP_ENABLE                      0x00100000
-#define E1000_FACTPS_FUNC3_AUX_EN                   0x00200000
-#define E1000_FACTPS_FUNC4_POWER_STATE_MASK         0x03000000
-#define E1000_FACTPS_FUNC4_POWER_STATE_SHIFT        24
-#define E1000_FACTPS_IPMI_ENABLE                    0x04000000
-#define E1000_FACTPS_FUNC4_AUX_EN                   0x08000000
-#define E1000_FACTPS_MNGCG                          0x20000000
-#define E1000_FACTPS_LAN_FUNC_SEL                   0x40000000
-#define E1000_FACTPS_PM_STATE_CHANGED               0x80000000
-
-/* PCI-Ex Config Space */
-#define	PCI_EX_CONF_CAP		0xE0
-
-#define PCI_EX_LINK_STATUS           0x12
-#define PCI_EX_LINK_WIDTH_MASK       0x3F0
-#define PCI_EX_LINK_WIDTH_SHIFT      4
-
-/* EEPROM Commands - Microwire */
-#define EEPROM_READ_OPCODE_MICROWIRE  0x6  /* EEPROM read opcode */
-#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5  /* EEPROM write opcode */
-#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7  /* EEPROM erase opcode */
-#define EEPROM_EWEN_OPCODE_MICROWIRE  0x13 /* EEPROM erase/write enable */
-#define EEPROM_EWDS_OPCODE_MICROWIRE  0x10 /* EEPROM erast/write disable */
-
-/* EEPROM Commands - SPI */
-#define EEPROM_MAX_RETRY_SPI        5000 /* Max wait of 5ms, for RDY signal */
-#define EEPROM_READ_OPCODE_SPI      0x03  /* EEPROM read opcode */
-#define EEPROM_WRITE_OPCODE_SPI     0x02  /* EEPROM write opcode */
-#define EEPROM_A8_OPCODE_SPI        0x08  /* opcode bit-3 = address bit-8 */
-#define EEPROM_WREN_OPCODE_SPI      0x06  /* EEPROM set Write Enable latch */
-#define EEPROM_WRDI_OPCODE_SPI      0x04  /* EEPROM reset Write Enable latch */
-#define EEPROM_RDSR_OPCODE_SPI      0x05  /* EEPROM read Status register */
-#define EEPROM_WRSR_OPCODE_SPI      0x01  /* EEPROM write Status register */
-#define EEPROM_ERASE4K_OPCODE_SPI   0x20  /* EEPROM ERASE 4KB */
-#define EEPROM_ERASE64K_OPCODE_SPI  0xD8  /* EEPROM ERASE 64KB */
-#define EEPROM_ERASE256_OPCODE_SPI  0xDB  /* EEPROM ERASE 256B */
-
-/* EEPROM Size definitions */
-#define EEPROM_WORD_SIZE_SHIFT  6
-#define EEPROM_SIZE_SHIFT       10
-#define EEPROM_SIZE_MASK        0x1C00
-
-/* EEPROM Word Offsets */
-#define EEPROM_COMPAT                 0x0003
-#define EEPROM_ID_LED_SETTINGS        0x0004
-#define EEPROM_VERSION                0x0005
-#define EEPROM_SERDES_AMPLITUDE       0x0006 /* For SERDES output amplitude adjustment. */
-#define EEPROM_PHY_CLASS_WORD         0x0007
-#define EEPROM_INIT_CONTROL1_REG      0x000A
-#define EEPROM_INIT_CONTROL2_REG      0x000F
-#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010
-#define EEPROM_INIT_CONTROL3_PORT_B   0x0014
-#define EEPROM_INIT_3GIO_3            0x001A
-#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020
-#define EEPROM_INIT_CONTROL3_PORT_A   0x0024
-#define EEPROM_CFG                    0x0012
-#define EEPROM_FLASH_VERSION          0x0032
-#define EEPROM_CHECKSUM_REG           0x003F
-
-#define E1000_EEPROM_CFG_DONE         0x00040000   /* MNG config cycle done */
-#define E1000_EEPROM_CFG_DONE_PORT_1  0x00080000   /* ...for second port */
-
-/* Word definitions for ID LED Settings */
-#define ID_LED_RESERVED_0000 0x0000
-#define ID_LED_RESERVED_FFFF 0xFFFF
-#define ID_LED_RESERVED_82573  0xF746
-#define ID_LED_DEFAULT_82573   0x1811
-#define ID_LED_DEFAULT       ((ID_LED_OFF1_ON2 << 12) | \
-                              (ID_LED_OFF1_OFF2 << 8) | \
-                              (ID_LED_DEF1_DEF2 << 4) | \
-                              (ID_LED_DEF1_DEF2))
-#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
-                                 (ID_LED_DEF1_OFF2 <<  8) | \
-                                 (ID_LED_DEF1_ON2  <<  4) | \
-                                 (ID_LED_DEF1_DEF2))
-#define ID_LED_DEF1_DEF2     0x1
-#define ID_LED_DEF1_ON2      0x2
-#define ID_LED_DEF1_OFF2     0x3
-#define ID_LED_ON1_DEF2      0x4
-#define ID_LED_ON1_ON2       0x5
-#define ID_LED_ON1_OFF2      0x6
-#define ID_LED_OFF1_DEF2     0x7
-#define ID_LED_OFF1_ON2      0x8
-#define ID_LED_OFF1_OFF2     0x9
-
-#define IGP_ACTIVITY_LED_MASK   0xFFFFF0FF
-#define IGP_ACTIVITY_LED_ENABLE 0x0300
-#define IGP_LED3_MODE           0x07000000
-
-
-/* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */
-#define EEPROM_SERDES_AMPLITUDE_MASK  0x000F
-
-/* Mask bit for PHY class in Word 7 of the EEPROM */
-#define EEPROM_PHY_CLASS_A   0x8000
-
-/* Mask bits for fields in Word 0x0a of the EEPROM */
-#define EEPROM_WORD0A_ILOS   0x0010
-#define EEPROM_WORD0A_SWDPIO 0x01E0
-#define EEPROM_WORD0A_LRST   0x0200
-#define EEPROM_WORD0A_FD     0x0400
-#define EEPROM_WORD0A_66MHZ  0x0800
-
-/* Mask bits for fields in Word 0x0f of the EEPROM */
-#define EEPROM_WORD0F_PAUSE_MASK 0x3000
-#define EEPROM_WORD0F_PAUSE      0x1000
-#define EEPROM_WORD0F_ASM_DIR    0x2000
-#define EEPROM_WORD0F_ANE        0x0800
-#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
-#define EEPROM_WORD0F_LPLU       0x0001
-
-/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */
-#define EEPROM_WORD1020_GIGA_DISABLE         0x0010
-#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008
-
-/* Mask bits for fields in Word 0x1a of the EEPROM */
-#define EEPROM_WORD1A_ASPM_MASK  0x000C
-
-/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */
-#define EEPROM_SUM 0xBABA
-
-/* EEPROM Map defines (WORD OFFSETS)*/
-#define EEPROM_NODE_ADDRESS_BYTE_0 0
-#define EEPROM_PBA_BYTE_1          8
-
-#define EEPROM_RESERVED_WORD          0xFFFF
-
-/* EEPROM Map Sizes (Byte Counts) */
-#define PBA_SIZE 4
-
-/* Collision related configuration parameters */
-#define E1000_COLLISION_THRESHOLD       15
-#define E1000_CT_SHIFT                  4
-/* Collision distance is a 0-based value that applies to
- * half-duplex-capable hardware only. */
-#define E1000_COLLISION_DISTANCE        63
-#define E1000_COLLISION_DISTANCE_82542  64
-#define E1000_FDX_COLLISION_DISTANCE    E1000_COLLISION_DISTANCE
-#define E1000_HDX_COLLISION_DISTANCE    E1000_COLLISION_DISTANCE
-#define E1000_COLD_SHIFT                12
-
-/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
-#define REQ_TX_DESCRIPTOR_MULTIPLE  8
-#define REQ_RX_DESCRIPTOR_MULTIPLE  8
-
-/* Default values for the transmit IPG register */
-#define DEFAULT_82542_TIPG_IPGT        10
-#define DEFAULT_82543_TIPG_IPGT_FIBER  9
-#define DEFAULT_82543_TIPG_IPGT_COPPER 8
-
-#define E1000_TIPG_IPGT_MASK  0x000003FF
-#define E1000_TIPG_IPGR1_MASK 0x000FFC00
-#define E1000_TIPG_IPGR2_MASK 0x3FF00000
-
-#define DEFAULT_82542_TIPG_IPGR1 2
-#define DEFAULT_82543_TIPG_IPGR1 8
-#define E1000_TIPG_IPGR1_SHIFT  10
-
-#define DEFAULT_82542_TIPG_IPGR2 10
-#define DEFAULT_82543_TIPG_IPGR2 6
-#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
-#define E1000_TIPG_IPGR2_SHIFT  20
-
-#define DEFAULT_80003ES2LAN_TIPG_IPGT_10_100 0x00000009
-#define DEFAULT_80003ES2LAN_TIPG_IPGT_1000   0x00000008
-#define E1000_TXDMAC_DPP 0x00000001
-
-/* Adaptive IFS defines */
-#define TX_THRESHOLD_START     8
-#define TX_THRESHOLD_INCREMENT 10
-#define TX_THRESHOLD_DECREMENT 1
-#define TX_THRESHOLD_STOP      190
-#define TX_THRESHOLD_DISABLE   0
-#define TX_THRESHOLD_TIMER_MS  10000
-#define MIN_NUM_XMITS          1000
-#define IFS_MAX                80
-#define IFS_STEP               10
-#define IFS_MIN                40
-#define IFS_RATIO              4
-
-/* Extended Configuration Control and Size */
-#define E1000_EXTCNF_CTRL_PCIE_WRITE_ENABLE 0x00000001
-#define E1000_EXTCNF_CTRL_PHY_WRITE_ENABLE  0x00000002
-#define E1000_EXTCNF_CTRL_D_UD_ENABLE       0x00000004
-#define E1000_EXTCNF_CTRL_D_UD_LATENCY      0x00000008
-#define E1000_EXTCNF_CTRL_D_UD_OWNER        0x00000010
-#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
-#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER   0x0FFF0000
-
-#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH    0x000000FF
-#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH   0x0000FF00
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH   0x00FF0000
-#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE  0x00000001
-#define E1000_EXTCNF_CTRL_SWFLAG            0x00000020
-
-/* PBA constants */
-#define E1000_PBA_8K 0x0008    /* 8KB, default Rx allocation */
-#define E1000_PBA_12K 0x000C    /* 12KB, default Rx allocation */
-#define E1000_PBA_16K 0x0010    /* 16KB, default TX allocation */
-#define E1000_PBA_22K 0x0016
-#define E1000_PBA_24K 0x0018
-#define E1000_PBA_30K 0x001E
-#define E1000_PBA_32K 0x0020
-#define E1000_PBA_34K 0x0022
-#define E1000_PBA_38K 0x0026
-#define E1000_PBA_40K 0x0028
-#define E1000_PBA_48K 0x0030    /* 48KB, default RX allocation */
-
-#define E1000_PBS_16K E1000_PBA_16K
-
-#ifndef FIFO_WORKAROUND
-/* FIFO constants */
-#define E1000_FIFO_GRANULARITY 0x10
-#define E1000_FIFO_MULTIPLIER  0x80
-#define E1000_FIFO_HDR_SIZE    0x10
-#define E1000_82547_FIFO_PAD   0x3E0
-
-#define E1000_ROUNDUP(size, unit) (((size) + (unit) - 1) & ~((unit) - 1))
-
-#endif /* FIFO_WORKAROUND */
-/* Flow Control Constants */
-#define FLOW_CONTROL_ADDRESS_LOW  0x00C28001
-#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
-#define FLOW_CONTROL_TYPE         0x8808
-
-/* The historical defaults for the flow control values are given below. */
-#define FC_DEFAULT_HI_THRESH        (0x8000)    /* 32KB */
-#define FC_DEFAULT_LO_THRESH        (0x4000)    /* 16KB */
-#define FC_DEFAULT_TX_TIMER         (0x100)     /* ~130 us */
-
-/* PCIX Config space */
-#define PCIX_COMMAND_REGISTER    0xE6
-#define PCIX_STATUS_REGISTER_LO  0xE8
-#define PCIX_STATUS_REGISTER_HI  0xEA
-
-#define PCIX_COMMAND_MMRBC_MASK      0x000C
-#define PCIX_COMMAND_MMRBC_SHIFT     0x2
-#define PCIX_STATUS_HI_MMRBC_MASK    0x0060
-#define PCIX_STATUS_HI_MMRBC_SHIFT   0x5
-#define PCIX_STATUS_HI_MMRBC_4K      0x3
-#define PCIX_STATUS_HI_MMRBC_2K      0x2
-
-
-/* Number of bits required to shift right the "pause" bits from the
- * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register.
- */
-#define PAUSE_SHIFT 5
-
-/* Number of bits required to shift left the "SWDPIO" bits from the
- * EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field in the CTRL register.
- */
-#define SWDPIO_SHIFT 17
-
-/* Number of bits required to shift left the "SWDPIO_EXT" bits from the
- * EEPROM word F (bits 7:4) to the bits 11:8 of The Extended CTRL register.
- */
-#define SWDPIO__EXT_SHIFT 4
-
-/* Number of bits required to shift left the "ILOS" bit from the EEPROM
- * (bit 4) to the "ILOS" (bit 7) field in the CTRL register.
- */
-#define ILOS_SHIFT  3
-
-
-#define RECEIVE_BUFFER_ALIGN_SIZE  (256)
-
-/* Number of milliseconds we wait for auto-negotiation to complete */
-#define LINK_UP_TIMEOUT             500
-
-/* Number of 100 microseconds we wait for PCI Express master disable */
-#define MASTER_DISABLE_TIMEOUT      800
-/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */
-#define AUTO_READ_DONE_TIMEOUT      10
-/* Number of milliseconds we wait for PHY configuration done after MAC reset */
-#define PHY_CFG_TIMEOUT             100
-
-#define E1000_TX_BUFFER_SIZE ((uint32_t)1514)
-
-/* The carrier extension symbol, as received by the NIC. */
-#define CARRIER_EXTENSION   0x0F
-
-/* TBI_ACCEPT macro definition:
- *
- * This macro requires:
- *      adapter = a pointer to struct e1000_hw
- *      status = the 8 bit status field of the RX descriptor with EOP set
- *      error = the 8 bit error field of the RX descriptor with EOP set
- *      length = the sum of all the length fields of the RX descriptors that
- *               make up the current frame
- *      last_byte = the last byte of the frame DMAed by the hardware
- *      max_frame_length = the maximum frame length we want to accept.
- *      min_frame_length = the minimum frame length we want to accept.
- *
- * This macro is a conditional that should be used in the interrupt
- * handler's Rx processing routine when RxErrors have been detected.
- *
- * Typical use:
- *  ...
- *  if (TBI_ACCEPT) {
- *      accept_frame = TRUE;
- *      e1000_tbi_adjust_stats(adapter, MacAddress);
- *      frame_length--;
- *  } else {
- *      accept_frame = FALSE;
- *  }
- *  ...
- */
-
-#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \
-    ((adapter)->tbi_compatibility_on && \
-     (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
-     ((last_byte) == CARRIER_EXTENSION) && \
-     (((status) & E1000_RXD_STAT_VP) ? \
-          (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \
-           ((length) <= ((adapter)->max_frame_size + 1))) : \
-          (((length) > (adapter)->min_frame_size) && \
-           ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1)))))
-
-
-/* Structures, enums, and macros for the PHY */
-
-/* Bit definitions for the Management Data IO (MDIO) and Management Data
- * Clock (MDC) pins in the Device Control Register.
- */
-#define E1000_CTRL_PHY_RESET_DIR  E1000_CTRL_SWDPIO0
-#define E1000_CTRL_PHY_RESET      E1000_CTRL_SWDPIN0
-#define E1000_CTRL_MDIO_DIR       E1000_CTRL_SWDPIO2
-#define E1000_CTRL_MDIO           E1000_CTRL_SWDPIN2
-#define E1000_CTRL_MDC_DIR        E1000_CTRL_SWDPIO3
-#define E1000_CTRL_MDC            E1000_CTRL_SWDPIN3
-#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
-#define E1000_CTRL_PHY_RESET4     E1000_CTRL_EXT_SDP4_DATA
-
-
-/* PHY 1000 MII Register/Bit Definitions */
-/* PHY Registers defined by IEEE */
-#define PHY_CTRL         0x00 /* Control Register */
-#define PHY_STATUS       0x01 /* Status Regiser */
-#define PHY_ID1          0x02 /* Phy Id Reg (word 1) */
-#define PHY_ID2          0x03 /* Phy Id Reg (word 2) */
-#define PHY_AUTONEG_ADV  0x04 /* Autoneg Advertisement */
-#define PHY_LP_ABILITY   0x05 /* Link Partner Ability (Base Page) */
-#define PHY_AUTONEG_EXP  0x06 /* Autoneg Expansion Reg */
-#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */
-#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
-#define PHY_1000T_CTRL   0x09 /* 1000Base-T Control Reg */
-#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
-#define PHY_EXT_STATUS   0x0F /* Extended Status Reg */
-
-#define MAX_PHY_REG_ADDRESS        0x1F  /* 5 bit address bus (0-0x1F) */
-#define MAX_PHY_MULTI_PAGE_REG     0xF   /* Registers equal on all pages */
-
-/* M88E1000 Specific Registers */
-#define M88E1000_PHY_SPEC_CTRL     0x10  /* PHY Specific Control Register */
-#define M88E1000_PHY_SPEC_STATUS   0x11  /* PHY Specific Status Register */
-#define M88E1000_INT_ENABLE        0x12  /* Interrupt Enable Register */
-#define M88E1000_INT_STATUS        0x13  /* Interrupt Status Register */
-#define M88E1000_EXT_PHY_SPEC_CTRL 0x14  /* Extended PHY Specific Control */
-#define M88E1000_RX_ERR_CNTR       0x15  /* Receive Error Counter */
-
-#define M88E1000_PHY_EXT_CTRL      0x1A  /* PHY extend control register */
-#define M88E1000_PHY_PAGE_SELECT   0x1D  /* Reg 29 for page number setting */
-#define M88E1000_PHY_GEN_CONTROL   0x1E  /* Its meaning depends on reg 29 */
-#define M88E1000_PHY_VCO_REG_BIT8  0x100 /* Bits 8 & 11 are adjusted for */
-#define M88E1000_PHY_VCO_REG_BIT11 0x800    /* improved BER performance */
-
-#define IGP01E1000_IEEE_REGS_PAGE  0x0000
-#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
-#define IGP01E1000_IEEE_FORCE_GIGA      0x0140
-
-/* IGP01E1000 Specific Registers */
-#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */
-#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */
-#define IGP01E1000_PHY_PORT_CTRL   0x12 /* PHY Specific Control Register */
-#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */
-#define IGP01E1000_GMII_FIFO       0x14 /* GMII FIFO Register */
-#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */
-#define IGP02E1000_PHY_POWER_MGMT      0x19
-#define IGP01E1000_PHY_PAGE_SELECT     0x1F /* PHY Page Select Core Register */
-
-/* IGP01E1000 AGC Registers - stores the cable length values*/
-#define IGP01E1000_PHY_AGC_A        0x1172
-#define IGP01E1000_PHY_AGC_B        0x1272
-#define IGP01E1000_PHY_AGC_C        0x1472
-#define IGP01E1000_PHY_AGC_D        0x1872
-
-/* IGP02E1000 AGC Registers for cable length values */
-#define IGP02E1000_PHY_AGC_A        0x11B1
-#define IGP02E1000_PHY_AGC_B        0x12B1
-#define IGP02E1000_PHY_AGC_C        0x14B1
-#define IGP02E1000_PHY_AGC_D        0x18B1
-
-/* IGP01E1000 DSP Reset Register */
-#define IGP01E1000_PHY_DSP_RESET   0x1F33
-#define IGP01E1000_PHY_DSP_SET     0x1F71
-#define IGP01E1000_PHY_DSP_FFE     0x1F35
-
-#define IGP01E1000_PHY_CHANNEL_NUM    4
-#define IGP02E1000_PHY_CHANNEL_NUM    4
-
-#define IGP01E1000_PHY_AGC_PARAM_A    0x1171
-#define IGP01E1000_PHY_AGC_PARAM_B    0x1271
-#define IGP01E1000_PHY_AGC_PARAM_C    0x1471
-#define IGP01E1000_PHY_AGC_PARAM_D    0x1871
-
-#define IGP01E1000_PHY_EDAC_MU_INDEX        0xC000
-#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
-
-#define IGP01E1000_PHY_ANALOG_TX_STATE      0x2890
-#define IGP01E1000_PHY_ANALOG_CLASS_A       0x2000
-#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE  0x0004
-#define IGP01E1000_PHY_DSP_FFE_CM_CP        0x0069
-
-#define IGP01E1000_PHY_DSP_FFE_DEFAULT      0x002A
-/* IGP01E1000 PCS Initialization register - stores the polarity status when
- * speed = 1000 Mbps. */
-#define IGP01E1000_PHY_PCS_INIT_REG  0x00B4
-#define IGP01E1000_PHY_PCS_CTRL_REG  0x00B5
-
-#define IGP01E1000_ANALOG_REGS_PAGE  0x20C0
-
-/* Bits...
- * 15-5: page
- * 4-0: register offset
- */
-#define GG82563_PAGE_SHIFT        5
-#define GG82563_REG(page, reg)    \
-        (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
-#define GG82563_MIN_ALT_REG       30
-
-/* GG82563 Specific Registers */
-#define GG82563_PHY_SPEC_CTRL           \
-        GG82563_REG(0, 16) /* PHY Specific Control */
-#define GG82563_PHY_SPEC_STATUS         \
-        GG82563_REG(0, 17) /* PHY Specific Status */
-#define GG82563_PHY_INT_ENABLE          \
-        GG82563_REG(0, 18) /* Interrupt Enable */
-#define GG82563_PHY_SPEC_STATUS_2       \
-        GG82563_REG(0, 19) /* PHY Specific Status 2 */
-#define GG82563_PHY_RX_ERR_CNTR         \
-        GG82563_REG(0, 21) /* Receive Error Counter */
-#define GG82563_PHY_PAGE_SELECT         \
-        GG82563_REG(0, 22) /* Page Select */
-#define GG82563_PHY_SPEC_CTRL_2         \
-        GG82563_REG(0, 26) /* PHY Specific Control 2 */
-#define GG82563_PHY_PAGE_SELECT_ALT     \
-        GG82563_REG(0, 29) /* Alternate Page Select */
-#define GG82563_PHY_TEST_CLK_CTRL       \
-        GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */
-
-#define GG82563_PHY_MAC_SPEC_CTRL       \
-        GG82563_REG(2, 21) /* MAC Specific Control Register */
-#define GG82563_PHY_MAC_SPEC_CTRL_2     \
-        GG82563_REG(2, 26) /* MAC Specific Control 2 */
-
-#define GG82563_PHY_DSP_DISTANCE    \
-        GG82563_REG(5, 26) /* DSP Distance */
-
-/* Page 193 - Port Control Registers */
-#define GG82563_PHY_KMRN_MODE_CTRL   \
-        GG82563_REG(193, 16) /* Kumeran Mode Control */
-#define GG82563_PHY_PORT_RESET          \
-        GG82563_REG(193, 17) /* Port Reset */
-#define GG82563_PHY_REVISION_ID         \
-        GG82563_REG(193, 18) /* Revision ID */
-#define GG82563_PHY_DEVICE_ID           \
-        GG82563_REG(193, 19) /* Device ID */
-#define GG82563_PHY_PWR_MGMT_CTRL       \
-        GG82563_REG(193, 20) /* Power Management Control */
-#define GG82563_PHY_RATE_ADAPT_CTRL     \
-        GG82563_REG(193, 25) /* Rate Adaptation Control */
-
-/* Page 194 - KMRN Registers */
-#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \
-        GG82563_REG(194, 16) /* FIFO's Control/Status */
-#define GG82563_PHY_KMRN_CTRL           \
-        GG82563_REG(194, 17) /* Control */
-#define GG82563_PHY_INBAND_CTRL         \
-        GG82563_REG(194, 18) /* Inband Control */
-#define GG82563_PHY_KMRN_DIAGNOSTIC     \
-        GG82563_REG(194, 19) /* Diagnostic */
-#define GG82563_PHY_ACK_TIMEOUTS        \
-        GG82563_REG(194, 20) /* Acknowledge Timeouts */
-#define GG82563_PHY_ADV_ABILITY         \
-        GG82563_REG(194, 21) /* Advertised Ability */
-#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \
-        GG82563_REG(194, 23) /* Link Partner Advertised Ability */
-#define GG82563_PHY_ADV_NEXT_PAGE       \
-        GG82563_REG(194, 24) /* Advertised Next Page */
-#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \
-        GG82563_REG(194, 25) /* Link Partner Advertised Next page */
-#define GG82563_PHY_KMRN_MISC           \
-        GG82563_REG(194, 26) /* Misc. */
-
-/* PHY Control Register */
-#define MII_CR_SPEED_SELECT_MSB 0x0040  /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_COLL_TEST_ENABLE 0x0080  /* Collision test enable */
-#define MII_CR_FULL_DUPLEX      0x0100  /* FDX =1, half duplex =0 */
-#define MII_CR_RESTART_AUTO_NEG 0x0200  /* Restart auto negotiation */
-#define MII_CR_ISOLATE          0x0400  /* Isolate PHY from MII */
-#define MII_CR_POWER_DOWN       0x0800  /* Power down */
-#define MII_CR_AUTO_NEG_EN      0x1000  /* Auto Neg Enable */
-#define MII_CR_SPEED_SELECT_LSB 0x2000  /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_LOOPBACK         0x4000  /* 0 = normal, 1 = loopback */
-#define MII_CR_RESET            0x8000  /* 0 = normal, 1 = PHY reset */
-
-/* PHY Status Register */
-#define MII_SR_EXTENDED_CAPS     0x0001 /* Extended register capabilities */
-#define MII_SR_JABBER_DETECT     0x0002 /* Jabber Detected */
-#define MII_SR_LINK_STATUS       0x0004 /* Link Status 1 = link */
-#define MII_SR_AUTONEG_CAPS      0x0008 /* Auto Neg Capable */
-#define MII_SR_REMOTE_FAULT      0x0010 /* Remote Fault Detect */
-#define MII_SR_AUTONEG_COMPLETE  0x0020 /* Auto Neg Complete */
-#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
-#define MII_SR_EXTENDED_STATUS   0x0100 /* Ext. status info in Reg 0x0F */
-#define MII_SR_100T2_HD_CAPS     0x0200 /* 100T2 Half Duplex Capable */
-#define MII_SR_100T2_FD_CAPS     0x0400 /* 100T2 Full Duplex Capable */
-#define MII_SR_10T_HD_CAPS       0x0800 /* 10T   Half Duplex Capable */
-#define MII_SR_10T_FD_CAPS       0x1000 /* 10T   Full Duplex Capable */
-#define MII_SR_100X_HD_CAPS      0x2000 /* 100X  Half Duplex Capable */
-#define MII_SR_100X_FD_CAPS      0x4000 /* 100X  Full Duplex Capable */
-#define MII_SR_100T4_CAPS        0x8000 /* 100T4 Capable */
+#include "e1000_mac.h"
+#include "e1000_phy.h"
+#include "e1000_nvm.h"
+#include "e1000_manage.h"
 
-/* Autoneg Advertisement Register */
-#define NWAY_AR_SELECTOR_FIELD 0x0001   /* indicates IEEE 802.3 CSMA/CD */
-#define NWAY_AR_10T_HD_CAPS    0x0020   /* 10T   Half Duplex Capable */
-#define NWAY_AR_10T_FD_CAPS    0x0040   /* 10T   Full Duplex Capable */
-#define NWAY_AR_100TX_HD_CAPS  0x0080   /* 100TX Half Duplex Capable */
-#define NWAY_AR_100TX_FD_CAPS  0x0100   /* 100TX Full Duplex Capable */
-#define NWAY_AR_100T4_CAPS     0x0200   /* 100T4 Capable */
-#define NWAY_AR_PAUSE          0x0400   /* Pause operation desired */
-#define NWAY_AR_ASM_DIR        0x0800   /* Asymmetric Pause Direction bit */
-#define NWAY_AR_REMOTE_FAULT   0x2000   /* Remote Fault detected */
-#define NWAY_AR_NEXT_PAGE      0x8000   /* Next Page ability supported */
-
-/* Link Partner Ability Register (Base Page) */
-#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
-#define NWAY_LPAR_10T_HD_CAPS    0x0020 /* LP is 10T   Half Duplex Capable */
-#define NWAY_LPAR_10T_FD_CAPS    0x0040 /* LP is 10T   Full Duplex Capable */
-#define NWAY_LPAR_100TX_HD_CAPS  0x0080 /* LP is 100TX Half Duplex Capable */
-#define NWAY_LPAR_100TX_FD_CAPS  0x0100 /* LP is 100TX Full Duplex Capable */
-#define NWAY_LPAR_100T4_CAPS     0x0200 /* LP is 100T4 Capable */
-#define NWAY_LPAR_PAUSE          0x0400 /* LP Pause operation desired */
-#define NWAY_LPAR_ASM_DIR        0x0800 /* LP Asymmetric Pause Direction bit */
-#define NWAY_LPAR_REMOTE_FAULT   0x2000 /* LP has detected Remote Fault */
-#define NWAY_LPAR_ACKNOWLEDGE    0x4000 /* LP has rx'd link code word */
-#define NWAY_LPAR_NEXT_PAGE      0x8000 /* Next Page ability supported */
-
-/* Autoneg Expansion Register */
-#define NWAY_ER_LP_NWAY_CAPS      0x0001 /* LP has Auto Neg Capability */
-#define NWAY_ER_PAGE_RXD          0x0002 /* LP is 10T   Half Duplex Capable */
-#define NWAY_ER_NEXT_PAGE_CAPS    0x0004 /* LP is 10T   Full Duplex Capable */
-#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
-#define NWAY_ER_PAR_DETECT_FAULT  0x0010 /* LP is 100TX Full Duplex Capable */
-
-/* Next Page TX Register */
-#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
-#define NPTX_TOGGLE         0x0800 /* Toggles between exchanges
-                                    * of different NP
-                                    */
-#define NPTX_ACKNOWLDGE2    0x1000 /* 1 = will comply with msg
-                                    * 0 = cannot comply with msg
-                                    */
-#define NPTX_MSG_PAGE       0x2000 /* formatted(1)/unformatted(0) pg */
-#define NPTX_NEXT_PAGE      0x8000 /* 1 = addition NP will follow
-                                    * 0 = sending last NP
-                                    */
-
-/* Link Partner Next Page Register */
-#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
-#define LP_RNPR_TOGGLE         0x0800 /* Toggles between exchanges
-                                       * of different NP
-                                       */
-#define LP_RNPR_ACKNOWLDGE2    0x1000 /* 1 = will comply with msg
-                                       * 0 = cannot comply with msg
-                                       */
-#define LP_RNPR_MSG_PAGE       0x2000  /* formatted(1)/unformatted(0) pg */
-#define LP_RNPR_ACKNOWLDGE     0x4000  /* 1 = ACK / 0 = NO ACK */
-#define LP_RNPR_NEXT_PAGE      0x8000  /* 1 = addition NP will follow
-                                        * 0 = sending last NP
-                                        */
-
-/* 1000BASE-T Control Register */
-#define CR_1000T_ASYM_PAUSE      0x0080 /* Advertise asymmetric pause bit */
-#define CR_1000T_HD_CAPS         0x0100 /* Advertise 1000T HD capability */
-#define CR_1000T_FD_CAPS         0x0200 /* Advertise 1000T FD capability  */
-#define CR_1000T_REPEATER_DTE    0x0400 /* 1=Repeater/switch device port */
-                                        /* 0=DTE device */
-#define CR_1000T_MS_VALUE        0x0800 /* 1=Configure PHY as Master */
-                                        /* 0=Configure PHY as Slave */
-#define CR_1000T_MS_ENABLE       0x1000 /* 1=Master/Slave manual config value */
-                                        /* 0=Automatic Master/Slave config */
-#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
-#define CR_1000T_TEST_MODE_1     0x2000 /* Transmit Waveform test */
-#define CR_1000T_TEST_MODE_2     0x4000 /* Master Transmit Jitter test */
-#define CR_1000T_TEST_MODE_3     0x6000 /* Slave Transmit Jitter test */
-#define CR_1000T_TEST_MODE_4     0x8000 /* Transmitter Distortion test */
-
-/* 1000BASE-T Status Register */
-#define SR_1000T_IDLE_ERROR_CNT   0x00FF /* Num idle errors since last read */
-#define SR_1000T_ASYM_PAUSE_DIR   0x0100 /* LP asymmetric pause direction bit */
-#define SR_1000T_LP_HD_CAPS       0x0400 /* LP is 1000T HD capable */
-#define SR_1000T_LP_FD_CAPS       0x0800 /* LP is 1000T FD capable */
-#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
-#define SR_1000T_LOCAL_RX_STATUS  0x2000 /* Local receiver OK */
-#define SR_1000T_MS_CONFIG_RES    0x4000 /* 1=Local TX is Master, 0=Slave */
-#define SR_1000T_MS_CONFIG_FAULT  0x8000 /* Master/Slave config fault */
-#define SR_1000T_REMOTE_RX_STATUS_SHIFT          12
-#define SR_1000T_LOCAL_RX_STATUS_SHIFT           13
-#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT    5
-#define FFE_IDLE_ERR_COUNT_TIMEOUT_20            20
-#define FFE_IDLE_ERR_COUNT_TIMEOUT_100           100
-
-/* Extended Status Register */
-#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */
-#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */
-#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */
-#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */
-
-#define PHY_TX_POLARITY_MASK   0x0100 /* register 10h bit 8 (polarity bit) */
-#define PHY_TX_NORMAL_POLARITY 0      /* register 10h bit 8 (normal polarity) */
-
-#define AUTO_POLARITY_DISABLE  0x0010 /* register 11h bit 4 */
-                                      /* (0=enable, 1=disable) */
-
-/* M88E1000 PHY Specific Control Register */
-#define M88E1000_PSCR_JABBER_DISABLE    0x0001 /* 1=Jabber Function disabled */
-#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
-#define M88E1000_PSCR_SQE_TEST          0x0004 /* 1=SQE Test enabled */
-#define M88E1000_PSCR_CLK125_DISABLE    0x0010 /* 1=CLK125 low,
-                                                * 0=CLK125 toggling
-                                                */
-#define M88E1000_PSCR_MDI_MANUAL_MODE  0x0000  /* MDI Crossover Mode bits 6:5 */
-                                               /* Manual MDI configuration */
-#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020  /* Manual MDIX configuration */
-#define M88E1000_PSCR_AUTO_X_1000T     0x0040  /* 1000BASE-T: Auto crossover,
-                                                *  100BASE-TX/10BASE-T:
-                                                *  MDI Mode
-                                                */
-#define M88E1000_PSCR_AUTO_X_MODE      0x0060  /* Auto crossover enabled
-                                                * all speeds.
-                                                */
-#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080
-                                        /* 1=Enable Extended 10BASE-T distance
-                                         * (Lower 10BASE-T RX Threshold)
-                                         * 0=Normal 10BASE-T RX Threshold */
-#define M88E1000_PSCR_MII_5BIT_ENABLE      0x0100
-                                        /* 1=5-Bit interface in 100BASE-TX
-                                         * 0=MII interface in 100BASE-TX */
-#define M88E1000_PSCR_SCRAMBLER_DISABLE    0x0200 /* 1=Scrambler disable */
-#define M88E1000_PSCR_FORCE_LINK_GOOD      0x0400 /* 1=Force link good */
-#define M88E1000_PSCR_ASSERT_CRS_ON_TX     0x0800 /* 1=Assert CRS on Transmit */
-
-#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT    1
-#define M88E1000_PSCR_AUTO_X_MODE_SHIFT          5
-#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
-
-/* M88E1000 PHY Specific Status Register */
-#define M88E1000_PSSR_JABBER             0x0001 /* 1=Jabber */
-#define M88E1000_PSSR_REV_POLARITY       0x0002 /* 1=Polarity reversed */
-#define M88E1000_PSSR_DOWNSHIFT          0x0020 /* 1=Downshifted */
-#define M88E1000_PSSR_MDIX               0x0040 /* 1=MDIX; 0=MDI */
-#define M88E1000_PSSR_CABLE_LENGTH       0x0380 /* 0=<50M;1=50-80M;2=80-110M;
-                                            * 3=110-140M;4=>140M */
-#define M88E1000_PSSR_LINK               0x0400 /* 1=Link up, 0=Link down */
-#define M88E1000_PSSR_SPD_DPLX_RESOLVED  0x0800 /* 1=Speed & Duplex resolved */
-#define M88E1000_PSSR_PAGE_RCVD          0x1000 /* 1=Page received */
-#define M88E1000_PSSR_DPLX               0x2000 /* 1=Duplex 0=Half Duplex */
-#define M88E1000_PSSR_SPEED              0xC000 /* Speed, bits 14:15 */
-#define M88E1000_PSSR_10MBS              0x0000 /* 00=10Mbs */
-#define M88E1000_PSSR_100MBS             0x4000 /* 01=100Mbs */
-#define M88E1000_PSSR_1000MBS            0x8000 /* 10=1000Mbs */
-
-#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
-#define M88E1000_PSSR_DOWNSHIFT_SHIFT    5
-#define M88E1000_PSSR_MDIX_SHIFT         6
-#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
-
-/* M88E1000 Extended PHY Specific Control Register */
-#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
-#define M88E1000_EPSCR_DOWN_NO_IDLE   0x8000 /* 1=Lost lock detect enabled.
-                                              * Will assert lost lock and bring
-                                              * link down if idle not seen
-                                              * within 1ms in 1000BASE-T
-                                              */
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the master */
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X   0x0000
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X   0x0400
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X   0x0800
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X   0x0C00
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the slave */
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK  0x0300
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS   0x0000
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X    0x0100
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X    0x0200
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X    0x0300
-#define M88E1000_EPSCR_TX_CLK_2_5     0x0060 /* 2.5 MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_25      0x0070 /* 25  MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_0       0x0000 /* NO  TX_CLK */
-
-/* M88EC018 Rev 2 specific DownShift settings */
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK  0x0E00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X    0x0000
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X    0x0200
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X    0x0400
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X    0x0600
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X    0x0800
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X    0x0A00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X    0x0C00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X    0x0E00
-
-/* IGP01E1000 Specific Port Config Register - R/W */
-#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT  0x0010
-#define IGP01E1000_PSCFR_PRE_EN                0x0020
-#define IGP01E1000_PSCFR_SMART_SPEED           0x0080
-#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK    0x0100
-#define IGP01E1000_PSCFR_DISABLE_JABBER        0x0400
-#define IGP01E1000_PSCFR_DISABLE_TRANSMIT      0x2000
-
-/* IGP01E1000 Specific Port Status Register - R/O */
-#define IGP01E1000_PSSR_AUTONEG_FAILED         0x0001 /* RO LH SC */
-#define IGP01E1000_PSSR_POLARITY_REVERSED      0x0002
-#define IGP01E1000_PSSR_CABLE_LENGTH           0x007C
-#define IGP01E1000_PSSR_FULL_DUPLEX            0x0200
-#define IGP01E1000_PSSR_LINK_UP                0x0400
-#define IGP01E1000_PSSR_MDIX                   0x0800
-#define IGP01E1000_PSSR_SPEED_MASK             0xC000 /* speed bits mask */
-#define IGP01E1000_PSSR_SPEED_10MBPS           0x4000
-#define IGP01E1000_PSSR_SPEED_100MBPS          0x8000
-#define IGP01E1000_PSSR_SPEED_1000MBPS         0xC000
-#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT     0x0002 /* shift right 2 */
-#define IGP01E1000_PSSR_MDIX_SHIFT             0x000B /* shift right 11 */
-
-/* IGP01E1000 Specific Port Control Register - R/W */
-#define IGP01E1000_PSCR_TP_LOOPBACK            0x0010
-#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR      0x0200
-#define IGP01E1000_PSCR_TEN_CRS_SELECT         0x0400
-#define IGP01E1000_PSCR_FLIP_CHIP              0x0800
-#define IGP01E1000_PSCR_AUTO_MDIX              0x1000
-#define IGP01E1000_PSCR_FORCE_MDI_MDIX         0x2000 /* 0-MDI, 1-MDIX */
-
-/* IGP01E1000 Specific Port Link Health Register */
-#define IGP01E1000_PLHR_SS_DOWNGRADE           0x8000
-#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR    0x4000
-#define IGP01E1000_PLHR_MASTER_FAULT           0x2000
-#define IGP01E1000_PLHR_MASTER_RESOLUTION      0x1000
-#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK       0x0800 /* LH */
-#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW   0x0400 /* LH */
-#define IGP01E1000_PLHR_DATA_ERR_1             0x0200 /* LH */
-#define IGP01E1000_PLHR_DATA_ERR_0             0x0100
-#define IGP01E1000_PLHR_AUTONEG_FAULT          0x0040
-#define IGP01E1000_PLHR_AUTONEG_ACTIVE         0x0010
-#define IGP01E1000_PLHR_VALID_CHANNEL_D        0x0008
-#define IGP01E1000_PLHR_VALID_CHANNEL_C        0x0004
-#define IGP01E1000_PLHR_VALID_CHANNEL_B        0x0002
-#define IGP01E1000_PLHR_VALID_CHANNEL_A        0x0001
-
-/* IGP01E1000 Channel Quality Register */
-#define IGP01E1000_MSE_CHANNEL_D        0x000F
-#define IGP01E1000_MSE_CHANNEL_C        0x00F0
-#define IGP01E1000_MSE_CHANNEL_B        0x0F00
-#define IGP01E1000_MSE_CHANNEL_A        0xF000
-
-#define IGP02E1000_PM_SPD                         0x0001  /* Smart Power Down */
-#define IGP02E1000_PM_D3_LPLU                     0x0004  /* Enable LPLU in non-D0a modes */
-#define IGP02E1000_PM_D0_LPLU                     0x0002  /* Enable LPLU in D0a mode */
-
-/* IGP01E1000 DSP reset macros */
-#define DSP_RESET_ENABLE     0x0
-#define DSP_RESET_DISABLE    0x2
-#define E1000_MAX_DSP_RESETS 10
-
-/* IGP01E1000 & IGP02E1000 AGC Registers */
-
-#define IGP01E1000_AGC_LENGTH_SHIFT 7         /* Coarse - 13:11, Fine - 10:7 */
-#define IGP02E1000_AGC_LENGTH_SHIFT 9         /* Coarse - 15:13, Fine - 12:9 */
-
-/* IGP02E1000 AGC Register Length 9-bit mask */
-#define IGP02E1000_AGC_LENGTH_MASK  0x7F
-
-/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */
-#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128
-#define IGP02E1000_AGC_LENGTH_TABLE_SIZE 113
-
-/* The precision error of the cable length is +/- 10 meters */
-#define IGP01E1000_AGC_RANGE    10
-#define IGP02E1000_AGC_RANGE    15
-
-/* IGP01E1000 PCS Initialization register */
-/* bits 3:6 in the PCS registers stores the channels polarity */
-#define IGP01E1000_PHY_POLARITY_MASK    0x0078
-
-/* IGP01E1000 GMII FIFO Register */
-#define IGP01E1000_GMII_FLEX_SPD               0x10 /* Enable flexible speed
-                                                     * on Link-Up */
-#define IGP01E1000_GMII_SPD                    0x20 /* Enable SPD */
-
-/* IGP01E1000 Analog Register */
-#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS       0x20D1
-#define IGP01E1000_ANALOG_FUSE_STATUS             0x20D0
-#define IGP01E1000_ANALOG_FUSE_CONTROL            0x20DC
-#define IGP01E1000_ANALOG_FUSE_BYPASS             0x20DE
-
-#define IGP01E1000_ANALOG_FUSE_POLY_MASK            0xF000
-#define IGP01E1000_ANALOG_FUSE_FINE_MASK            0x0F80
-#define IGP01E1000_ANALOG_FUSE_COARSE_MASK          0x0070
-#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED        0x0100
-#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL    0x0002
-
-#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH        0x0040
-#define IGP01E1000_ANALOG_FUSE_COARSE_10            0x0010
-#define IGP01E1000_ANALOG_FUSE_FINE_1               0x0080
-#define IGP01E1000_ANALOG_FUSE_FINE_10              0x0500
+struct e1000_functions {
+	/* Function pointers for the MAC. */
+	s32 (*init_mac_params)(struct e1000_hw *);
+	s32 (*blink_led)(struct e1000_hw *);
+	s32 (*check_for_link)(struct e1000_hw *);
+	boolean_t (*check_mng_mode)(struct e1000_hw *hw);
+	s32 (*cleanup_led)(struct e1000_hw *);
+	void (*clear_hw_cntrs)(struct e1000_hw *);
+	void (*clear_vfta)(struct e1000_hw *);
+	s32 (*get_bus_info)(struct e1000_hw *);
+	s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
+	s32 (*led_on)(struct e1000_hw *);
+	s32 (*led_off)(struct e1000_hw *);
+	void (*mc_addr_list_update)(struct e1000_hw *, u8 *, u32, u32, u32);
+	void (*remove_device)(struct e1000_hw *);
+	s32 (*reset_hw)(struct e1000_hw *);
+	s32 (*init_hw)(struct e1000_hw *);
+	s32 (*setup_link)(struct e1000_hw *);
+	s32 (*setup_physical_interface)(struct e1000_hw *);
+	s32 (*setup_led)(struct e1000_hw *);
+	void (*write_vfta)(struct e1000_hw *, u32, u32);
+	void (*mta_set)(struct e1000_hw *, u32);
+	void (*config_collision_dist)(struct e1000_hw *);
+	void (*rar_set)(struct e1000_hw *, u8 *, u32);
+	s32 (*validate_mdi_setting)(struct e1000_hw *);
+	s32 (*mng_host_if_write)(struct e1000_hw *, u8 *, u16, u16, u8 *);
+	s32 (*mng_write_cmd_header)(struct e1000_hw *hw,
+	    struct e1000_host_mng_command_header *);
+	s32 (*mng_enable_host_if)(struct e1000_hw *);
+	s32 (*wait_autoneg) (struct e1000_hw *);
 
-/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
-#define GG82563_PSCR_DISABLE_JABBER             0x0001 /* 1=Disable Jabber */
-#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE  0x0002 /* 1=Polarity Reversal Disabled */
-#define GG82563_PSCR_POWER_DOWN                 0x0004 /* 1=Power Down */
-#define GG82563_PSCR_COPPER_TRANSMITER_DISABLE  0x0008 /* 1=Transmitter Disabled */
-#define GG82563_PSCR_CROSSOVER_MODE_MASK        0x0060
-#define GG82563_PSCR_CROSSOVER_MODE_MDI         0x0000 /* 00=Manual MDI configuration */
-#define GG82563_PSCR_CROSSOVER_MODE_MDIX        0x0020 /* 01=Manual MDIX configuration */
-#define GG82563_PSCR_CROSSOVER_MODE_AUTO        0x0060 /* 11=Automatic crossover */
-#define GG82563_PSCR_ENALBE_EXTENDED_DISTANCE   0x0080 /* 1=Enable Extended Distance */
-#define GG82563_PSCR_ENERGY_DETECT_MASK         0x0300
-#define GG82563_PSCR_ENERGY_DETECT_OFF          0x0000 /* 00,01=Off */
-#define GG82563_PSCR_ENERGY_DETECT_RX           0x0200 /* 10=Sense on Rx only (Energy Detect) */
-#define GG82563_PSCR_ENERGY_DETECT_RX_TM        0x0300 /* 11=Sense and Tx NLP */
-#define GG82563_PSCR_FORCE_LINK_GOOD            0x0400 /* 1=Force Link Good */
-#define GG82563_PSCR_DOWNSHIFT_ENABLE           0x0800 /* 1=Enable Downshift */
-#define GG82563_PSCR_DOWNSHIFT_COUNTER_MASK     0x7000
-#define GG82563_PSCR_DOWNSHIFT_COUNTER_SHIFT    12
-
-/* PHY Specific Status Register (Page 0, Register 17) */
-#define GG82563_PSSR_JABBER                0x0001 /* 1=Jabber */
-#define GG82563_PSSR_POLARITY              0x0002 /* 1=Polarity Reversed */
-#define GG82563_PSSR_LINK                  0x0008 /* 1=Link is Up */
-#define GG82563_PSSR_ENERGY_DETECT         0x0010 /* 1=Sleep, 0=Active */
-#define GG82563_PSSR_DOWNSHIFT             0x0020 /* 1=Downshift */
-#define GG82563_PSSR_CROSSOVER_STATUS      0x0040 /* 1=MDIX, 0=MDI */
-#define GG82563_PSSR_RX_PAUSE_ENABLED      0x0100 /* 1=Receive Pause Enabled */
-#define GG82563_PSSR_TX_PAUSE_ENABLED      0x0200 /* 1=Transmit Pause Enabled */
-#define GG82563_PSSR_LINK_UP               0x0400 /* 1=Link Up */
-#define GG82563_PSSR_SPEED_DUPLEX_RESOLVED 0x0800 /* 1=Resolved */
-#define GG82563_PSSR_PAGE_RECEIVED         0x1000 /* 1=Page Received */
-#define GG82563_PSSR_DUPLEX                0x2000 /* 1-Full-Duplex */
-#define GG82563_PSSR_SPEED_MASK            0xC000
-#define GG82563_PSSR_SPEED_10MBPS          0x0000 /* 00=10Mbps */
-#define GG82563_PSSR_SPEED_100MBPS         0x4000 /* 01=100Mbps */
-#define GG82563_PSSR_SPEED_1000MBPS        0x8000 /* 10=1000Mbps */
-
-/* PHY Specific Status Register 2 (Page 0, Register 19) */
-#define GG82563_PSSR2_JABBER                0x0001 /* 1=Jabber */
-#define GG82563_PSSR2_POLARITY_CHANGED      0x0002 /* 1=Polarity Changed */
-#define GG82563_PSSR2_ENERGY_DETECT_CHANGED 0x0010 /* 1=Energy Detect Changed */
-#define GG82563_PSSR2_DOWNSHIFT_INTERRUPT   0x0020 /* 1=Downshift Detected */
-#define GG82563_PSSR2_MDI_CROSSOVER_CHANGE  0x0040 /* 1=Crossover Changed */
-#define GG82563_PSSR2_FALSE_CARRIER         0x0100 /* 1=False Carrier */
-#define GG82563_PSSR2_SYMBOL_ERROR          0x0200 /* 1=Symbol Error */
-#define GG82563_PSSR2_LINK_STATUS_CHANGED   0x0400 /* 1=Link Status Changed */
-#define GG82563_PSSR2_AUTO_NEG_COMPLETED    0x0800 /* 1=Auto-Neg Completed */
-#define GG82563_PSSR2_PAGE_RECEIVED         0x1000 /* 1=Page Received */
-#define GG82563_PSSR2_DUPLEX_CHANGED        0x2000 /* 1=Duplex Changed */
-#define GG82563_PSSR2_SPEED_CHANGED         0x4000 /* 1=Speed Changed */
-#define GG82563_PSSR2_AUTO_NEG_ERROR        0x8000 /* 1=Auto-Neg Error */
-
-/* PHY Specific Control Register 2 (Page 0, Register 26) */
-#define GG82563_PSCR2_10BT_POLARITY_FORCE           0x0002 /* 1=Force Negative Polarity */
-#define GG82563_PSCR2_1000MB_TEST_SELECT_MASK       0x000C
-#define GG82563_PSCR2_1000MB_TEST_SELECT_NORMAL     0x0000 /* 00,01=Normal Operation */
-#define GG82563_PSCR2_1000MB_TEST_SELECT_112NS      0x0008 /* 10=Select 112ns Sequence */
-#define GG82563_PSCR2_1000MB_TEST_SELECT_16NS       0x000C /* 11=Select 16ns Sequence */
-#define GG82563_PSCR2_REVERSE_AUTO_NEG              0x2000 /* 1=Reverse Auto-Negotiation */
-#define GG82563_PSCR2_1000BT_DISABLE                0x4000 /* 1=Disable 1000BASE-T */
-#define GG82563_PSCR2_TRANSMITER_TYPE_MASK          0x8000
-#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_B      0x0000 /* 0=Class B */
-#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_A      0x8000 /* 1=Class A */
-
-/* MAC Specific Control Register (Page 2, Register 21) */
-/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
-#define GG82563_MSCR_TX_CLK_MASK                    0x0007
-#define GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ           0x0004
-#define GG82563_MSCR_TX_CLK_100MBPS_25MHZ           0x0005
-#define GG82563_MSCR_TX_CLK_1000MBPS_2_5MHZ         0x0006
-#define GG82563_MSCR_TX_CLK_1000MBPS_25MHZ          0x0007
-
-#define GG82563_MSCR_ASSERT_CRS_ON_TX               0x0010 /* 1=Assert */
-
-/* DSP Distance Register (Page 5, Register 26) */
-#define GG82563_DSPD_CABLE_LENGTH               0x0007 /* 0 = <50M;
-                                                          1 = 50-80M;
-                                                          2 = 80-110M;
-                                                          3 = 110-140M;
-                                                          4 = >140M */
-
-/* Kumeran Mode Control Register (Page 193, Register 16) */
-#define GG82563_KMCR_PHY_LEDS_EN                    0x0020 /* 1=PHY LEDs, 0=Kumeran Inband LEDs */
-#define GG82563_KMCR_FORCE_LINK_UP                  0x0040 /* 1=Force Link Up */
-#define GG82563_KMCR_SUPPRESS_SGMII_EPD_EXT         0x0080
-#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT_MASK     0x0400
-#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT          0x0400 /* 1=6.25MHz, 0=0.8MHz */
-#define GG82563_KMCR_PASS_FALSE_CARRIER             0x0800
-
-/* Power Management Control Register (Page 193, Register 20) */
-#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE         0x0001 /* 1=Enalbe SERDES Electrical Idle */
-#define GG82563_PMCR_DISABLE_PORT                   0x0002 /* 1=Disable Port */
-#define GG82563_PMCR_DISABLE_SERDES                 0x0004 /* 1=Disable SERDES */
-#define GG82563_PMCR_REVERSE_AUTO_NEG               0x0008 /* 1=Enable Reverse Auto-Negotiation */
-#define GG82563_PMCR_DISABLE_1000_NON_D0            0x0010 /* 1=Disable 1000Mbps Auto-Neg in non D0 */
-#define GG82563_PMCR_DISABLE_1000                   0x0020 /* 1=Disable 1000Mbps Auto-Neg Always */
-#define GG82563_PMCR_REVERSE_AUTO_NEG_D0A           0x0040 /* 1=Enable D0a Reverse Auto-Negotiation */
-#define GG82563_PMCR_FORCE_POWER_STATE              0x0080 /* 1=Force Power State */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_MASK    0x0300
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_DR      0x0000 /* 00=Dr */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0U     0x0100 /* 01=D0u */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0A     0x0200 /* 10=D0a */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D3      0x0300 /* 11=D3 */
-
-/* In-Band Control Register (Page 194, Register 18) */
-#define GG82563_ICR_DIS_PADDING                     0x0010 /* Disable Padding Use */
-
-
-/* Bit definitions for valid PHY IDs. */
-/* I = Integrated
- * E = External
- */
-#define M88_VENDOR         0x0141
-#define M88E1000_E_PHY_ID  0x01410C50
-#define M88E1000_I_PHY_ID  0x01410C30
-#define M88E1011_I_PHY_ID  0x01410C20
-#define IGP01E1000_I_PHY_ID  0x02A80380
-#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID
-#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID
-#define M88E1011_I_REV_4   0x04
-#define M88E1111_I_PHY_ID  0x01410CC0
-#define L1LXT971A_PHY_ID   0x001378E0
-#define GG82563_E_PHY_ID   0x01410CA0
-
-
-/* Bits...
- * 15-5: page
- * 4-0: register offset
- */
-#define PHY_PAGE_SHIFT        5
-#define PHY_REG(page, reg)    \
-        (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
-
-#define IGP3_PHY_PORT_CTRL           \
-        PHY_REG(769, 17) /* Port General Configuration */
-#define IGP3_PHY_RATE_ADAPT_CTRL \
-        PHY_REG(769, 25) /* Rate Adapter Control Register */
-
-#define IGP3_KMRN_FIFO_CTRL_STATS \
-        PHY_REG(770, 16) /* KMRN FIFO's control/status register */
-#define IGP3_KMRN_POWER_MNG_CTRL \
-        PHY_REG(770, 17) /* KMRN Power Management Control Register */
-#define IGP3_KMRN_INBAND_CTRL \
-        PHY_REG(770, 18) /* KMRN Inband Control Register */
-#define IGP3_KMRN_DIAG \
-        PHY_REG(770, 19) /* KMRN Diagnostic register */
-#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */
-#define IGP3_KMRN_ACK_TIMEOUT \
-        PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */
+	/* Function pointers for the PHY. */
+	s32 (*init_phy_params)(struct e1000_hw *);
+	s32 (*acquire_phy)(struct e1000_hw *);
+	s32 (*check_polarity)(struct e1000_hw *);
+	s32 (*check_reset_block)(struct e1000_hw *);
+	s32 (*commit_phy)(struct e1000_hw *);
+	s32 (*force_speed_duplex)(struct e1000_hw *);
+	s32 (*get_cfg_done)(struct e1000_hw *hw);
+	s32 (*get_cable_length)(struct e1000_hw *);
+	s32 (*get_phy_info)(struct e1000_hw *);
+	s32 (*read_phy_reg)(struct e1000_hw *, u32, u16 *);
+	void (*release_phy)(struct e1000_hw *);
+	s32 (*reset_phy)(struct e1000_hw *);
+	s32 (*set_d0_lplu_state)(struct e1000_hw *, boolean_t);
+	s32 (*set_d3_lplu_state)(struct e1000_hw *, boolean_t);
+	s32 (*write_phy_reg)(struct e1000_hw *, u32, u16);
 
-#define IGP3_VR_CTRL \
-        PHY_REG(776, 18) /* Voltage regulator control register */
-#define IGP3_VR_CTRL_MODE_SHUT       0x0200 /* Enter powerdown, shutdown VRs */
-#define IGP3_VR_CTRL_MODE_MASK       0x0300 /* Shutdown VR Mask */
-
-#define IGP3_CAPABILITY \
-        PHY_REG(776, 19) /* IGP3 Capability Register */
-
-/* Capabilities for SKU Control  */
-#define IGP3_CAP_INITIATE_TEAM       0x0001 /* Able to initiate a team */
-#define IGP3_CAP_WFM                 0x0002 /* Support WoL and PXE */
-#define IGP3_CAP_ASF                 0x0004 /* Support ASF */
-#define IGP3_CAP_LPLU                0x0008 /* Support Low Power Link Up */
-#define IGP3_CAP_DC_AUTO_SPEED       0x0010 /* Support AC/DC Auto Link Speed */
-#define IGP3_CAP_SPD                 0x0020 /* Support Smart Power Down */
-#define IGP3_CAP_MULT_QUEUE          0x0040 /* Support 2 tx & 2 rx queues */
-#define IGP3_CAP_RSS                 0x0080 /* Support RSS */
-#define IGP3_CAP_8021PQ              0x0100 /* Support 802.1Q & 802.1p */
-#define IGP3_CAP_AMT_CB              0x0200 /* Support active manageability and circuit breaker */
-
-#define IGP3_PPC_JORDAN_EN           0x0001
-#define IGP3_PPC_JORDAN_GIGA_SPEED   0x0002
-
-#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS         0x0001
-#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK   0x001E
-#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA        0x0020
-#define IGP3_KMRN_PMC_K0S_MODE1_EN_100         0x0040
-
-#define IGP3E1000_PHY_MISC_CTRL                0x1B   /* Misc. Ctrl register */
-#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET        0x1000 /* Duplex Manual Set */
-
-#define IGP3_KMRN_EXT_CTRL  PHY_REG(770, 18)
-#define IGP3_KMRN_EC_DIS_INBAND    0x0080
-
-#define IGP03E1000_E_PHY_ID  0x02A80390
-#define IFE_E_PHY_ID         0x02A80330 /* 10/100 PHY */
-#define IFE_PLUS_E_PHY_ID    0x02A80320
-#define IFE_C_E_PHY_ID       0x02A80310
-
-#define IFE_PHY_EXTENDED_STATUS_CONTROL   0x10  /* 100BaseTx Extended Status, Control and Address */
-#define IFE_PHY_SPECIAL_CONTROL           0x11  /* 100BaseTx PHY special control register */
-#define IFE_PHY_RCV_FALSE_CARRIER         0x13  /* 100BaseTx Receive False Carrier Counter */
-#define IFE_PHY_RCV_DISCONNECT            0x14  /* 100BaseTx Receive Disconnet Counter */
-#define IFE_PHY_RCV_ERROT_FRAME           0x15  /* 100BaseTx Receive Error Frame Counter */
-#define IFE_PHY_RCV_SYMBOL_ERR            0x16  /* Receive Symbol Error Counter */
-#define IFE_PHY_PREM_EOF_ERR              0x17  /* 100BaseTx Receive Premature End Of Frame Error Counter */
-#define IFE_PHY_RCV_EOF_ERR               0x18  /* 10BaseT Receive End Of Frame Error Counter */
-#define IFE_PHY_TX_JABBER_DETECT          0x19  /* 10BaseT Transmit Jabber Detect Counter */
-#define IFE_PHY_EQUALIZER                 0x1A  /* PHY Equalizer Control and Status */
-#define IFE_PHY_SPECIAL_CONTROL_LED       0x1B  /* PHY special control and LED configuration */
-#define IFE_PHY_MDIX_CONTROL              0x1C  /* MDI/MDI-X Control register */
-#define IFE_PHY_HWI_CONTROL               0x1D  /* Hardware Integrity Control (HWI) */
-
-#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE  0x2000  /* Defaut 1 = Disable auto reduced power down */
-#define IFE_PESC_100BTX_POWER_DOWN           0x0400  /* Indicates the power state of 100BASE-TX */
-#define IFE_PESC_10BTX_POWER_DOWN            0x0200  /* Indicates the power state of 10BASE-T */
-#define IFE_PESC_POLARITY_REVERSED           0x0100  /* Indicates 10BASE-T polarity */
-#define IFE_PESC_PHY_ADDR_MASK               0x007C  /* Bit 6:2 for sampled PHY address */
-#define IFE_PESC_SPEED                       0x0002  /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */
-#define IFE_PESC_DUPLEX                      0x0001  /* Auto-negotiation duplex result 1=Full, 0=Half */
-#define IFE_PESC_POLARITY_REVERSED_SHIFT     8
-
-#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN   0x0100  /* 1 = Dyanmic Power Down disabled */
-#define IFE_PSC_FORCE_POLARITY               0x0020  /* 1=Reversed Polarity, 0=Normal */
-#define IFE_PSC_AUTO_POLARITY_DISABLE        0x0010  /* 1=Auto Polarity Disabled, 0=Enabled */
-#define IFE_PSC_JABBER_FUNC_DISABLE          0x0001  /* 1=Jabber Disabled, 0=Normal Jabber Operation */
-#define IFE_PSC_FORCE_POLARITY_SHIFT         5
-#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT  4
-
-#define IFE_PMC_AUTO_MDIX                    0x0080  /* 1=enable MDI/MDI-X feature, default 0=disabled */
-#define IFE_PMC_FORCE_MDIX                   0x0040  /* 1=force MDIX-X, 0=force MDI */
-#define IFE_PMC_MDIX_STATUS                  0x0020  /* 1=MDI-X, 0=MDI */
-#define IFE_PMC_AUTO_MDIX_COMPLETE           0x0010  /* Resolution algorthm is completed */
-#define IFE_PMC_MDIX_MODE_SHIFT              6
-#define IFE_PHC_MDIX_RESET_ALL_MASK          0x0000  /* Disable auto MDI-X */
-
-#define IFE_PHC_HWI_ENABLE                   0x8000  /* Enable the HWI feature */
-#define IFE_PHC_ABILITY_CHECK                0x4000  /* 1= Test Passed, 0=failed */
-#define IFE_PHC_TEST_EXEC                    0x2000  /* PHY launch test pulses on the wire */
-#define IFE_PHC_HIGHZ                        0x0200  /* 1 = Open Circuit */
-#define IFE_PHC_LOWZ                         0x0400  /* 1 = Short Circuit */
-#define IFE_PHC_LOW_HIGH_Z_MASK              0x0600  /* Mask for indication type of problem on the line */
-#define IFE_PHC_DISTANCE_MASK                0x01FF  /* Mask for distance to the cable problem, in 80cm granularity */
-#define IFE_PHC_RESET_ALL_MASK               0x0000  /* Disable HWI */
-#define IFE_PSCL_PROBE_MODE                  0x0020  /* LED Probe mode */
-#define IFE_PSCL_PROBE_LEDS_OFF              0x0006  /* Force LEDs 0 and 2 off */
-#define IFE_PSCL_PROBE_LEDS_ON               0x0007  /* Force LEDs 0 and 2 on */
-
-#define ICH_FLASH_COMMAND_TIMEOUT            5000    /* 5000 uSecs - adjusted */
-#define ICH_FLASH_ERASE_TIMEOUT              3000000 /* Up to 3 seconds - worst case */
-#define ICH_FLASH_CYCLE_REPEAT_COUNT         10      /* 10 cycles */
-#define ICH_FLASH_SEG_SIZE_256               256
-#define ICH_FLASH_SEG_SIZE_4K                4096
-#define ICH_FLASH_SEG_SIZE_64K               65536
-
-#define ICH_CYCLE_READ                       0x0
-#define ICH_CYCLE_RESERVED                   0x1
-#define ICH_CYCLE_WRITE                      0x2
-#define ICH_CYCLE_ERASE                      0x3
-
-#define ICH_FLASH_GFPREG   0x0000
-#define ICH_FLASH_HSFSTS   0x0004
-#define ICH_FLASH_HSFCTL   0x0006
-#define ICH_FLASH_FADDR    0x0008
-#define ICH_FLASH_FDATA0   0x0010
-#define ICH_FLASH_FRACC    0x0050
-#define ICH_FLASH_FREG0    0x0054
-#define ICH_FLASH_FREG1    0x0058
-#define ICH_FLASH_FREG2    0x005C
-#define ICH_FLASH_FREG3    0x0060
-#define ICH_FLASH_FPR0     0x0074
-#define ICH_FLASH_FPR1     0x0078
-#define ICH_FLASH_SSFSTS   0x0090
-#define ICH_FLASH_SSFCTL   0x0092
-#define ICH_FLASH_PREOP    0x0094
-#define ICH_FLASH_OPTYPE   0x0096
-#define ICH_FLASH_OPMENU   0x0098
-
-#define ICH_FLASH_REG_MAPSIZE      0x00A0
-#define ICH_FLASH_SECTOR_SIZE      4096
-#define ICH_GFPREG_BASE_MASK       0x1FFF
-#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
-
-/* ICH8 GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
-/* Offset 04h HSFSTS */
-union ich8_hws_flash_status {
-    struct ich8_hsfsts {
-#ifdef E1000_BIG_ENDIAN
-        uint16_t reserved2      :6;
-        uint16_t fldesvalid     :1;
-        uint16_t flockdn        :1;
-        uint16_t flcdone        :1;
-        uint16_t flcerr         :1;
-        uint16_t dael           :1;
-        uint16_t berasesz       :2;
-        uint16_t flcinprog      :1;
-        uint16_t reserved1      :2;
-#else
-        uint16_t flcdone        :1;   /* bit 0 Flash Cycle Done */
-        uint16_t flcerr         :1;   /* bit 1 Flash Cycle Error */
-        uint16_t dael           :1;   /* bit 2 Direct Access error Log */
-        uint16_t berasesz       :2;   /* bit 4:3 Block/Sector Erase Size */
-        uint16_t flcinprog      :1;   /* bit 5 flash SPI cycle in Progress */
-        uint16_t reserved1      :2;   /* bit 13:6 Reserved */
-        uint16_t reserved2      :6;   /* bit 13:6 Reserved */
-        uint16_t fldesvalid     :1;   /* bit 14 Flash Descriptor Valid */
-        uint16_t flockdn        :1;   /* bit 15 Flash Configuration Lock-Down */
-#endif
-    } hsf_status;
-    uint16_t regval;
+	/* Function pointers for the NVM. */
+	s32 (*init_nvm_params)(struct e1000_hw *);
+	s32 (*acquire_nvm)(struct e1000_hw *);
+	s32 (*read_nvm)(struct e1000_hw *, u16, u16, u16 *);
+	void (*release_nvm)(struct e1000_hw *);
+	void (*reload_nvm)(struct e1000_hw *);
+	s32 (*update_nvm)(struct e1000_hw *);
+	s32 (*valid_led_default)(struct e1000_hw *, u16 *);
+	s32 (*validate_nvm)(struct e1000_hw *);
+	s32 (*write_nvm)(struct e1000_hw *, u16, u16, u16 *);
 };
 
-/* ICH8 GbE Flash Hardware Sequencing Flash control Register bit breakdown */
-/* Offset 06h FLCTL */
-union ich8_hws_flash_ctrl {
-    struct ich8_hsflctl {
-#ifdef E1000_BIG_ENDIAN
-        uint16_t fldbcount      :2;
-        uint16_t flockdn        :6;
-        uint16_t flcgo          :1;
-        uint16_t flcycle        :2;
-        uint16_t reserved       :5;
-#else
-        uint16_t flcgo          :1;   /* 0 Flash Cycle Go */
-        uint16_t flcycle        :2;   /* 2:1 Flash Cycle */
-        uint16_t reserved       :5;   /* 7:3 Reserved  */
-        uint16_t fldbcount      :2;   /* 9:8 Flash Data Byte Count */
-        uint16_t flockdn        :6;   /* 15:10 Reserved */
-#endif
-    } hsf_ctrl;
-    uint16_t regval;
+struct e1000_mac_info {
+	u8 addr[6];
+	u8 perm_addr[6];
+
+	e1000_mac_type type;
+	e1000_fc_mode fc;
+	e1000_fc_mode original_fc;
+
+	u32 collision_delta;
+	u32 ledctl_default;
+	u32 ledctl_mode1;
+	u32 ledctl_mode2;
+	u32 max_frame_size;
+	u32 mc_filter_type;
+	u32 min_frame_size;
+	u32 tx_packet_delta;
+	u32 txcw;
+
+	u16 current_ifs_val;
+	u16 ifs_max_val;
+	u16 ifs_min_val;
+	u16 ifs_ratio;
+	u16 ifs_step_size;
+	u16 mta_reg_count;
+	u16 rar_entry_count;
+	u16 fc_high_water;
+	u16 fc_low_water;
+	u16 fc_pause_time;
+
+	u8 forced_speed_duplex;
+
+	boolean_t adaptive_ifs;
+	boolean_t arc_subsystem_valid;
+	boolean_t asf_firmware_present;
+	boolean_t autoneg;
+	boolean_t autoneg_failed;
+	boolean_t disable_av;
+	boolean_t disable_hw_init_bits;
+	boolean_t fc_send_xon;
+	boolean_t fc_strict_ieee;
+	boolean_t get_link_status;
+	boolean_t ifs_params_forced;
+	boolean_t in_ifs_mode;
+	boolean_t report_tx_early;
+	boolean_t serdes_has_link;
+	boolean_t tx_pkt_filtering;
 };
 
-/* ICH8 Flash Region Access Permissions */
-union ich8_hws_flash_regacc {
-    struct ich8_flracc {
-#ifdef E1000_BIG_ENDIAN
-        uint32_t gmwag          :8;
-        uint32_t gmrag          :8;
-        uint32_t grwa           :8;
-        uint32_t grra           :8;
-#else
-        uint32_t grra           :8;   /* 0:7 GbE region Read Access */
-        uint32_t grwa           :8;   /* 8:15 GbE region Write Access */
-        uint32_t gmrag          :8;   /* 23:16 GbE Master Read Access Grant  */
-        uint32_t gmwag          :8;   /* 31:24 GbE Master Write Access Grant */
-#endif
-    } hsf_flregacc;
-    uint16_t regval;
+struct e1000_phy_info {
+	e1000_phy_type type;
+
+	e1000_1000t_rx_status local_rx;
+	e1000_1000t_rx_status remote_rx;
+	e1000_ms_type ms_type;
+	e1000_ms_type original_ms_type;
+	e1000_rev_polarity cable_polarity;
+	e1000_smart_speed smart_speed;
+
+	u32 addr;
+	u32 id;
+	u32 reset_delay_us;	/* in usec */
+	u32 revision;
+
+	u16 autoneg_advertised;
+	u16 autoneg_mask;
+	u16 cable_length;
+	u16 max_cable_length;
+	u16 min_cable_length;
+
+	u8 mdix;
+
+	boolean_t disable_polarity_correction;
+	boolean_t is_mdix;
+	boolean_t polarity_correction;
+	boolean_t reset_disable;
+	boolean_t speed_downgraded;
+	boolean_t wait_for_link;
+};
+
+struct e1000_nvm_info {
+	e1000_nvm_type type;
+	e1000_nvm_override override;
+
+	u32 flash_bank_size;
+	u32 flash_base_addr;
+
+	u16 word_size;
+	u16 delay_usec;
+	u16 address_bits;
+	u16 opcode_bits;
+	u16 page_size;
 };
 
-/* Miscellaneous PHY bit definitions. */
-#define PHY_PREAMBLE        0xFFFFFFFF
-#define PHY_SOF             0x01
-#define PHY_OP_READ         0x02
-#define PHY_OP_WRITE        0x01
-#define PHY_TURNAROUND      0x02
-#define PHY_PREAMBLE_SIZE   32
-#define MII_CR_SPEED_1000   0x0040
-#define MII_CR_SPEED_100    0x2000
-#define MII_CR_SPEED_10     0x0000
-#define E1000_PHY_ADDRESS   0x01
-#define PHY_AUTO_NEG_TIME   45  /* 4.5 Seconds */
-#define PHY_FORCE_TIME      20  /* 2.0 Seconds */
-#define PHY_REVISION_MASK   0xFFFFFFF0
-#define DEVICE_SPEED_MASK   0x00000300  /* Device Ctrl Reg Speed Mask */
-#define REG4_SPEED_MASK     0x01E0
-#define REG9_SPEED_MASK     0x0300
-#define ADVERTISE_10_HALF   0x0001
-#define ADVERTISE_10_FULL   0x0002
-#define ADVERTISE_100_HALF  0x0004
-#define ADVERTISE_100_FULL  0x0008
-#define ADVERTISE_1000_HALF 0x0010
-#define ADVERTISE_1000_FULL 0x0020
-#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F  /* Everything but 1000-Half */
-#define AUTONEG_ADVERTISE_10_100_ALL    0x000F /* All 10/100 speeds*/
-#define AUTONEG_ADVERTISE_10_ALL        0x0003 /* 10Mbps Full & Half speeds*/
+struct e1000_bus_info {
+	e1000_bus_type type;
+	e1000_bus_speed speed;
+	e1000_bus_width width;
+
+	u32 snoop;
+
+	u16 func;
+	u16 pci_cmd_word;
+};
+
+struct e1000_hw {
+	void *back;
+	void *dev_spec;
+
+	u8 *hw_addr;
+	u8 *flash_address;
+	unsigned long io_base;
+
+	struct e1000_functions func;
+	struct e1000_mac_info mac;
+	struct e1000_phy_info phy;
+	struct e1000_nvm_info nvm;
+	struct e1000_bus_info bus;
+	struct e1000_host_mng_dhcp_cookie mng_cookie;
 
-#endif /* _E1000_HW_H_ */
+	e1000_media_type media_type;
+
+	u32 dev_spec_size;
+
+	u16 device_id;
+	u16 subsystem_vendor_id;
+	u16 subsystem_device_id;
+	u16 vendor_id;
+
+	u8 revision_id;
+};
+
+/* These functions must be implemented by drivers */
+void e1000_pci_clear_mwi(struct e1000_hw *hw);
+void e1000_pci_set_mwi(struct e1000_hw *hw);
+s32 e1000_alloc_zeroed_dev_spec_struct(struct e1000_hw *hw, u32 size);
+s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_free_dev_spec_struct(struct e1000_hw *hw);
+void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif	/* _E1000_HW_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_ich8lan.c	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,2552 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+/*
+ * e1000_ich8lan
+ * e1000_ich9lan
+ */
+
+#include "e1000_api.h"
+#include "e1000_ich8lan.h"
+
+void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw);
+
+static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw);
+static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
+static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
+static boolean_t e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
+static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
+static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
+static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw);
+static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
+static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw);
+static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
+    boolean_t active);
+static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
+    boolean_t active);
+static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
+    u16 words, u16 *data);
+static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
+    u16 words, u16 *data);
+static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
+static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
+static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
+    u16 *data);
+static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
+static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw);
+static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw);
+static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
+static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
+    u16 *speed, u16 *duplex);
+static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
+static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
+static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
+static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
+static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
+static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout);
+static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw);
+static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
+static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
+static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+    u8 size, u16 *data);
+static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
+    u32 offset, u16 *data);
+static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
+    u32 offset, u8 byte);
+static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw,
+    u32 offset, u8 data);
+static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+    u8 size, u16 data);
+static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
+
+/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
+/* Offset 04h HSFSTS */
+union ich8_hws_flash_status {
+	struct ich8_hsfsts {
+		u16 flcdone:1;		/* bit 0 Flash Cycle Done */
+		u16 flcerr:1;		/* bit 1 Flash Cycle Error */
+		u16 dael:1;		/* bit 2 Direct Access error Log */
+		u16 berasesz:2;		/* bit 4:3 Sector Erase Size */
+		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
+		u16 reserved1:2;	/* bit 13:6 Reserved */
+		u16 reserved2:6;	/* bit 13:6 Reserved */
+		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
+		u16 flockdn:1;		/* bit 15 Flash Config Lock-Down */
+	} hsf_status;
+	u16 regval;
+};
+
+/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
+/* Offset 06h FLCTL */
+union ich8_hws_flash_ctrl {
+	struct ich8_hsflctl {
+		u16 flcgo:1;		/* 0 Flash Cycle Go */
+		u16 flcycle:2;		/* 2:1 Flash Cycle */
+		u16 reserved:5;		/* 7:3 Reserved  */
+		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
+		u16 flockdn:6;		/* 15:10 Reserved */
+	} hsf_ctrl;
+	u16 regval;
+};
+
+/* ICH Flash Region Access Permissions */
+union ich8_hws_flash_regacc {
+	struct ich8_flracc {
+		u32 grra:8;	/* 0:7 GbE region Read Access */
+		u32 grwa:8;	/* 8:15 GbE region Write Access */
+		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
+		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
+	} hsf_flregacc;
+	u16 regval;
+};
+
+struct e1000_shadow_ram {
+	u16 value;
+	boolean_t modified;
+};
+
+struct e1000_dev_spec_ich8lan {
+	boolean_t kmrn_lock_loss_workaround_enabled;
+	struct e1000_shadow_ram shadow_ram[E1000_SHADOW_RAM_WORDS];
+};
+
+/*
+ * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific PHY parameters and function pointers.
+ */
+static s32
+e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+	u16 i = 0;
+
+	DEBUGFUNC("e1000_init_phy_params_ich8lan");
+
+	phy->addr = 1;
+	phy->reset_delay_us = 100;
+
+	func->acquire_phy = e1000_acquire_swflag_ich8lan;
+	func->check_polarity = e1000_check_polarity_ife_ich8lan;
+	func->check_reset_block = e1000_check_reset_block_ich8lan;
+	func->force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan;
+	func->get_cable_length = e1000_get_cable_length_igp_2;
+	func->get_cfg_done = e1000_get_cfg_done_ich8lan;
+	func->get_phy_info = e1000_get_phy_info_ich8lan;
+	func->read_phy_reg = e1000_read_phy_reg_igp;
+	func->release_phy = e1000_release_swflag_ich8lan;
+	func->reset_phy = e1000_phy_hw_reset_ich8lan;
+	func->set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
+	func->set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
+	func->write_phy_reg = e1000_write_phy_reg_igp;
+
+	/*
+	 * We may need to do this twice - once for IGP and if that fails,
+	 * we'll set BM func pointers and try again
+	 */
+	ret_val = e1000_determine_phy_address(hw);
+	if (ret_val) {
+		func->write_phy_reg = e1000_write_phy_reg_bm;
+		func->read_phy_reg = e1000_read_phy_reg_bm;
+		ret_val = e1000_determine_phy_address(hw);
+		if (ret_val) {
+			DEBUGOUT("Can't determine PHY address. Erroring out\n");
+			goto out;
+		}
+	}
+
+	phy->id = 0;
+	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
+	    (i++ < 100)) {
+		msec_delay(1);
+		ret_val = e1000_get_phy_id(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	/* Verify phy id */
+	switch (phy->id) {
+	case IGP03E1000_E_PHY_ID:
+		phy->type = e1000_phy_igp_3;
+		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+		break;
+	case IFE_E_PHY_ID:
+	case IFE_PLUS_E_PHY_ID:
+	case IFE_C_E_PHY_ID:
+		phy->type = e1000_phy_ife;
+		phy->autoneg_mask = E1000_ALL_NOT_GIG;
+		break;
+	case BME1000_E_PHY_ID:
+		phy->type = e1000_phy_bm;
+		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+		func->read_phy_reg = e1000_read_phy_reg_bm;
+		func->write_phy_reg = e1000_write_phy_reg_bm;
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific NVM parameters and function
+ * pointers.
+ */
+static s32
+e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_functions *func = &hw->func;
+	struct e1000_dev_spec_ich8lan *dev_spec;
+	u32 gfpreg, sector_base_addr, sector_end_addr;
+	s32 ret_val = E1000_SUCCESS;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
+
+	/* Can't read flash registers if the register set isn't mapped. */
+	if (!hw->flash_address) {
+		DEBUGOUT("ERROR: Flash registers not mapped\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	nvm->type = e1000_nvm_flash_sw;
+
+	gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
+
+	/*
+	 * sector_X_addr is a "sector"-aligned address (4096 bytes) Add 1 to
+	 * sector_end_addr since this sector is included in the overall size.
+	 */
+	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
+	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
+
+	/* flash_base_addr is byte-aligned */
+	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
+
+	/*
+	 * find total size of the NVM, then cut in half since the total size
+	 * represents two separate NVM banks.
+	 */
+	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
+	    << FLASH_SECTOR_ADDR_SHIFT;
+	nvm->flash_bank_size /= 2;
+	/* Adjust to word count */
+	nvm->flash_bank_size /= sizeof (u16);
+
+	nvm->word_size = E1000_SHADOW_RAM_WORDS;
+
+	dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/* Clear shadow ram */
+	for (i = 0; i < nvm->word_size; i++) {
+		dev_spec->shadow_ram[i].modified = FALSE;
+		dev_spec->shadow_ram[i].value = 0xFFFF;
+	}
+
+	/* Function Pointers */
+	func->acquire_nvm = e1000_acquire_swflag_ich8lan;
+	func->read_nvm = e1000_read_nvm_ich8lan;
+	func->release_nvm = e1000_release_swflag_ich8lan;
+	func->update_nvm = e1000_update_nvm_checksum_ich8lan;
+	func->valid_led_default = e1000_valid_led_default_ich8lan;
+	func->validate_nvm = e1000_validate_nvm_checksum_ich8lan;
+	func->write_nvm = e1000_write_nvm_ich8lan;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific MAC parameters and function
+ * pointers.
+ */
+static s32
+e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_mac_params_ich8lan");
+
+	/* Set media type function pointer */
+	hw->media_type = e1000_media_type_copper;
+
+	/* Set mta register count */
+	mac->mta_reg_count = 32;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
+	if (mac->type == e1000_ich8lan)
+		mac->rar_entry_count--;
+	/* Set if part includes ASF firmware */
+	mac->asf_firmware_present = TRUE;
+	/* Set if manageability features are enabled. */
+	mac->arc_subsystem_valid = TRUE;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	func->get_bus_info = e1000_get_bus_info_ich8lan;
+	/* reset */
+	func->reset_hw = e1000_reset_hw_ich8lan;
+	/* hw initialization */
+	func->init_hw = e1000_init_hw_ich8lan;
+	/* link setup */
+	func->setup_link = e1000_setup_link_ich8lan;
+	/* physical interface setup */
+	func->setup_physical_interface = e1000_setup_copper_link_ich8lan;
+	/* check for link */
+	func->check_for_link = e1000_check_for_copper_link_generic;
+	/* check management mode */
+	func->check_mng_mode = e1000_check_mng_mode_ich8lan;
+	/* link info */
+	func->get_link_up_info = e1000_get_link_up_info_ich8lan;
+	/* multicast address update */
+	func->mc_addr_list_update = e1000_mc_addr_list_update_generic;
+	/* setting MTA */
+	func->mta_set = e1000_mta_set_generic;
+	/* blink LED */
+	func->blink_led = e1000_blink_led_generic;
+	/* setup LED */
+	func->setup_led = e1000_setup_led_generic;
+	/* cleanup LED */
+	func->cleanup_led = e1000_cleanup_led_ich8lan;
+	/* turn on/off LED */
+	func->led_on = e1000_led_on_ich8lan;
+	func->led_off = e1000_led_off_ich8lan;
+	/* remove device */
+	func->remove_device = e1000_remove_device_generic;
+	/* clear hardware counters */
+	func->clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
+
+	hw->dev_spec_size = sizeof (struct e1000_dev_spec_ich8lan);
+
+	/* Device-specific structure allocation */
+	ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+	if (ret_val)
+		goto out;
+
+	/* Enable PCS Lock-loss workaround for ICH8 */
+	if (mac->type == e1000_ich8lan)
+		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
+
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific function pointers for PHY, MAC, and NVM.
+ */
+void
+e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
+
+	hw->func.init_mac_params = e1000_init_mac_params_ich8lan;
+	hw->func.init_nvm_params = e1000_init_nvm_params_ich8lan;
+	hw->func.init_phy_params = e1000_init_phy_params_ich8lan;
+}
+
+/*
+ * e1000_acquire_swflag_ich8lan - Acquire software control flag
+ * @hw: pointer to the HW structure
+ *
+ * Acquires the software control flag for performing NVM and PHY
+ * operations.  This is a function pointer entry point only called by
+ * read/write routines for the PHY and NVM parts.
+ */
+static s32
+e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
+{
+	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
+
+	while (timeout) {
+		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+		extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
+		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+
+		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
+			break;
+		msec_delay_irq(1);
+		timeout--;
+	}
+
+	if (!timeout) {
+		DEBUGOUT("FW or HW has locked the resource for too long.\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_release_swflag_ich8lan - Release software control flag
+ * @hw: pointer to the HW structure
+ *
+ * Releases the software control flag for performing NVM and PHY operations.
+ * This is a function pointer entry point only called by read/write
+ * routines for the PHY and NVM parts.
+ */
+static void
+e1000_release_swflag_ich8lan(struct e1000_hw *hw)
+{
+	u32 extcnf_ctrl;
+
+	DEBUGFUNC("e1000_release_swflag_ich8lan");
+
+	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+}
+
+/*
+ * e1000_check_mng_mode_ich8lan - Checks management mode
+ * @hw: pointer to the HW structure
+ *
+ * This checks if the adapter has manageability enabled.
+ * This is a function pointer entry point only called by read/write
+ * routines for the PHY and NVM parts.
+ */
+static boolean_t
+e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
+{
+	u32 fwsm;
+
+	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
+
+	fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+	return ((fwsm & E1000_FWSM_MODE_MASK) ==
+	    (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
+}
+
+/*
+ * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
+ * @hw: pointer to the HW structure
+ *
+ * Checks if firmware is blocking the reset of the PHY.
+ * This is a function pointer entry point only called by
+ * reset routines.
+ */
+static s32
+e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
+{
+	u32 fwsm;
+
+	DEBUGFUNC("e1000_check_reset_block_ich8lan");
+
+	fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+	return ((fwsm & E1000_ICH_FWSM_RSPCIPHY) ? E1000_SUCCESS
+	    : E1000_BLK_PHY_RESET);
+}
+
+/*
+ * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
+ * @hw: pointer to the HW structure
+ *
+ * Forces the speed and duplex settings of the PHY.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ */
+static s32
+e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	boolean_t link;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_ich8lan");
+
+	if (phy->type != e1000_phy_ife) {
+		ret_val = e1000_phy_force_speed_duplex_igp(hw);
+		goto out;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &data);
+	if (ret_val)
+		goto out;
+
+	e1000_phy_force_speed_duplex_setup(hw, &data);
+
+	ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, data);
+	if (ret_val)
+		goto out;
+
+	/* Disable MDI-X support for 10/100 */
+	ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
+	if (ret_val)
+		goto out;
+
+	data &= ~IFE_PMC_AUTO_MDIX;
+	data &= ~IFE_PMC_FORCE_MDIX;
+
+	ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, data);
+	if (ret_val)
+		goto out;
+
+	DEBUGOUT1("IFE PMC: %X\n", data);
+
+	usec_delay(1);
+
+	if (phy->wait_for_link) {
+		DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
+
+		ret_val = e1000_phy_has_link_generic(hw,
+		    PHY_FORCE_LIMIT,
+		    100000,
+		    &link);
+		if (ret_val)
+			goto out;
+
+		if (!link) {
+			DEBUGOUT("Link taking longer than expected.\n");
+		}
+
+		/* Try once more */
+		ret_val = e1000_phy_has_link_generic(hw,
+		    PHY_FORCE_LIMIT,
+		    100000,
+		    &link);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Resets the PHY
+ * This is a function pointer entry point called by drivers
+ * or other shared routines.
+ */
+static s32
+e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
+	s32 ret_val;
+	u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
+	u16 word_addr, reg_data, reg_addr, phy_page = 0;
+
+	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
+
+	ret_val = e1000_phy_hw_reset_generic(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Initialize the PHY from the NVM on ICH platforms.  This is needed
+	 * due to an issue where the NVM configuration is not properly
+	 * autoloaded after power transitions. Therefore, after each PHY
+	 * reset, we will load the configuration data out of the NVM manually.
+	 */
+	if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
+		/* Check if SW needs configure the PHY */
+		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
+		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_M))
+			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
+		else
+			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
+
+		data = E1000_READ_REG(hw, E1000_FEXTNVM);
+		if (!(data & sw_cfg_mask))
+			goto out;
+
+		/* Wait for basic configuration completes before proceeding */
+		do {
+			data = E1000_READ_REG(hw, E1000_STATUS);
+			data &= E1000_STATUS_LAN_INIT_DONE;
+			usec_delay(100);
+		} while ((!data) && --loop);
+
+		/*
+		 * If basic configuration is incomplete before the above loop
+		 * count reaches 0, loading the configuration from NVM will
+		 * leave the PHY in a bad state possibly resulting in no link.
+		 */
+		if (loop == 0) {
+			DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
+		}
+
+		/* Clear the Init Done bit for the next init event */
+		data = E1000_READ_REG(hw, E1000_STATUS);
+		data &= ~E1000_STATUS_LAN_INIT_DONE;
+		E1000_WRITE_REG(hw, E1000_STATUS, data);
+
+		/*
+		 * Make sure HW does not configure LCD from PHY extended
+		 * configuration before SW configuration
+		 */
+		data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
+			goto out;
+
+		cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
+		cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
+		cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
+		if (!cnf_size)
+			goto out;
+
+		cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
+		cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
+
+		/*
+		 * Configure LCD from extended configuration region.
+		 */
+
+		/* cnf_base_addr is in DWORD */
+		word_addr = (u16)(cnf_base_addr << 1);
+
+		for (i = 0; i < cnf_size; i++) {
+			ret_val = e1000_read_nvm(hw,
+			    (word_addr + i * 2),
+			    1,
+			    &reg_data);
+			if (ret_val)
+				goto out;
+
+			ret_val = e1000_read_nvm(hw,
+			    (word_addr + i * 2 + 1),
+			    1,
+			    &reg_addr);
+			if (ret_val)
+				goto out;
+
+			/* Save off the PHY page for future writes. */
+			if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
+				phy_page = reg_data;
+				continue;
+			}
+
+			reg_addr |= phy_page;
+
+			ret_val = e1000_write_phy_reg(hw,
+			    (u32)reg_addr,
+			    reg_data);
+			if (ret_val)
+				goto out;
+		}
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
+ * @hw: pointer to the HW structure
+ *
+ * Wrapper for calling the get_phy_info routines for the appropriate phy type.
+ * This is a function pointer entry point called by drivers
+ * or other shared routines.
+ */
+static s32
+e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = -E1000_ERR_PHY_TYPE;
+
+	DEBUGFUNC("e1000_get_phy_info_ich8lan");
+
+	switch (hw->phy.type) {
+	case e1000_phy_ife:
+		ret_val = e1000_get_phy_info_ife_ich8lan(hw);
+		break;
+	case e1000_phy_igp_3:
+	case e1000_phy_bm:
+		ret_val = e1000_get_phy_info_igp(hw);
+		break;
+	default:
+		break;
+	}
+
+	return (ret_val);
+}
+
+/*
+ * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
+ * @hw: pointer to the HW structure
+ *
+ * Populates "phy" structure with various feature states.
+ * This function is only called by other family-specific
+ * routines.
+ */
+static s32
+e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	boolean_t link;
+
+	DEBUGFUNC("e1000_get_phy_info_ife_ich8lan");
+
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link) {
+		DEBUGOUT("Phy info is only valid if link is up\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
+	if (ret_val)
+		goto out;
+	phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
+	    ? FALSE : TRUE;
+
+	if (phy->polarity_correction) {
+		ret_val = e1000_check_polarity_ife_ich8lan(hw);
+		if (ret_val)
+			goto out;
+	} else {
+		/* Polarity is forced */
+		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
+		    ? e1000_rev_polarity_reversed
+		    : e1000_rev_polarity_normal;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
+	if (ret_val)
+		goto out;
+
+	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? TRUE : FALSE;
+
+	/* The following parameters are undefined for 10/100 operation. */
+	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+	phy->local_rx = e1000_1000t_rx_status_undefined;
+	phy->remote_rx = e1000_1000t_rx_status_undefined;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
+ * @hw: pointer to the HW structure
+ *
+ * Polarity is determined on the polarity reveral feature being enabled.
+ * This function is only called by other family-specific
+ * routines.
+ */
+static s32
+e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, offset, mask;
+
+	DEBUGFUNC("e1000_check_polarity_ife_ich8lan");
+
+	/*
+	 * Polarity is determined based on the reversal feature being enabled.
+	 */
+	if (phy->polarity_correction) {
+		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
+		mask = IFE_PESC_POLARITY_REVERSED;
+	} else {
+		offset = IFE_PHY_SPECIAL_CONTROL;
+		mask = IFE_PSC_FORCE_POLARITY;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, offset, &phy_data);
+
+	if (!ret_val)
+		phy->cable_polarity = (phy_data & mask)
+		    ? e1000_rev_polarity_reversed
+		    : e1000_rev_polarity_normal;
+
+	return (ret_val);
+}
+
+/*
+ * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU D0 state according to the active flag.  When
+ * activating LPLU this function also disables smart speed
+ * and vice versa.  LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ */
+static s32
+e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, boolean_t active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 phy_ctrl;
+	s32 ret_val = E1000_SUCCESS;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
+
+	if (phy->type != e1000_phy_igp_3)
+		goto out;
+
+	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+
+	if (active) {
+		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
+		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+		/*
+		 * Call gig speed drop workaround on LPLU before accessing any
+		 * PHY registers
+		 */
+		if ((hw->mac.type == e1000_ich8lan) &&
+		    (hw->phy.type == e1000_phy_igp_3))
+			e1000_gig_downshift_workaround_ich8lan(hw);
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1000_read_phy_reg(hw,
+		    IGP01E1000_PHY_PORT_CONFIG,
+		    &data);
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1000_write_phy_reg(hw,
+		    IGP01E1000_PHY_PORT_CONFIG,
+		    data);
+		if (ret_val)
+			goto out;
+	} else {
+		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1000_read_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    &data);
+			if (ret_val)
+				goto out;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    data);
+			if (ret_val)
+				goto out;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1000_read_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    data);
+			if (ret_val)
+				goto out;
+		}
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU D3 state according to the active flag.  When
+ * activating LPLU this function also disables smart speed
+ * and vice versa.  LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ */
+static s32
+e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, boolean_t active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 phy_ctrl;
+	s32 ret_val = E1000_SUCCESS;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
+
+	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+
+	if (!active) {
+		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1000_read_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    &data);
+			if (ret_val)
+				goto out;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    data);
+			if (ret_val)
+				goto out;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1000_read_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    data);
+			if (ret_val)
+				goto out;
+		}
+	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+	    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+	    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
+		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+		/*
+		 * Call gig speed drop workaround on LPLU before accessing any
+		 * PHY registers
+		 */
+		if ((hw->mac.type == e1000_ich8lan) &&
+		    (hw->phy.type == e1000_phy_igp_3))
+			e1000_gig_downshift_workaround_ich8lan(hw);
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1000_read_phy_reg(hw,
+		    IGP01E1000_PHY_PORT_CONFIG,
+		    &data);
+		if (ret_val)
+			goto out;
+
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1000_write_phy_reg(hw,
+		    IGP01E1000_PHY_PORT_CONFIG,
+		    data);
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_read_nvm_ich8lan - Read word(s) from the NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset (in bytes) of the word(s) to read.
+ * @words: Size of data to read in words
+ * @data: Pointer to the word(s) to read at offset.
+ *
+ * Reads a word(s) from the NVM using the flash access registers.
+ */
+static s32
+e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec;
+	u32 act_offset;
+	s32 ret_val = E1000_SUCCESS;
+	u16 i, word;
+
+	DEBUGFUNC("e1000_read_nvm_ich8lan");
+
+	dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	ret_val = e1000_acquire_nvm(hw);
+	if (ret_val)
+		goto out;
+
+	/* Start with the bank offset, then add the relative offset. */
+	act_offset = (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_SEC1VAL)
+	    ? nvm->flash_bank_size
+	    : 0;
+	act_offset += offset;
+
+	for (i = 0; i < words; i++) {
+		if ((dev_spec->shadow_ram) &&
+		    (dev_spec->shadow_ram[offset + i].modified)) {
+			data[i] = dev_spec->shadow_ram[offset + i].value;
+		} else {
+			ret_val = e1000_read_flash_word_ich8lan(hw,
+			    act_offset + i,
+			    &word);
+			if (ret_val)
+				break;
+			data[i] = word;
+		}
+	}
+
+	e1000_release_nvm(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_flash_cycle_init_ich8lan - Initialize flash
+ * @hw: pointer to the HW structure
+ *
+ * This function does initial flash setup so that a new read/write/erase cycle
+ * can be started.
+ */
+static s32
+e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
+{
+	union ich8_hws_flash_status hsfsts;
+	s32 ret_val = -E1000_ERR_NVM;
+	s32 i = 0;
+
+	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
+
+	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+
+	/* Check if the flash descriptor is valid */
+	if (hsfsts.hsf_status.fldesvalid == 0) {
+		DEBUGOUT("Flash descriptor invalid.  "
+		    "SW Sequencing must be used.");
+		goto out;
+	}
+
+	/* Clear FCERR and DAEL in hw status by writing 1 */
+	hsfsts.hsf_status.flcerr = 1;
+	hsfsts.hsf_status.dael = 1;
+
+	E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
+
+	/*
+	 * Either we should have a hardware SPI cycle in progress bit to check
+	 * against, in order to start a new cycle or FDONE bit should be
+	 * changed in the hardware so that it is 1 after harware reset, which
+	 * can then be used as an indication whether a cycle is in progress or
+	 * has been completed.
+	 */
+
+	if (hsfsts.hsf_status.flcinprog == 0) {
+		/*
+		 * There is no cycle running at present, so we can start a
+		 * cycle. Begin by setting Flash Cycle Done.
+		 */
+		hsfsts.hsf_status.flcdone = 1;
+		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
+		ret_val = E1000_SUCCESS;
+	} else {
+		/*
+		 * Otherwise poll for sometime so the current cycle has a
+		 * chance to end before giving up.
+		 */
+		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
+			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+			    ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcinprog == 0) {
+				ret_val = E1000_SUCCESS;
+				break;
+			}
+			usec_delay(1);
+		}
+		if (ret_val == E1000_SUCCESS) {
+			/*
+			 * Successful in waiting for previous cycle to
+			 * timeout, now set the Flash Cycle Done.
+			 */
+			hsfsts.hsf_status.flcdone = 1;
+			E1000_WRITE_FLASH_REG16(hw,
+			    ICH_FLASH_HSFSTS,
+			    hsfsts.regval);
+		} else {
+			DEBUGOUT("Flash controller busy, cannot get access");
+		}
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
+ * @hw: pointer to the HW structure
+ * @timeout: maximum time to wait for completion
+ *
+ * This function starts a flash cycle and waits for its completion.
+ */
+static s32
+e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
+{
+	union ich8_hws_flash_ctrl hsflctl;
+	union ich8_hws_flash_status hsfsts;
+	s32 ret_val = -E1000_ERR_NVM;
+	u32 i = 0;
+
+	DEBUGFUNC("e1000_flash_cycle_ich8lan");
+
+	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
+	hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+	hsflctl.hsf_ctrl.flcgo = 1;
+	E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+	/* wait till FDONE bit is set to 1 */
+	do {
+		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+		if (hsfsts.hsf_status.flcdone == 1)
+			break;
+		usec_delay(1);
+	} while (i++ < timeout);
+
+	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
+		ret_val = E1000_SUCCESS;
+
+	return (ret_val);
+}
+
+/*
+ * e1000_read_flash_word_ich8lan - Read word from flash
+ * @hw: pointer to the HW structure
+ * @offset: offset to data location
+ * @data: pointer to the location for storing the data
+ *
+ * Reads the flash word at offset into data.  Offset is converted
+ * to bytes before read.
+ */
+static s32
+e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_read_flash_word_ich8lan");
+
+	if (!data) {
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	/* Must convert offset into bytes. */
+	offset <<= 1;
+
+	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 2, data);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_read_flash_data_ich8lan - Read byte or word from NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset (in bytes) of the byte or word to read.
+ * @size: Size of data to read, 1=byte 2=word
+ * @data: Pointer to the word to store the value read.
+ *
+ * Reads a byte or word from the NVM using the flash access registers.
+ */
+static s32
+e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+    u8 size, u16 *data)
+{
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	u32 flash_data = 0;
+	s32 ret_val = -E1000_ERR_NVM;
+	u8 count = 0;
+
+	DEBUGFUNC("e1000_read_flash_data_ich8lan");
+
+	if (size < 1 || size > 2 || data == 0x0 ||
+	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
+		goto out;
+
+	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+	    hw->nvm.flash_base_addr;
+
+	do {
+		usec_delay(1);
+		/* Steps */
+		ret_val = e1000_flash_cycle_init_ich8lan(hw);
+		if (ret_val != E1000_SUCCESS)
+			break;
+
+		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+		hsflctl.hsf_ctrl.fldbcount = size - 1;
+		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
+		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
+
+		ret_val = e1000_flash_cycle_ich8lan(hw,
+		    ICH_FLASH_READ_COMMAND_TIMEOUT);
+
+		/*
+		 * Check if FCERR is set to 1, if set to 1, clear it and try
+		 * the whole sequence a few more times, else read in (shift
+		 * in) the Flash Data0, the order is least significant byte
+		 * first msb to lsb
+		 */
+		if (ret_val == E1000_SUCCESS) {
+			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
+			if (size == 1) {
+				*data = (u8)(flash_data & 0x000000FF);
+			} else if (size == 2) {
+				*data = (u16)(flash_data & 0x0000FFFF);
+			}
+			break;
+		} else {
+			/*
+			 * If we've gotten here, then things are probably
+			 * completely hosed, but if the error condition is
+			 * detected, it won't hurt to give it another try...
+			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
+			 */
+			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+			    ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcerr == 1) {
+				/* Repeat for some time before giving up. */
+				continue;
+			} else if (hsfsts.hsf_status.flcdone == 0) {
+				DEBUGOUT("Timeout error - flash cycle "
+				    "did not complete.");
+				break;
+			}
+		}
+	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_write_nvm_ich8lan - Write word(s) to the NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset (in bytes) of the word(s) to write.
+ * @words: Size of data to write in words
+ * @data: Pointer to the word(s) to write at offset.
+ *
+ * Writes a byte or word to the NVM using the flash access registers.
+ */
+static s32
+e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec;
+	s32 ret_val = E1000_SUCCESS;
+	u16 i;
+
+	DEBUGFUNC("e1000_write_nvm_ich8lan");
+
+	dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	ret_val = e1000_acquire_nvm(hw);
+	if (ret_val)
+		goto out;
+
+	for (i = 0; i < words; i++) {
+		dev_spec->shadow_ram[offset + i].modified = TRUE;
+		dev_spec->shadow_ram[offset + i].value = data[i];
+	}
+
+	e1000_release_nvm(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
+ * @hw: pointer to the HW structure
+ *
+ * The NVM checksum is updated by calling the generic update_nvm_checksum,
+ * which writes the checksum to the shadow ram.  The changes in the shadow
+ * ram are then committed to the EEPROM by processing each bank at a time
+ * checking for the modified bit and writing only the pending changes.
+ * After a succesful commit, the shadow ram is cleared and is ready for
+ * future writes.
+ */
+static s32
+e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec;
+	u32 i, act_offset, new_bank_offset, old_bank_offset;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
+
+	dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+	ret_val = e1000_update_nvm_checksum_generic(hw);
+	if (ret_val)
+		goto out;
+
+	if (nvm->type != e1000_nvm_flash_sw)
+		goto out;
+
+	ret_val = e1000_acquire_nvm(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * We're writing to the opposite bank so if we're on bank 1, write to
+	 * bank 0 etc.  We also need to erase the segment that is going to be
+	 * written
+	 */
+	if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_SEC1VAL)) {
+		new_bank_offset = nvm->flash_bank_size;
+		old_bank_offset = 0;
+		e1000_erase_flash_bank_ich8lan(hw, 1);
+	} else {
+		old_bank_offset = nvm->flash_bank_size;
+		new_bank_offset = 0;
+		e1000_erase_flash_bank_ich8lan(hw, 0);
+	}
+
+	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+		/*
+		 * Determine whether to write the value stored in the other
+		 * NVM bank or a modified value stored in the shadow RAM
+		 */
+		if (dev_spec->shadow_ram[i].modified) {
+			data = dev_spec->shadow_ram[i].value;
+		} else {
+			e1000_read_flash_word_ich8lan(hw,
+			    i + old_bank_offset,
+			    &data);
+		}
+
+		/*
+		 * If the word is 0x13, then make sure the signature bits
+		 * (15:14) are 11b until the commit has completed. This will
+		 * allow us to write 10b which indicates the signature is
+		 * valid.  We want to do this after the write has completed so
+		 * that we don't mark the segment valid while the write is
+		 * still in progress
+		 */
+		if (i == E1000_ICH_NVM_SIG_WORD)
+			data |= E1000_ICH_NVM_SIG_MASK;
+
+		/* Convert offset to bytes. */
+		act_offset = (i + new_bank_offset) << 1;
+
+		usec_delay(100);
+		/* Write the bytes to the new bank. */
+		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+		    act_offset,
+		    (u8)data);
+		if (ret_val)
+			break;
+
+		usec_delay(100);
+		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+		    act_offset + 1,
+		    (u8)(data >> 8));
+		if (ret_val)
+			break;
+	}
+
+	/*
+	 * Don't bother writing the segment valid bits if sector programming
+	 * failed.
+	 */
+	if (ret_val) {
+		DEBUGOUT("Flash commit failed.\n");
+		e1000_release_nvm(hw);
+		goto out;
+	}
+
+	/*
+	 * Finally validate the new segment by setting bit 15:14 to 10b in
+	 * word 0x13 , this can be done without an erase as well since these
+	 * bits are 11 to start with and we need to change bit 14 to 0b
+	 */
+	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
+	e1000_read_flash_word_ich8lan(hw, act_offset, &data);
+	data &= 0xBFFF;
+	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+	    act_offset * 2 + 1,
+	    (u8)(data >> 8));
+	if (ret_val) {
+		e1000_release_nvm(hw);
+		goto out;
+	}
+
+	/*
+	 * And invalidate the previously valid segment by setting its
+	 * signature word (0x13) high_byte to 0b. This can be done without an
+	 * erase because flash erase sets all bits to 1's. We can write 1's to
+	 * 0's without an erase
+	 */
+	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
+	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
+	if (ret_val) {
+		e1000_release_nvm(hw);
+		goto out;
+	}
+	/* Great!  Everything worked, we can now clear the cached entries. */
+	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+		dev_spec->shadow_ram[i].modified = FALSE;
+		dev_spec->shadow_ram[i].value = 0xFFFF;
+	}
+
+	e1000_release_nvm(hw);
+
+	/*
+	 * Reload the EEPROM, or else modifications will not appear until
+	 * after the next adapter reset.
+	 */
+	e1000_reload_nvm(hw);
+	msec_delay(10);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
+ * If the bit is 0, that the EEPROM had been modified, but the checksum was not
+ * calculated, in which case we need to calculate the checksum and set bit 6.
+ */
+static s32
+e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 data;
+
+	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
+
+	/*
+	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum needs to
+	 * be fixed.  This bit is an indication that the NVM was prepared by
+	 * OEM software and did not calculate the checksum...a likely
+	 * scenario.
+	 */
+	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
+	if (ret_val)
+		goto out;
+
+	if ((data & 0x40) == 0) {
+		data |= 0x40;
+		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
+		if (ret_val)
+			goto out;
+		ret_val = e1000_update_nvm_checksum(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000_validate_nvm_checksum_generic(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset (in bytes) of the byte/word to read.
+ * @size: Size of data to read, 1=byte 2=word
+ * @data: The byte(s) to write to the NVM.
+ *
+ * Writes one/two bytes to the NVM using the flash access registers.
+ */
+static s32
+e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+    u8 size, u16 data)
+{
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	u32 flash_data = 0;
+	s32 ret_val = -E1000_ERR_NVM;
+	u8 count = 0;
+
+	DEBUGFUNC("e1000_write_ich8_data");
+
+	if (size < 1 || size > 2 || data > size * 0xff ||
+	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
+		goto out;
+
+	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+	    hw->nvm.flash_base_addr;
+
+	do {
+		usec_delay(1);
+		/* Steps */
+		ret_val = e1000_flash_cycle_init_ich8lan(hw);
+		if (ret_val != E1000_SUCCESS)
+			break;
+
+		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+		hsflctl.hsf_ctrl.fldbcount = size - 1;
+		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
+		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
+
+		if (size == 1)
+			flash_data = (u32)data & 0x00FF;
+		else
+			flash_data = (u32)data;
+
+		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
+
+		/*
+		 * check if FCERR is set to 1 , if set to 1, clear it and try
+		 * the whole sequence a few more times else done
+		 */
+		ret_val = e1000_flash_cycle_ich8lan(hw,
+		    ICH_FLASH_WRITE_COMMAND_TIMEOUT);
+		if (ret_val == E1000_SUCCESS) {
+			break;
+		} else {
+			/*
+			 * If we're here, then things are most likely
+			 * completely hosed, but if the error condition is
+			 * detected, it won't hurt to give it another
+			 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
+			 */
+			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+			    ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcerr == 1) {
+				/* Repeat for some time before giving up. */
+				continue;
+			} else if (hsfsts.hsf_status.flcdone == 0) {
+				DEBUGOUT("Timeout error - flash cycle "
+				    "did not complete.");
+				break;
+			}
+		}
+	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
+ * @hw: pointer to the HW structure
+ * @offset: The index of the byte to read.
+ * @data: The byte to write to the NVM.
+ *
+ * Writes a single byte to the NVM using the flash access registers.
+ */
+static s32
+e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 data)
+{
+	u16 word = (u16)data;
+
+	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
+
+	return (e1000_write_flash_data_ich8lan(hw, offset, 1, word));
+}
+
+/*
+ * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset of the byte to write.
+ * @byte: The byte to write to the NVM.
+ *
+ * Writes a single byte to the NVM using the flash access registers.
+ * Goes through a retry algorithm before giving up.
+ */
+static s32
+e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 byte)
+{
+	s32 ret_val;
+	u16 program_retries;
+
+	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
+
+	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+	if (ret_val == E1000_SUCCESS)
+		goto out;
+
+	for (program_retries = 0; program_retries < 100; program_retries++) {
+		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
+		usec_delay(100);
+		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+		if (ret_val == E1000_SUCCESS)
+			break;
+	}
+	if (program_retries == 100) {
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
+ * @hw: pointer to the HW structure
+ * @bank: 0 for first bank, 1 for second bank, etc.
+ *
+ * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
+ * bank N is 4096 * N + flash_reg_addr.
+ */
+static s32
+e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+
+	/* bank size is in 16bit words - adjust to bytes */
+	u32 flash_bank_size = nvm->flash_bank_size * 2;
+	s32 ret_val = E1000_SUCCESS;
+	s32 count = 0;
+	s32 j, iteration, sector_size;
+
+	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
+
+	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+
+	/*
+	 * Determine HW Sector size: Read BERASE bits of hw flash status
+	 * register
+	 * 00:	The Hw sector is 256 bytes, hence we need to erase 16
+	 *	consecutive sectors.  The start index for the nth Hw sector
+	 *	can be calculated as = bank * 4096 + n * 256
+	 * 01:	The Hw sector is 4K bytes, hence we need to erase 1 sector.
+	 *	The start index for the nth Hw sector can be calculated
+	 *	as = bank * 4096
+	 * 10:	The Hw sector is 8K bytes, nth sector = bank * 8192
+	 *	(ich9 only, otherwise error condition)
+	 * 11:	The Hw sector is 64K bytes, nth sector = bank * 65536
+	 */
+	switch (hsfsts.hsf_status.berasesz) {
+	case 0:
+		/* Hw sector size 256 */
+		sector_size = ICH_FLASH_SEG_SIZE_256;
+		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
+		break;
+	case 1:
+		sector_size = ICH_FLASH_SEG_SIZE_4K;
+		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
+		break;
+	case 2:
+		if (hw->mac.type == e1000_ich9lan) {
+			sector_size = ICH_FLASH_SEG_SIZE_8K;
+			iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
+		} else {
+			ret_val = -E1000_ERR_NVM;
+			goto out;
+		}
+		break;
+	case 3:
+		sector_size = ICH_FLASH_SEG_SIZE_64K;
+		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
+		break;
+	default:
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	/* Start with the base address, then add the sector offset. */
+	flash_linear_addr = hw->nvm.flash_base_addr;
+	flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
+
+	for (j = 0; j < iteration; j++) {
+		do {
+			/* Steps */
+			ret_val = e1000_flash_cycle_init_ich8lan(hw);
+			if (ret_val)
+				goto out;
+
+			/*
+			 * Write a value 11 (block Erase) in Flash Cycle field
+			 * in hw flash control
+			 */
+			hsflctl.regval = E1000_READ_FLASH_REG16(hw,
+			    ICH_FLASH_HSFCTL);
+			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
+			E1000_WRITE_FLASH_REG16(hw,
+			    ICH_FLASH_HSFCTL,
+			    hsflctl.regval);
+
+			/*
+			 * Write the last 24 bits of an index within the block
+			 * into Flash Linear address field in Flash Address.
+			 */
+			flash_linear_addr += (j * sector_size);
+			E1000_WRITE_FLASH_REG(hw,
+			    ICH_FLASH_FADDR,
+			    flash_linear_addr);
+
+			ret_val = e1000_flash_cycle_ich8lan(hw,
+			    ICH_FLASH_ERASE_COMMAND_TIMEOUT);
+			if (ret_val == E1000_SUCCESS) {
+				break;
+			} else {
+				/*
+				 * Check if FCERR is set to 1.  If 1, clear it
+				 * and try the whole sequence a few more times
+				 * else Done
+				 */
+				hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+				    ICH_FLASH_HSFSTS);
+				if (hsfsts.hsf_status.flcerr == 1) {
+					/*
+					 * repeat for some time before giving up
+					 */
+					continue;
+				} else if (hsfsts.hsf_status.flcdone == 0)
+					goto out;
+			}
+		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_valid_led_default_ich8lan - Set the default LED settings
+ * @hw: pointer to the HW structure
+ * @data: Pointer to the LED settings
+ *
+ * Reads the LED default settings from the NVM to data.  If the NVM LED
+ * settings is all 0's or F's, set the LED default to a valid LED default
+ * setting.
+ */
+static s32
+e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 * data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_valid_led_default_ich8lan");
+
+	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+
+	if (*data == ID_LED_RESERVED_0000 ||
+	    *data == ID_LED_RESERVED_FFFF)
+		*data = ID_LED_DEFAULT_ICH8LAN;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
+ * @hw: pointer to the HW structure
+ *
+ * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
+ * register, so the the bus width is hard coded.
+ */
+static s32
+e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_get_bus_info_ich8lan");
+
+	ret_val = e1000_get_bus_info_pcie_generic(hw);
+
+	/*
+	 * ICH devices are "PCI Express"-ish.  They have a configuration
+	 * space, but do not contain PCI Express Capability registers, so bus
+	 * width must be hardcoded.
+	 */
+	if (bus->width == e1000_bus_width_unknown)
+		bus->width = e1000_bus_width_pcie_x1;
+
+	return (ret_val);
+}
+
+/*
+ * e1000_reset_hw_ich8lan - Reset the hardware
+ * @hw: pointer to the HW structure
+ *
+ * Does a full reset of the hardware which includes a reset of the PHY and
+ * MAC.
+ */
+static s32
+e1000_reset_hw_ich8lan(struct e1000_hw *hw)
+{
+	u32 ctrl, icr, kab;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_reset_hw_ich8lan");
+
+	/*
+	 * Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000_disable_pcie_master_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("PCI-E Master disable polling has failed.\n");
+	}
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	/*
+	 * Disable the Transmit and Receive units.  Then delay to allow any
+	 * pending transactions to complete before we hit the MAC with the
+	 * global reset.
+	 */
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	msec_delay(10);
+
+	/* Workaround for ICH8 bit corruption issue in FIFO memory */
+	if (hw->mac.type == e1000_ich8lan) {
+		/* Set Tx and Rx buffer allocation to 8k apiece. */
+		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
+		/* Set Packet Buffer Size to 16k. */
+		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
+	}
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	if (!e1000_check_reset_block(hw) && !hw->phy.reset_disable) {
+		/*
+		 * PHY HW reset requires MAC CORE reset at the same time to
+		 * make sure the interface between MAC and the external PHY is
+		 * reset.
+		 */
+		ctrl |= E1000_CTRL_PHY_RST;
+	}
+
+	ret_val = e1000_acquire_swflag_ich8lan(hw);
+	DEBUGOUT("Issuing a global reset to ich8lan");
+	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
+	msec_delay(20);
+
+	ret_val = e1000_get_auto_rd_done_generic(hw);
+	if (ret_val) {
+		/*
+		 * When auto config read does not complete, do not return with
+		 * an error. This can happen in situations where there is no
+		 * eeprom and prevents getting link.
+		 */
+		DEBUGOUT("Auto Read Done did not complete\n");
+	}
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	icr = E1000_READ_REG(hw, E1000_ICR);
+
+	kab = E1000_READ_REG(hw, E1000_KABGTXD);
+	kab |= E1000_KABGTXD_BGSQLBIAS;
+	E1000_WRITE_REG(hw, E1000_KABGTXD, kab);
+
+	return (ret_val);
+}
+
+/*
+ * e1000_init_hw_ich8lan - Initialize the hardware
+ * @hw: pointer to the HW structure
+ *
+ * Prepares the hardware for transmit and receive by doing the following:
+ *  - initialize hardware bits
+ *  - initialize LED identification
+ *  - setup receive address registers
+ *  - setup flow control
+ *  - setup transmit discriptors
+ *  - clear statistics
+ */
+static s32
+e1000_init_hw_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 ctrl_ext, txdctl, snoop;
+	s32 ret_val;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_hw_ich8lan");
+
+	e1000_initialize_hw_bits_ich8lan(hw);
+
+	/* Initialize identification LED */
+	ret_val = e1000_id_led_init_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error initializing identification LED\n");
+		goto out;
+	}
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link(hw);
+
+	/* Set the transmit descriptor write-back policy for both queues */
+	txdctl = E1000_READ_REG(hw, E1000_TXDCTL);
+	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+	    E1000_TXDCTL_FULL_TX_DESC_WB;
+	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
+	    E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+	E1000_WRITE_REG(hw, E1000_TXDCTL, txdctl);
+	txdctl = E1000_READ_REG(hw, E1000_TXDCTL1);
+	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+	    E1000_TXDCTL_FULL_TX_DESC_WB;
+	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
+	    E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+	E1000_WRITE_REG(hw, E1000_TXDCTL1, txdctl);
+
+	/*
+	 * ICH8 has opposite polarity of no_snoop bits. By default, we should
+	 * use snoop behavior.
+	 */
+	if (mac->type == e1000_ich8lan)
+		snoop = PCIE_ICH8_SNOOP_ALL;
+	else
+		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
+	e1000_set_pcie_no_snoop_generic(hw, snoop);
+
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_ich8lan(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
+ * @hw: pointer to the HW structure
+ *
+ * Sets/Clears required hardware bits necessary for correctly setting up the
+ * hardware for transmit and receive.
+ */
+static void
+e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
+
+	if (hw->mac.disable_hw_init_bits)
+		return;
+
+	/* Extended Device Control */
+	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+	/* Transmit Descriptor Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL);
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL, reg);
+
+	/* Transmit Descriptor Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL1);
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL1, reg);
+
+	/* Transmit Arbitration Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TARC0);
+	if (hw->mac.type == e1000_ich8lan)
+		reg |= (1 << 28) | (1 << 29);
+	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
+	E1000_WRITE_REG(hw, E1000_TARC0, reg);
+
+	/* Transmit Arbitration Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TARC1);
+	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+		reg &= ~(1 << 28);
+	else
+		reg |= (1 << 28);
+	reg |= (1 << 24) | (1 << 26) | (1 << 30);
+	E1000_WRITE_REG(hw, E1000_TARC1, reg);
+
+	/* Device Status */
+	if (hw->mac.type == e1000_ich8lan) {
+		reg = E1000_READ_REG(hw, E1000_STATUS);
+		reg &= ~((u32)1 << 31);
+		E1000_WRITE_REG(hw, E1000_STATUS, reg);
+	}
+}
+
+/*
+ * e1000_setup_link_ich8lan - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control.  Calls the appropriate media-specific link configuration
+ * function.  Assuming the adapter has a valid link partner, a valid link
+ * should be established.  Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ */
+static s32
+e1000_setup_link_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_link_ich8lan");
+
+	if (e1000_check_reset_block(hw))
+		goto out;
+
+	/*
+	 * ICH parts do not have a word in the NVM to determine the default
+	 * flow control setting, so we explicitly set it to full.
+	 */
+	if (mac->fc == e1000_fc_default)
+		mac->fc = e1000_fc_full;
+
+	mac->original_fc = mac->fc;
+
+	DEBUGOUT1("After fix-ups FlowControl is now = %x\n", mac->fc);
+
+	/* Continue to configure the copper link. */
+	ret_val = func->setup_physical_interface(hw);
+	if (ret_val)
+		goto out;
+
+	E1000_WRITE_REG(hw, E1000_FCTTV, mac->fc_pause_time);
+
+	ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
+ * @hw: pointer to the HW structure
+ *
+ * Configures the kumeran interface to the PHY to wait the appropriate time
+ * when polling the PHY, then call the generic setup_copper_link to finish
+ * configuring the copper link.
+ */
+static s32
+e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 reg_data;
+
+	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	/*
+	 * Set the mac to wait the maximum time between each iteration and
+	 * increase the max iterations when polling the phy; this fixes
+	 * erroneous timeouts at 10Mbps.
+	 */
+	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
+	if (ret_val)
+		goto out;
+	ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
+	if (ret_val)
+		goto out;
+	reg_data |= 0x3F;
+	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
+	if (ret_val)
+		goto out;
+
+	if (hw->phy.type == e1000_phy_igp_3) {
+		ret_val = e1000_copper_link_setup_igp(hw);
+		if (ret_val)
+			goto out;
+	} else if (hw->phy.type == e1000_phy_bm) {
+		ret_val = e1000_copper_link_setup_m88(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to store current link speed
+ * @duplex: pointer to store the current link duplex
+ *
+ * Calls the generic get_speed_and_duplex to retreive the current link
+ * information and then calls the Kumeran lock loss workaround for links at
+ * gigabit speeds.
+ */
+static s32
+e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
+
+	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
+	if (ret_val)
+		goto out;
+
+	if ((hw->mac.type == e1000_ich8lan) &&
+	    (hw->phy.type == e1000_phy_igp_3) &&
+	    (*speed == SPEED_1000)) {
+		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
+ * @hw: pointer to the HW structure
+ *
+ * Work-around for 82566 Kumeran PCS lock loss:
+ * On link status change (i.e. PCI reset, speed change) and link is up and
+ * speed is gigabit-
+ *   0) if workaround is optionally disabled do nothing
+ *   1) wait 1ms for Kumeran link to come up
+ *   2) check Kumeran Diagnostic register PCS lock loss bit
+ *   3) if not set the link is locked (all is good), otherwise...
+ *   4) reset the PHY
+ *   5) repeat up to 10 times
+ * Note: this is only called for IGP3 copper when speed is 1gb.
+ */
+static s32
+e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec;
+	u32 phy_ctrl;
+	s32 ret_val = E1000_SUCCESS;
+	u16 i, data;
+	boolean_t link;
+
+	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
+
+	dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	if (!(dev_spec->kmrn_lock_loss_workaround_enabled))
+		goto out;
+
+	/*
+	 * Make sure link is up before proceeding.  If not just return.
+	 * Attempting this while link is negotiating fouled up link stability
+	 */
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (!link) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	for (i = 0; i < 10; i++) {
+		/* read once to clear */
+		ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &data);
+		if (ret_val)
+			goto out;
+		/* and again to get new status */
+		ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &data);
+		if (ret_val)
+			goto out;
+
+		/* check for PCS lock */
+		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) {
+			ret_val = E1000_SUCCESS;
+			goto out;
+		}
+
+		/* Issue PHY reset */
+		e1000_phy_hw_reset(hw);
+		msec_delay_irq(5);
+	}
+	/* Disable GigE link negotiation */
+	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
+	    E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+	/*
+	 * Call gig speed drop workaround on Giga disable before accessing any
+	 * PHY registers
+	 */
+	e1000_gig_downshift_workaround_ich8lan(hw);
+
+	/* unable to acquire PCS lock */
+	ret_val = -E1000_ERR_PHY;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_set_kmrn_lock_loss_workaound_ich8lan - Set Kumeran workaround state
+ * @hw: pointer to the HW structure
+ * @state: boolean value used to set the current Kumaran workaround state
+ *
+ * If ICH8, set the current Kumeran workaround state (enabled - TRUE
+ * /disabled - FALSE).
+ */
+void
+e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+    boolean_t state)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec;
+
+	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
+
+	if (hw->mac.type != e1000_ich8lan) {
+		DEBUGOUT("Workaround applies to ICH8 only.\n");
+		return;
+	}
+
+	dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec;
+
+	if (!dev_spec) {
+		DEBUGOUT("dev_spec pointer is set to NULL.\n");
+		return;
+	}
+
+	dev_spec->kmrn_lock_loss_workaround_enabled = state;
+}
+
+/*
+ * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
+ * @hw: pointer to the HW structure
+ *
+ * Workaround for 82566 power-down on D3 entry:
+ *   1) disable gigabit link
+ *   2) write VR power-down enable
+ *   3) read it back
+ * Continue if successful, else issue LCD reset and repeat
+ */
+void
+e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
+{
+	u32 reg;
+	u16 data;
+	u8 retry = 0;
+
+	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
+
+	if (hw->phy.type != e1000_phy_igp_3)
+		return;
+
+	/* Try the workaround twice (if needed) */
+	do {
+		/* Disable link */
+		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
+		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
+		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
+
+		/*
+		 * Call gig speed drop workaround on Giga disable before
+		 * accessing any PHY registers
+		 */
+		if (hw->mac.type == e1000_ich8lan)
+			e1000_gig_downshift_workaround_ich8lan(hw);
+
+		/* Write VR power-down enable */
+		e1000_read_phy_reg(hw, IGP3_VR_CTRL, &data);
+		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+		e1000_write_phy_reg(hw,
+		    IGP3_VR_CTRL,
+		    data | IGP3_VR_CTRL_MODE_SHUTDOWN);
+
+		/* Read it back and test */
+		e1000_read_phy_reg(hw, IGP3_VR_CTRL, &data);
+		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
+			break;
+
+		/* Issue PHY reset and repeat at most one more time */
+		reg = E1000_READ_REG(hw, E1000_CTRL);
+		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
+		retry++;
+	} while (retry);
+}
+
+/*
+ * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
+ * @hw: pointer to the HW structure
+ *
+ * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
+ * LPLU, Giga disable, MDIC PHY reset):
+ *   1) Set Kumeran Near-end loopback
+ *   2) Clear Kumeran Near-end loopback
+ * Should only be called for ICH8[m] devices with IGP_3 Phy.
+ */
+void
+e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 reg_data;
+
+	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
+
+	if ((hw->mac.type != e1000_ich8lan) ||
+	    (hw->phy.type != e1000_phy_igp_3))
+		return;
+
+	ret_val = e1000_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+	    &reg_data);
+	if (ret_val)
+		return;
+	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
+	ret_val = e1000_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+	    reg_data);
+	if (ret_val)
+		return;
+	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
+	ret_val = e1000_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+	    reg_data);
+}
+
+/*
+ * e1000_cleanup_led_ich8lan - Restore the default LED operation
+ * @hw: pointer to the HW structure
+ *
+ * Return the LED back to the default configuration.
+ */
+static s32
+e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_cleanup_led_ich8lan");
+
+	if (hw->phy.type == e1000_phy_ife)
+		ret_val = e1000_write_phy_reg(hw,
+		    IFE_PHY_SPECIAL_CONTROL_LED,
+		    0);
+	else
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+
+	return (ret_val);
+}
+
+/*
+ * e1000_led_on_ich8lan - Turn LED's on
+ * @hw: pointer to the HW structure
+ *
+ * Turn on the LED's.
+ */
+static s32
+e1000_led_on_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_led_on_ich8lan");
+
+	if (hw->phy.type == e1000_phy_ife)
+		ret_val = e1000_write_phy_reg(hw,
+		    IFE_PHY_SPECIAL_CONTROL_LED,
+		    (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
+	else
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
+
+	return (ret_val);
+}
+
+/*
+ * e1000_led_off_ich8lan - Turn LED's off
+ * @hw: pointer to the HW structure
+ *
+ * Turn off the LED's.
+ */
+static s32
+e1000_led_off_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_led_off_ich8lan");
+
+	if (hw->phy.type == e1000_phy_ife)
+		ret_val = e1000_write_phy_reg(hw,
+		    IFE_PHY_SPECIAL_CONTROL_LED,
+		    (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
+	else
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+
+	return (ret_val);
+}
+
+/*
+ * e1000_get_cfg_done_ich8lan - Read config done bit
+ * @hw: pointer to the HW structure
+ *
+ * Read the management control register for the config done bit for
+ * completion status.  NOTE: silicon which is EEPROM-less will fail trying
+ * to read the config done bit, so an error is *ONLY* logged and returns
+ * E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
+ * would not be able to be reset or change link.
+ */
+static s32
+e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
+{
+	e1000_get_cfg_done_generic(hw);
+
+	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
+	if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) &&
+	    (hw->phy.type == e1000_phy_igp_3)) {
+		e1000_phy_init_script_igp3(hw);
+	}
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears hardware counters specific to the silicon family and calls
+ * clear_hw_cntrs_generic to clear all general purpose counters.
+ */
+static void
+e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	temp = E1000_READ_REG(hw, E1000_ALGNERRC);
+	temp = E1000_READ_REG(hw, E1000_RXERRC);
+	temp = E1000_READ_REG(hw, E1000_TNCRS);
+	temp = E1000_READ_REG(hw, E1000_CEXTERR);
+	temp = E1000_READ_REG(hw, E1000_TSCTC);
+	temp = E1000_READ_REG(hw, E1000_TSCTFC);
+
+	temp = E1000_READ_REG(hw, E1000_MGTPRC);
+	temp = E1000_READ_REG(hw, E1000_MGTPDC);
+	temp = E1000_READ_REG(hw, E1000_MGTPTC);
+
+	temp = E1000_READ_REG(hw, E1000_IAC);
+	temp = E1000_READ_REG(hw, E1000_ICRXOC);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_ich8lan.h	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,119 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#ifndef _E1000_ICH8LAN_H_
+#define	_E1000_ICH8LAN_H_
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define	ICH_FLASH_GFPREG		0x0000
+#define	ICH_FLASH_HSFSTS		0x0004
+#define	ICH_FLASH_HSFCTL		0x0006
+#define	ICH_FLASH_FADDR			0x0008
+#define	ICH_FLASH_FDATA0		0x0010
+
+#define	ICH_FLASH_READ_COMMAND_TIMEOUT	500
+#define	ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
+#define	ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
+#define	ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
+#define	ICH_FLASH_CYCLE_REPEAT_COUNT	10
+
+#define	ICH_CYCLE_READ			0
+#define	ICH_CYCLE_WRITE			2
+#define	ICH_CYCLE_ERASE			3
+
+#define	FLASH_GFPREG_BASE_MASK		0x1FFF
+#define	FLASH_SECTOR_ADDR_SHIFT		12
+
+#define	E1000_SHADOW_RAM_WORDS		2048
+
+#define	ICH_FLASH_SEG_SIZE_256		256
+#define	ICH_FLASH_SEG_SIZE_4K		4096
+#define	ICH_FLASH_SEG_SIZE_8K		8192
+#define	ICH_FLASH_SEG_SIZE_64K		65536
+#define	ICH_FLASH_SECTOR_SIZE		4096
+
+#define	ICH_FLASH_REG_MAPSIZE		0x00A0
+
+#define	E1000_ICH_FWSM_RSPCIPHY		0x00000040 /* Reset PHY on PCI Reset */
+#define	E1000_ICH_FWSM_DISSW		0x10000000 /* FW Disables SW Writes */
+/* FW established a valid mode */
+#define	E1000_ICH_FWSM_FW_VALID		0x00008000
+
+#define	E1000_ICH_MNG_IAMT_MODE		0x2
+
+#define	ID_LED_DEFAULT_ICH8LAN	((ID_LED_DEF1_DEF2 << 12) | \
+				(ID_LED_DEF1_OFF2 << 8) | \
+				(ID_LED_DEF1_ON2 << 4) | \
+				(ID_LED_DEF1_DEF2))
+
+#define	E1000_ICH_NVM_SIG_WORD		0x13
+#define	E1000_ICH_NVM_SIG_MASK		0xC000
+
+#define	E1000_ICH8_LAN_INIT_TIMEOUT	1500
+
+#define	E1000_FEXTNVM_SW_CONFIG		1
+#define	E1000_FEXTNVM_SW_CONFIG_ICH8M	(1 << 27) /* Bit redefined for ICH8M */
+
+#define	PCIE_ICH8_SNOOP_ALL	PCIE_NO_SNOOP_ALL
+
+#define	E1000_ICH_RAR_ENTRIES		7
+
+#define	PHY_PAGE_SHIFT	5
+#define	PHY_REG(page, reg)	(((page) << PHY_PAGE_SHIFT) | \
+				((reg) & MAX_PHY_REG_ADDRESS))
+#define	IGP3_KMRN_DIAG	PHY_REG(770, 19) /* KMRN Diagnostic */
+#define	IGP3_VR_CTRL	PHY_REG(776, 18) /* Voltage Regulator Control */
+#define	IGP3_CAPABILITY	PHY_REG(776, 19) /* Capability */
+#define	IGP3_PM_CTRL	PHY_REG(769, 20) /* Power Management Control */
+
+#define	IGP3_KMRN_DIAG_PCS_LOCK_LOSS		0x0002
+#define	IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK	0x0300
+#define	IGP3_VR_CTRL_MODE_SHUTDOWN		0x0200
+#define	IGP3_PM_CTRL_FORCE_PWR_DOWN		0x0020
+
+/*
+ * Additional interrupts need to be handled for ICH family:
+ *  DSW = The FW changed the status of the DISSW bit in FWSM
+ *  PHYINT = The LAN connected device generates an interrupt
+ *  EPRST = Manageability reset event
+ */
+#define	IMS_ICH_ENABLE_MASK (\
+    E1000_IMS_DSW   | \
+    E1000_IMS_PHYINT | \
+    E1000_IMS_EPRST)
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif	/* _E1000_ICH8LAN_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_mac.c	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,2030 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#include "e1000_api.h"
+#include "e1000_mac.h"
+
+/*
+ * e1000_remove_device_generic - Free device specific structure
+ * @hw: pointer to the HW structure
+ *
+ * If a device specific structure was allocated, this function will
+ * free it.
+ */
+void
+e1000_remove_device_generic(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_remove_device_generic");
+
+	/* Freeing the dev_spec member of e1000_hw structure */
+	e1000_free_dev_spec_struct(hw);
+}
+
+/*
+ * e1000_get_bus_info_pci_generic - Get PCI(x) bus information
+ * @hw: pointer to the HW structure
+ *
+ * Determines and stores the system bus information for a particular
+ * network interface.  The following bus information is determined and stored:
+ * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
+ */
+s32
+e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	u32 status = E1000_READ_REG(hw, E1000_STATUS);
+	s32 ret_val = E1000_SUCCESS;
+	u16 pci_header_type;
+
+	DEBUGFUNC("e1000_get_bus_info_pci_generic");
+
+	/* PCI or PCI-X? */
+	bus->type = (status & E1000_STATUS_PCIX_MODE)
+	    ? e1000_bus_type_pcix
+	    : e1000_bus_type_pci;
+
+	/* Bus speed */
+	if (bus->type == e1000_bus_type_pci) {
+		bus->speed = (status & E1000_STATUS_PCI66)
+		    ? e1000_bus_speed_66
+		    : e1000_bus_speed_33;
+	} else {
+		switch (status & E1000_STATUS_PCIX_SPEED) {
+		case E1000_STATUS_PCIX_SPEED_66:
+			bus->speed = e1000_bus_speed_66;
+			break;
+		case E1000_STATUS_PCIX_SPEED_100:
+			bus->speed = e1000_bus_speed_100;
+			break;
+		case E1000_STATUS_PCIX_SPEED_133:
+			bus->speed = e1000_bus_speed_133;
+			break;
+		default:
+			bus->speed = e1000_bus_speed_reserved;
+			break;
+		}
+	}
+
+	/* Bus width */
+	bus->width = (status & E1000_STATUS_BUS64)
+	    ? e1000_bus_width_64
+	    : e1000_bus_width_32;
+
+	/* Which PCI(-X) function? */
+	e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
+	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC)
+		bus->func = (status & E1000_STATUS_FUNC_MASK)
+		    >> E1000_STATUS_FUNC_SHIFT;
+	else
+		bus->func = 0;
+
+	return (ret_val);
+}
+
+/*
+ * e1000_get_bus_info_pcie_generic - Get PCIe bus information
+ * @hw: pointer to the HW structure
+ *
+ * Determines and stores the system bus information for a particular
+ * network interface.  The following bus information is determined and stored:
+ * bus speed, bus width, type (PCIe), and PCIe function.
+ */
+s32
+e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	s32 ret_val;
+	u32 status;
+	u16 pcie_link_status, pci_header_type;
+
+	DEBUGFUNC("e1000_get_bus_info_pcie_generic");
+
+	bus->type = e1000_bus_type_pci_express;
+	bus->speed = e1000_bus_speed_2500;
+
+	ret_val = e1000_read_pcie_cap_reg(hw,
+	    PCIE_LINK_STATUS,
+	    &pcie_link_status);
+	if (ret_val)
+		bus->width = e1000_bus_width_unknown;
+	else
+		bus->width = (e1000_bus_width)((pcie_link_status &
+		    PCIE_LINK_WIDTH_MASK) >>
+		    PCIE_LINK_WIDTH_SHIFT);
+
+	e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
+	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
+		status = E1000_READ_REG(hw, E1000_STATUS);
+		bus->func = (status & E1000_STATUS_FUNC_MASK)
+		    >> E1000_STATUS_FUNC_SHIFT;
+	} else {
+		bus->func = 0;
+	}
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_clear_vfta_generic - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * Clears the register array which contains the VLAN filter table by
+ * setting all the values to 0.
+ */
+void
+e1000_clear_vfta_generic(struct e1000_hw *hw)
+{
+	u32 offset;
+
+	DEBUGFUNC("e1000_clear_vfta_generic");
+
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
+		E1000_WRITE_FLUSH(hw);
+	}
+}
+
+/*
+ * e1000_write_vfta_generic - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: register offset in VLAN filter table
+ * @value: register value written to VLAN filter table
+ *
+ * Writes value at the given offset in the register array which stores
+ * the VLAN filter table.
+ */
+void
+e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	DEBUGFUNC("e1000_write_vfta_generic");
+
+	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/*
+ * e1000_init_rx_addrs_generic - Initialize receive address's
+ * @hw: pointer to the HW structure
+ * @rar_count: receive address registers
+ *
+ * Setups the receive address registers by setting the base receive address
+ * register to the devices MAC address and clearing all the other receive
+ * address registers to 0.
+ */
+void
+e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
+{
+	u32 i;
+
+	DEBUGFUNC("e1000_init_rx_addrs_generic");
+
+	/* Setup the receive address */
+	DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+	e1000_rar_set_generic(hw, hw->mac.addr, 0);
+
+	/* Zero out the other (rar_entry_count - 1) receive addresses */
+	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count - 1);
+	for (i = 1; i < rar_count; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0);
+		E1000_WRITE_FLUSH(hw);
+		E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0);
+		E1000_WRITE_FLUSH(hw);
+	}
+}
+
+/*
+ * e1000_rar_set_generic - Set receive address register
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index: receive address array register
+ *
+ * Sets the receive address array register at index to the address passed
+ * in by addr.
+ */
+void
+e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	u32 rar_low, rar_high;
+
+	DEBUGFUNC("e1000_rar_set_generic");
+
+	/*
+	 * HW expects these in little endian so we reverse the byte order from
+	 * network order (big endian) to little endian
+	 */
+	rar_low = ((u32) addr[0] |
+	    ((u32) addr[1] << 8) |
+	    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+	if (!hw->mac.disable_av)
+		rar_high |= E1000_RAH_AV;
+
+	E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
+	E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
+}
+
+/*
+ * e1000_mta_set_generic - Set multicast filter table address
+ * @hw: pointer to the HW structure
+ * @hash_value: determines the MTA register and bit to set
+ *
+ * The multicast table address is a register array of 32-bit registers.
+ * The hash_value is used to determine what register the bit is in, the
+ * current value is read, the new bit is OR'd in and the new value is
+ * written back into the register.
+ */
+void
+e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value)
+{
+	u32 hash_bit, hash_reg, mta;
+
+	DEBUGFUNC("e1000_mta_set_generic");
+	/*
+	 * The MTA is a register array of 32-bit registers. It is treated like
+	 * an array of (32*mta_reg_count) bits.  We want to set bit
+	 * BitArray[hash_value]. So we figure out what register the bit is in,
+	 * read it, OR in the new bit, then write back the new value.  The
+	 * (hw->mac.mta_reg_count - 1) serves as a mask to bits 31:5 of the
+	 * hash value which gives us the register we're modifying.  The hash
+	 * bit within that register is determined by the lower 5 bits of the
+	 * hash value.
+	 */
+	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
+	hash_bit = hash_value & 0x1F;
+
+	mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
+
+	mta |= (1 << hash_bit);
+
+	E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/*
+ * e1000_mc_addr_list_update_generic - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ * @rar_used_count: the first RAR register free to program
+ * @rar_count: total number of supported Receive Address Registers
+ *
+ * Updates the Receive Address Registers and Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ * The parameter rar_count will usually be hw->mac.rar_entry_count
+ * unless there are workarounds that change this.
+ */
+void
+e1000_mc_addr_list_update_generic(struct e1000_hw *hw,
+    u8 *mc_addr_list, u32 mc_addr_count,
+    u32 rar_used_count, u32 rar_count)
+{
+	u32 hash_value;
+	u32 i;
+
+	DEBUGFUNC("e1000_mc_addr_list_update_generic");
+
+	/*
+	 * Load the first set of multicast addresses into the exact filters
+	 * (RAR).  If there are not enough to fill the RAR array, clear the
+	 * filters.
+	 */
+	for (i = rar_used_count; i < rar_count; i++) {
+		if (mc_addr_count) {
+			e1000_rar_set(hw, mc_addr_list, i);
+			mc_addr_count--;
+			mc_addr_list += ETH_ADDR_LEN;
+		} else {
+			E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
+			E1000_WRITE_FLUSH(hw);
+			E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
+			E1000_WRITE_FLUSH(hw);
+		}
+	}
+
+	/* Clear the old settings from the MTA */
+	DEBUGOUT("Clearing MTA\n");
+	for (i = 0; i < hw->mac.mta_reg_count; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	/* Load any remaining multicast addresses into the hash table. */
+	for (; mc_addr_count > 0; mc_addr_count--) {
+		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
+		DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
+		e1000_mta_set(hw, hash_value);
+		mc_addr_list += ETH_ADDR_LEN;
+	}
+}
+
+/*
+ * e1000_hash_mc_addr_generic - Generate a multicast hash value
+ * @hw: pointer to the HW structure
+ * @mc_addr: pointer to a multicast address
+ *
+ * Generates a multicast address hash value which is used to determine
+ * the multicast filter table array address and new table value.  See
+ * e1000_mta_set_generic()
+ */
+u32
+e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
+{
+	u32 hash_value, hash_mask;
+	u8 bit_shift = 0;
+
+	DEBUGFUNC("e1000_hash_mc_addr_generic");
+
+	/* Register count multiplied by bits per register */
+	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+	/*
+	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
+	 * where 0xFF would still fall within the hash mask.
+	 */
+	while (hash_mask >> bit_shift != 0xFF)
+		bit_shift++;
+
+	/*
+	 * The portion of the address that is used for the hash table is
+	 * determined by the mc_filter_type setting. The algorithm is such
+	 * that there is a total of 8 bits of shifting. The bit_shift for a
+	 * mc_filter_type of 0 represents the number of left-shifts where the
+	 * MSB of mc_addr[5] would still fall within the hash_mask.  Case 0
+	 * does this exactly.  Since there are a total of 8 bits of shifting,
+	 * then mc_addr[4] will shift right the remaining number of bits. Thus
+	 * 8 - bit_shift.  The rest of the cases are a variation of this
+	 * algorithm...essentially raising the number of bits to shift
+	 * mc_addr[5] left, while still keeping the 8-bit shifting total.
+	 *
+	 * For example, given the following Destination MAC Address and an mta
+	 * register count of 128 (thus a 4096-bit vector and 0xFFF mask), we
+	 * can see that the bit_shift for case 0 is 4.  These are the hash
+	 * values resulting from each mc_filter_type...
+	 * [0] [1] [2] [3] [4] [5]
+	 * 01  AA  00  12  34  56
+	 * LSB			MSB
+	 *
+	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
+	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
+	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
+	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
+	 */
+	switch (hw->mac.mc_filter_type) {
+	default:
+	case 0:
+		break;
+	case 1:
+		bit_shift += 1;
+		break;
+	case 2:
+		bit_shift += 2;
+		break;
+	case 3:
+		bit_shift += 4;
+		break;
+	}
+
+	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+	    (((u16) mc_addr[5]) << bit_shift)));
+
+	return (hash_value);
+}
+
+/*
+ * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
+ * @hw: pointer to the HW structure
+ *
+ * In certain situations, a system BIOS may report that the PCIx maximum
+ * memory read byte count (MMRBC) value is higher than than the actual
+ * value. We check the PCIx command regsiter with the current PCIx status
+ * regsiter.
+ */
+void
+e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
+{
+	u16 cmd_mmrbc;
+	u16 pcix_cmd;
+	u16 pcix_stat_hi_word;
+	u16 stat_mmrbc;
+
+	DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
+
+	/* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
+	if (hw->bus.type != e1000_bus_type_pcix)
+		return;
+
+	e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+	e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
+	cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
+	    PCIX_COMMAND_MMRBC_SHIFT;
+	stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+	    PCIX_STATUS_HI_MMRBC_SHIFT;
+	if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+		stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
+	if (cmd_mmrbc > stat_mmrbc) {
+		pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
+		pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+		e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+	}
+}
+
+/*
+ * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the base hardware counters by reading the counter registers.
+ */
+void
+e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
+
+	temp = E1000_READ_REG(hw, E1000_CRCERRS);
+	temp = E1000_READ_REG(hw, E1000_SYMERRS);
+	temp = E1000_READ_REG(hw, E1000_MPC);
+	temp = E1000_READ_REG(hw, E1000_SCC);
+	temp = E1000_READ_REG(hw, E1000_ECOL);
+	temp = E1000_READ_REG(hw, E1000_MCC);
+	temp = E1000_READ_REG(hw, E1000_LATECOL);
+	temp = E1000_READ_REG(hw, E1000_COLC);
+	temp = E1000_READ_REG(hw, E1000_DC);
+	temp = E1000_READ_REG(hw, E1000_SEC);
+	temp = E1000_READ_REG(hw, E1000_RLEC);
+	temp = E1000_READ_REG(hw, E1000_XONRXC);
+	temp = E1000_READ_REG(hw, E1000_XONTXC);
+	temp = E1000_READ_REG(hw, E1000_XOFFRXC);
+	temp = E1000_READ_REG(hw, E1000_XOFFTXC);
+	temp = E1000_READ_REG(hw, E1000_FCRUC);
+	temp = E1000_READ_REG(hw, E1000_GPRC);
+	temp = E1000_READ_REG(hw, E1000_BPRC);
+	temp = E1000_READ_REG(hw, E1000_MPRC);
+	temp = E1000_READ_REG(hw, E1000_GPTC);
+	temp = E1000_READ_REG(hw, E1000_GORCL);
+	temp = E1000_READ_REG(hw, E1000_GORCH);
+	temp = E1000_READ_REG(hw, E1000_GOTCL);
+	temp = E1000_READ_REG(hw, E1000_GOTCH);
+	temp = E1000_READ_REG(hw, E1000_RNBC);
+	temp = E1000_READ_REG(hw, E1000_RUC);
+	temp = E1000_READ_REG(hw, E1000_RFC);
+	temp = E1000_READ_REG(hw, E1000_ROC);
+	temp = E1000_READ_REG(hw, E1000_RJC);
+	temp = E1000_READ_REG(hw, E1000_TORL);
+	temp = E1000_READ_REG(hw, E1000_TORH);
+	temp = E1000_READ_REG(hw, E1000_TOTL);
+	temp = E1000_READ_REG(hw, E1000_TOTH);
+	temp = E1000_READ_REG(hw, E1000_TPR);
+	temp = E1000_READ_REG(hw, E1000_TPT);
+	temp = E1000_READ_REG(hw, E1000_MPTC);
+	temp = E1000_READ_REG(hw, E1000_BPTC);
+}
+
+/*
+ * e1000_check_for_copper_link_generic - Check for link (Copper)
+ * @hw: pointer to the HW structure
+ *
+ * Checks to see of the link status of the hardware has changed.  If a
+ * change in link status has been detected, then we read the PHY registers
+ * to get the current speed/duplex if link exists.
+ */
+s32
+e1000_check_for_copper_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	boolean_t link;
+
+	DEBUGFUNC("e1000_check_for_copper_link");
+
+	/*
+	 * We only want to go out to the PHY registers to see if Auto-Neg has
+	 * completed and/or if our link status has changed.  The
+	 * get_link_status flag is set upon receiving a Link Status Change or
+	 * Rx Sequence Error interrupt.
+	 */
+	if (!mac->get_link_status) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	/*
+	 * First we want to see if the MII Status Register reports link.  If
+	 * so, then we want to get the current speed/duplex of the PHY.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link)
+		goto out;	/* No link detected */
+
+	mac->get_link_status = FALSE;
+
+	/*
+	 * Check if there was DownShift, must be checked immediately after
+	 * link-up
+	 */
+	e1000_check_downshift_generic(hw);
+
+	/*
+	 * If we are forcing speed/duplex, then we simply return since we have
+	 * already determined whether we have link or not.
+	 */
+	if (!mac->autoneg) {
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/*
+	 * Auto-Neg is enabled.  Auto Speed Detection takes care of MAC
+	 * speed/duplex configuration.  So we only need to configure Collision
+	 * Distance in the MAC.
+	 */
+	e1000_config_collision_dist_generic(hw);
+
+	/*
+	 * Configure Flow Control now that Auto-Neg has completed. First, we
+	 * need to restore the desired flow control settings because we may
+	 * have had to re-autoneg with a different link partner.
+	 */
+	ret_val = e1000_config_fc_after_link_up_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error configuring flow control\n");
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_check_for_fiber_link_generic - Check for link (Fiber)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware.  If link is not up and we have
+ * a signal, then we need to force link up.
+ */
+s32
+e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_check_for_fiber_link_generic");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+	/*
+	 * If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), the cable is plugged in (we have signal),
+	 * and our link partner is not trying to auto-negotiate with us (we
+	 * are receiving idles or data), we need to force link up. We also
+	 * need to give auto-negotiation time to complete, in case the cable
+	 * was just plugged in. The autoneg_failed flag does this.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
+	    (!(rxcw & E1000_RXCW_C))) {
+		if (mac->autoneg_failed == 0) {
+			mac->autoneg_failed = 1;
+			goto out;
+		}
+		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			goto out;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/*
+		 * If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register and
+		 * disable forced link in the Device Control register in an
+		 * attempt to auto-negotiate with our link partner.
+		 */
+		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		mac->serdes_has_link = TRUE;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware.  If link is not up and we have
+ * a signal, then we need to force link up.
+ */
+s32
+e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_check_for_serdes_link_generic");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+	/*
+	 * If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), and our link partner is not trying to
+	 * auto-negotiate with us (we are receiving idles or data), we need to
+	 * force link up. We also need to give auto-negotiation time to
+	 * complete.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+		if (mac->autoneg_failed == 0) {
+			mac->autoneg_failed = 1;
+			goto out;
+		}
+		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			goto out;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/*
+		 * If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register and
+		 * disable forced link in the Device Control register in an
+		 * attempt to auto-negotiate with our link partner.
+		 */
+		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		mac->serdes_has_link = TRUE;
+	} else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
+		/*
+		 * If we force link for non-auto-negotiation switch, check
+		 * link status based on MAC synchronization for internal
+		 * serdes media type.
+		 */
+		/* SYNCH bit and IV bit are sticky. */
+		usec_delay(10);
+		if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, E1000_RXCW)) {
+			if (!(rxcw & E1000_RXCW_IV)) {
+				mac->serdes_has_link = TRUE;
+				DEBUGOUT("SERDES: Link is up.\n");
+			}
+		} else {
+			mac->serdes_has_link = FALSE;
+			DEBUGOUT("SERDES: Link is down.\n");
+		}
+	}
+
+	if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
+		status = E1000_READ_REG(hw, E1000_STATUS);
+		mac->serdes_has_link = (status & E1000_STATUS_LU)
+		    ? TRUE
+		    : FALSE;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_setup_link_generic - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control.  Calls the appropriate media-specific link configuration
+ * function.  Assuming the adapter has a valid link partner, a valid link
+ * should be established.  Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ */
+s32
+e1000_setup_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_link_generic");
+
+	/*
+	 * In the case of the phy reset being blocked, we already have a link.
+	 * We do not need to set it up again.
+	 */
+	if (e1000_check_reset_block(hw))
+		goto out;
+
+	ret_val = e1000_set_default_fc_generic(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * We want to save off the original Flow Control configuration just in
+	 * case we get disconnected and then reconnected into a different hub
+	 * or switch with different Flow Control capabilities.
+	 */
+	mac->original_fc = mac->fc;
+
+	DEBUGOUT1("After fix-ups FlowControl is now = %x\n", mac->fc);
+
+	/* Call the necessary media_type subroutine to configure the link. */
+	ret_val = func->setup_physical_interface(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Initialize the flow control address, type, and PAUSE timer
+	 * registers to their default values.  This is done even if flow
+	 * control is disabled, because it does not hurt anything to
+	 * initialize these registers.
+	 */
+	DEBUGOUT("Initializing Flow Control address, type and timer regs\n");
+	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+	E1000_WRITE_REG(hw, E1000_FCTTV, mac->fc_pause_time);
+
+	ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
+ * @hw: pointer to the HW structure
+ *
+ * Configures collision distance and flow control for fiber and serdes
+ * links.  Upon successful setup, poll for link.
+ */
+s32
+e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/* Take the link out of reset */
+	ctrl &= ~E1000_CTRL_LRST;
+
+	e1000_config_collision_dist_generic(hw);
+
+	ret_val = e1000_commit_fc_settings_generic(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Since auto-negotiation is enabled, take the link out of reset (the
+	 * link will be in reset, because we previously reset the chip). This
+	 * will restart auto-negotiation.  If auto-negotiation is successful
+	 * then the link-up status bit will be set and the flow control enable
+	 * bits (RFCE and TFCE) will be set according to their negotiated value.
+	 */
+	DEBUGOUT("Auto-negotiation enabled\n");
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	E1000_WRITE_FLUSH(hw);
+	msec_delay(1);
+
+	/*
+	 * For these adapters, the SW defineable pin 1 is set when the optics
+	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
+	 * indication.
+	 */
+	if (hw->media_type == e1000_media_type_internal_serdes ||
+	    (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
+		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+	} else {
+		DEBUGOUT("No signal detected\n");
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_config_collision_dist_generic - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ */
+void
+e1000_config_collision_dist_generic(struct e1000_hw *hw)
+{
+	u32 tctl;
+
+	DEBUGFUNC("e1000_config_collision_dist_generic");
+
+	tctl = E1000_READ_REG(hw, E1000_TCTL);
+
+	tctl &= ~E1000_TCTL_COLD;
+	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/*
+ * e1000_poll_fiber_serdes_link_generic - Poll for link up
+ * @hw: pointer to the HW structure
+ *
+ * Polls for link up by reading the status register, if link fails to come
+ * up with auto-negotiation, then the link is forced if a signal is detected.
+ */
+s32
+e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 i, status;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
+
+	/*
+	 * If we have a signal (the cable is plugged in, or assumed true for
+	 * serdes media) then poll for a "Link-Up" indication in the Device
+	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
+	 * seconds (Auto-negotiation should complete in less than 500
+	 * milliseconds even if the other end is doing it in SW).
+	 */
+	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
+		msec_delay(10);
+		status = E1000_READ_REG(hw, E1000_STATUS);
+		if (status & E1000_STATUS_LU)
+			break;
+	}
+	if (i == FIBER_LINK_UP_LIMIT) {
+		DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+		mac->autoneg_failed = 1;
+		/*
+		 * AutoNeg failed to achieve a link, so we'll call
+		 * mac->check_for_link. This routine will force the link up if
+		 * we detect a signal. This will allow us to communicate with
+		 * non-autonegotiating link partners.
+		 */
+		ret_val = e1000_check_for_link(hw);
+		if (ret_val) {
+			DEBUGOUT("Error while checking for link\n");
+			goto out;
+		}
+		mac->autoneg_failed = 0;
+	} else {
+		mac->autoneg_failed = 0;
+		DEBUGOUT("Valid Link Found\n");
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_commit_fc_settings_generic - Configure flow control
+ * @hw: pointer to the HW structure
+ *
+ * Write the flow control settings to the Transmit Config Word Register (TXCW)
+ * base on the flow control settings in e1000_mac_info.
+ */
+s32
+e1000_commit_fc_settings_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 txcw;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_commit_fc_settings_generic");
+
+	/*
+	 * Check for a software override of the flow control settings, and
+	 * setup the device accordingly.  If auto-negotiation is enabled, then
+	 * software will have to set the "PAUSE" bits to the correct value in
+	 * the Transmit Config Word Register (TXCW) and re-start auto-
+	 * negotiation.  However, if auto-negotiation is disabled, then
+	 * software will have to manually configure the two flow control enable
+	 * bits in the CTRL register.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 * 0:	Flow control is completely disabled
+	 * 1:	Rx flow control is enabled (we can receive pause frames,
+	 *	but not send pause frames).
+	 * 2:	Tx flow control is enabled (we can send pause frames but we
+	 *	do not support receiving pause frames).
+	 * 3:	Both Rx and TX flow control (symmetric) are enabled.
+	 */
+	switch (mac->fc) {
+	case e1000_fc_none:
+		/* Flow control completely disabled by a software over-ride. */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+		break;
+	case e1000_fc_rx_pause:
+		/*
+		 * RX Flow control is enabled and TX Flow control is disabled
+		 * by a software over-ride. Since there really isn't a way to
+		 * advertise that we are capable of RX Pause ONLY, we will
+		 * advertise that we support both symmetric and asymmetric RX
+		 * PAUSE.  Later, we will disable the adapter's ability to send
+		 * PAUSE frames.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	case e1000_fc_tx_pause:
+		/*
+		 * TX Flow control is enabled, and RX Flow control is disabled,
+		 * by a software over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+		break;
+	case e1000_fc_full:
+		/*
+		 * Flow control (both RX and TX) is enabled by a software
+		 * over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	E1000_WRITE_REG(hw, E1000_TXCW, txcw);
+	mac->txcw = txcw;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
+ * @hw: pointer to the HW structure
+ *
+ * Sets the flow control high/low threshold (watermark) registers.  If
+ * flow control XON frame transmission is enabled, then set XON frame
+ * tansmission as well.
+ */
+s32
+e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = E1000_SUCCESS;
+	u32 fcrtl = 0, fcrth = 0;
+
+	DEBUGFUNC("e1000_set_fc_watermarks_generic");
+
+	/*
+	 * Set the flow control receive threshold registers.  Normally, these
+	 * registers will be set to a default threshold that may be adjusted
+	 * later by the driver's runtime code.  However, if the ability to
+	 * transmit pause frames is not enabled, then these registers will be
+	 * set to 0.
+	 */
+	if (mac->fc & e1000_fc_tx_pause) {
+		/*
+		 * We need to set up the Receive Threshold high and low water
+		 * marks as well as (optionally) enabling the transmission of
+		 * XON frames.
+		 */
+		fcrtl = mac->fc_low_water;
+		if (mac->fc_send_xon)
+			fcrtl |= E1000_FCRTL_XONE;
+
+		fcrth = mac->fc_high_water;
+	}
+	E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
+	E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
+
+	return (ret_val);
+}
+
+/*
+ * e1000_set_default_fc_generic - Set flow control default values
+ * @hw: pointer to the HW structure
+ *
+ * Read the EEPROM for the default values for flow control and store the
+ * values.
+ */
+s32
+e1000_set_default_fc_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = E1000_SUCCESS;
+	u16 nvm_data;
+
+	DEBUGFUNC("e1000_set_default_fc_generic");
+
+	if (mac->fc != e1000_fc_default)
+		goto out;
+
+	/*
+	 * Read and store word 0x0F of the EEPROM. This word contains bits
+	 * that determine the hardware's default PAUSE (flow control) mode, a
+	 * bit that determines whether the HW defaults to enabling or
+	 * disabling auto-negotiation, and the direction of the SW defined
+	 * pins. If there is no SW over-ride of the flow control setting, then
+	 * the variable hw->fc will be initialized based on a value in the
+	 * EEPROM.
+	 */
+	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
+
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+
+	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
+		mac->fc = e1000_fc_none;
+	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
+	    NVM_WORD0F_ASM_DIR)
+		mac->fc = e1000_fc_tx_pause;
+	else
+		mac->fc = e1000_fc_full;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_force_mac_fc_generic - Force the MAC's flow control settings
+ * @hw: pointer to the HW structure
+ *
+ * Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
+ * device control register to reflect the adapter settings.  TFCE and RFCE
+ * need to be explicitly set by software when a copper PHY is used because
+ * autonegotiation is managed by the PHY rather than the MAC.  Software must
+ * also configure these bits when link is forced on a fiber connection.
+ */
+s32
+e1000_force_mac_fc_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 ctrl;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_force_mac_fc_generic");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/*
+	 * Because we didn't get link via the internal auto-negotiation
+	 * mechanism (we either forced link or we got link via PHY auto-neg),
+	 * we have to manually enable/disable transmit an receive flow
+	 * control.
+	 *
+	 * The "Case" statement below enables/disable flow control according to
+	 * the "mac->fc" parameter.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 * 0:	Flow control is completely disabled
+	 * 1:	Rx flow control is enabled (we can receive pause
+	 *	frames but not send pause frames).
+	 * 2:	Tx flow control is enabled (we can send pause frames
+	 *	frames but we do not receive pause frames).
+	 * 3:	Both Rx and TX flow control (symmetric) is enabled.
+	 * other:  No other values should be possible at this point.
+	 */
+	DEBUGOUT1("mac->fc = %u\n", mac->fc);
+
+	switch (mac->fc) {
+	case e1000_fc_none:
+		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+		break;
+	case e1000_fc_rx_pause:
+		ctrl &= (~E1000_CTRL_TFCE);
+		ctrl |= E1000_CTRL_RFCE;
+		break;
+	case e1000_fc_tx_pause:
+		ctrl &= (~E1000_CTRL_RFCE);
+		ctrl |= E1000_CTRL_TFCE;
+		break;
+	case e1000_fc_full:
+		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_config_fc_after_link_up_generic - Configures flow control after link
+ * @hw: pointer to the HW structure
+ *
+ * Checks the status of auto-negotiation after link up to ensure that the
+ * speed and duplex were not forced.  If the link needed to be forced, then
+ * flow control needs to be forced also.  If auto-negotiation is enabled
+ * and did not fail, then we configure flow control based on our link
+ * partner.
+ */
+s32
+e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = E1000_SUCCESS;
+	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
+	u16 speed, duplex;
+
+	DEBUGFUNC("e1000_config_fc_after_link_up_generic");
+
+	/*
+	 * Check for the case where we have fiber media and auto-neg failed so
+	 * we had to force link.  In this case, we need to force the
+	 * configuration of the MAC to match the "fc" parameter.
+	 */
+	if (mac->autoneg_failed) {
+		if (hw->media_type == e1000_media_type_fiber ||
+		    hw->media_type == e1000_media_type_internal_serdes)
+			ret_val = e1000_force_mac_fc_generic(hw);
+	} else {
+		if (hw->media_type == e1000_media_type_copper)
+			ret_val = e1000_force_mac_fc_generic(hw);
+	}
+
+	if (ret_val) {
+		DEBUGOUT("Error forcing flow control settings\n");
+		goto out;
+	}
+
+	/*
+	 * Check for the case where we have copper media and auto-neg is
+	 * enabled.  In this case, we need to check and see if Auto-Neg has
+	 * completed, and if so, how the PHY and link partner has flow control
+	 * configured.
+	 */
+	if ((hw->media_type == e1000_media_type_copper) && mac->autoneg) {
+		/*
+		 * Read the MII Status Register and check to see if AutoNeg
+		 * has completed.  We read this twice because this reg has
+		 * some "sticky" (latched) bits.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			goto out;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			goto out;
+
+		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
+			DEBUGOUT("Copper PHY and Auto Neg "
+			    "has not completed.\n");
+			goto out;
+		}
+		/*
+		 * The AutoNeg process has completed, so we now need to read
+		 * both the Auto Negotiation Advertisement Register (Address
+		 * 4) and the Auto_Negotiation Base Page Ability Register
+		 * (Address 5) to determine how flow control was negotiated.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
+		    &mii_nway_adv_reg);
+		if (ret_val)
+			goto out;
+		ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
+		    &mii_nway_lp_ability_reg);
+		if (ret_val)
+			goto out;
+
+		/*
+		 * Two bits in the Auto Negotiation Advertisement Register
+		 * (Address 4) and two bits in the Auto Negotiation Base
+		 * Page Ability Register (Address 5) determine flow control
+		 * for both the PHY and the link partner.  The following
+		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+		 * 1999, describes these PAUSE resolution bits and how flow
+		 * control is determined based upon these settings.
+		 * NOTE:  DC = Don't Care
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+		 * ------|---------|-------|---------|--------------------
+		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
+		 *   0   |    1    |   0   |   DC    | e1000_fc_none
+		 *   0   |    1    |   1   |    0    | e1000_fc_none
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 *   1   |    0    |   0   |   DC    | e1000_fc_none
+		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
+		 *   1   |    1    |   0   |    0    | e1000_fc_none
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 *
+		 * Are both PAUSE bits set to 1?  If so, this implies
+		 * Symmetric Flow Control is enabled at both ends.  The
+		 * ASM_DIR bits are irrelevant per the spec.
+		 *
+		 * For Symmetric Flow Control:
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 * ------|---------|-------|---------|--------------------
+		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
+		 *
+		 */
+		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+			/*
+			 * Now we need to check if the user selected RX ONLY
+			 * of pause frames.  In this case, we had to advertise
+			 * FULL flow control because we could not advertise RX
+			 * ONLY. Hence, we must now check to see if we need to
+			 * turn OFF  the TRANSMISSION of PAUSE frames.
+			 */
+			if (mac->original_fc == e1000_fc_full) {
+				mac->fc = e1000_fc_full;
+				DEBUGOUT("Flow Control = FULL.\r\n");
+			} else {
+				mac->fc = e1000_fc_rx_pause;
+				DEBUGOUT("Flow Control = "
+				    "RX PAUSE frames only.\r\n");
+			}
+		}
+		/*
+		 * For receiving PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 * ------|---------|-------|---------|--------------------
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 */
+		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+		    (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+		    (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+			mac->fc = e1000_fc_tx_pause;
+			DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
+		}
+		/*
+		 * For transmitting PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 * ------|---------|-------|---------|--------------------
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 */
+		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+		    (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+		    !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+		    (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+			mac->fc = e1000_fc_rx_pause;
+			DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+		}
+		/*
+		 * Per the IEEE spec, at this point flow control should be
+		 * disabled.  However, we want to consider that we could be
+		 * connected to a legacy switch that doesn't advertise desired
+		 * flow control, but can be forced on the link partner.  So if
+		 * we advertised no flow control, that is what we will resolve
+		 * to.  If we advertised some kind of receive capability (Rx
+		 * Pause Only or Full Flow Control) and the link partner
+		 * advertised none, we will configure ourselves to enable Rx
+		 * Flow Control only.  We can do this safely for two reasons:
+		 * If the link partner really didn't want flow control
+		 * enabled, and we enable Rx, no harm done since we won't be
+		 * receiving any PAUSE frames anyway.  If the intent on the
+		 * link partner was to have flow control enabled, then by us
+		 * enabling RX only, we can at least receive pause frames and
+		 * process them. This is a good idea because in most cases,
+		 * since we are predominantly a server NIC, more times than
+		 * not we will be asked to delay transmission of packets than
+		 * asking our link partner to pause transmission of frames.
+		 */
+		else if ((mac->original_fc == e1000_fc_none ||
+		    mac->original_fc == e1000_fc_tx_pause) ||
+		    mac->fc_strict_ieee) {
+			mac->fc = e1000_fc_none;
+			DEBUGOUT("Flow Control = NONE.\r\n");
+		} else {
+			mac->fc = e1000_fc_rx_pause;
+			DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+		}
+
+		/*
+		 * Now we need to do one last check...  If we auto- negotiated
+		 * to HALF DUPLEX, flow control should not be enabled per IEEE
+		 * 802.3 spec.
+		 */
+		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+		if (ret_val) {
+			DEBUGOUT("Error getting link speed and duplex\n");
+			goto out;
+		}
+
+		if (duplex == HALF_DUPLEX)
+			mac->fc = e1000_fc_none;
+
+		/*
+		 * Now we call a subroutine to actually force the MAC
+		 * controller to use the correct flow control settings.
+		 */
+		ret_val = e1000_force_mac_fc_generic(hw);
+		if (ret_val) {
+			DEBUGOUT("Error forcing flow control settings\n");
+			goto out;
+		}
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_get_speed_and_duplex_copper_generic - Retreive current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Read the status register for the current speed/duplex and store the current
+ * speed and duplex for copper connections.
+ */
+s32
+e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+    u16 *duplex)
+{
+	u32 status;
+
+	DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
+
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	if (status & E1000_STATUS_SPEED_1000) {
+		*speed = SPEED_1000;
+		DEBUGOUT("1000 Mbs, ");
+	} else if (status & E1000_STATUS_SPEED_100) {
+		*speed = SPEED_100;
+		DEBUGOUT("100 Mbs, ");
+	} else {
+		*speed = SPEED_10;
+		DEBUGOUT("10 Mbs, ");
+	}
+
+	if (status & E1000_STATUS_FD) {
+		*duplex = FULL_DUPLEX;
+		DEBUGOUT("Full Duplex\n");
+	} else {
+		*duplex = HALF_DUPLEX;
+		DEBUGOUT("Half Duplex\n");
+	}
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_get_speed_and_duplex_fiber_generic - Retreive current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Sets the speed and duplex to gigabit full duplex (the only possible option)
+ * for fiber/serdes links.
+ */
+s32
+e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
+    u16 *speed, u16 *duplex)
+{
+	DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
+
+	*speed = SPEED_1000;
+	*duplex = FULL_DUPLEX;
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_get_hw_semaphore_generic - Acquire hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the HW semaphore to access the PHY or NVM
+ */
+s32
+e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
+{
+	u32 swsm;
+	s32 ret_val = E1000_SUCCESS;
+	s32 timeout = hw->nvm.word_size + 1;
+	s32 i = 0;
+
+	DEBUGFUNC("e1000_get_hw_semaphore_generic");
+
+	/* Get the SW semaphore */
+	while (i < timeout) {
+		swsm = E1000_READ_REG(hw, E1000_SWSM);
+		if (!(swsm & E1000_SWSM_SMBI))
+			break;
+
+		usec_delay(50);
+		i++;
+	}
+
+	if (i == timeout) {
+		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	/* Get the FW semaphore. */
+	for (i = 0; i < timeout; i++) {
+		swsm = E1000_READ_REG(hw, E1000_SWSM);
+		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+		/* Semaphore acquired if bit latched */
+		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+			break;
+
+		usec_delay(50);
+	}
+
+	if (i == timeout) {
+		/* Release semaphores */
+		e1000_put_hw_semaphore_generic(hw);
+		DEBUGOUT("Driver can't access the NVM\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_put_hw_semaphore_generic - Release hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Release hardware semaphore used to access the PHY or NVM
+ */
+void
+e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
+{
+	u32 swsm;
+
+	DEBUGFUNC("e1000_put_hw_semaphore_generic");
+
+	swsm = E1000_READ_REG(hw, E1000_SWSM);
+
+	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+
+	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
+}
+
+/*
+ * e1000_get_auto_rd_done_generic - Check for auto read completion
+ * @hw: pointer to the HW structure
+ *
+ * Check EEPROM for Auto Read done bit.
+ */
+s32
+e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
+{
+	s32 i = 0;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_get_auto_rd_done_generic");
+
+	while (i < AUTO_READ_DONE_TIMEOUT) {
+		if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
+			break;
+		msec_delay(1);
+		i++;
+	}
+
+	if (i == AUTO_READ_DONE_TIMEOUT) {
+		DEBUGOUT("Auto read by HW from NVM has not completed.\n");
+		ret_val = -E1000_ERR_RESET;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_valid_led_default_generic - Verify a valid default LED config
+ * @hw: pointer to the HW structure
+ * @data: pointer to the NVM (EEPROM)
+ *
+ * Read the EEPROM for the current default LED configuration.  If the
+ * LED configuration is not valid, set to a valid LED configuration.
+ */
+s32
+e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_valid_led_default_generic");
+
+	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+
+	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
+		*data = ID_LED_DEFAULT;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_id_led_init_generic -
+ * @hw: pointer to the HW structure
+ *
+ */
+s32
+e1000_id_led_init_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	const u32 ledctl_mask = 0x000000FF;
+	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+	u16 data, i, temp;
+	const u16 led_mask = 0x0F;
+
+	DEBUGFUNC("e1000_id_led_init_generic");
+
+	ret_val = hw->func.valid_led_default(hw, &data);
+	if (ret_val)
+		goto out;
+
+	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
+	mac->ledctl_mode1 = mac->ledctl_default;
+	mac->ledctl_mode2 = mac->ledctl_default;
+
+	for (i = 0; i < 4; i++) {
+		temp = (data >> (i << 2)) & led_mask;
+		switch (temp) {
+		case ID_LED_ON1_DEF2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_ON1_OFF2:
+			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode1 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_OFF1_DEF2:
+		case ID_LED_OFF1_ON2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode1 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+		switch (temp) {
+		case ID_LED_DEF1_ON2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_OFF1_ON2:
+			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode2 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_DEF1_OFF2:
+		case ID_LED_ON1_OFF2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode2 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_setup_led_generic - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use and saves the current state
+ * of the LED so it can be later restored.
+ */
+s32
+e1000_setup_led_generic(struct e1000_hw *hw)
+{
+	u32 ledctl;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_led_generic");
+
+	if (hw->func.setup_led != e1000_setup_led_generic) {
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	if (hw->media_type == e1000_media_type_fiber) {
+		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+		hw->mac.ledctl_default = ledctl;
+		/* Turn off LED0 */
+		ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+		    E1000_LEDCTL_LED0_BLINK |
+		    E1000_LEDCTL_LED0_MODE_MASK);
+		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+		    E1000_LEDCTL_LED0_MODE_SHIFT);
+		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+	} else if (hw->media_type == e1000_media_type_copper) {
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_cleanup_led_generic - Set LED config to default operation
+ * @hw: pointer to the HW structure
+ *
+ * Remove the current LED configuration and set the LED configuration
+ * to the default value, saved from the EEPROM.
+ */
+s32
+e1000_cleanup_led_generic(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_cleanup_led_generic");
+
+	if (hw->func.cleanup_led != e1000_cleanup_led_generic) {
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_blink_led_generic - Blink LED
+ * @hw: pointer to the HW structure
+ *
+ * Blink the led's which are set to be on.
+ */
+s32
+e1000_blink_led_generic(struct e1000_hw *hw)
+{
+	u32 ledctl_blink = 0;
+	u32 i;
+
+	DEBUGFUNC("e1000_blink_led_generic");
+
+	if (hw->media_type == e1000_media_type_fiber) {
+		/* always blink LED0 for PCI-E fiber */
+		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
+		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
+	} else {
+		/*
+		 * set the blink bit for each LED that's "on" (0x0E)
+		 * in ledctl_mode2
+		 */
+		ledctl_blink = hw->mac.ledctl_mode2;
+		for (i = 0; i < 4; i++)
+			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
+			    E1000_LEDCTL_MODE_LED_ON)
+				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
+				    (i * 8));
+	}
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_led_on_generic - Turn LED on
+ * @hw: pointer to the HW structure
+ *
+ * Turn LED on.
+ */
+s32
+e1000_led_on_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_led_on_generic");
+
+	switch (hw->media_type) {
+	case e1000_media_type_fiber:
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+		break;
+	case e1000_media_type_copper:
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
+		break;
+	default:
+		break;
+	}
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_led_off_generic - Turn LED off
+ * @hw: pointer to the HW structure
+ *
+ * Turn LED off.
+ */
+s32
+e1000_led_off_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_led_off_generic");
+
+	switch (hw->media_type) {
+	case e1000_media_type_fiber:
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+		break;
+	case e1000_media_type_copper:
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+		break;
+	default:
+		break;
+	}
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
+ * @hw: pointer to the HW structure
+ * @no_snoop: bitmap of snoop events
+ *
+ * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
+ */
+void
+e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
+{
+	u32 gcr;
+
+	DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
+
+	if (hw->bus.type != e1000_bus_type_pci_express)
+		return;
+
+	if (no_snoop) {
+		gcr = E1000_READ_REG(hw, E1000_GCR);
+		gcr &= ~(PCIE_NO_SNOOP_ALL);
+		gcr |= no_snoop;
+		E1000_WRITE_REG(hw, E1000_GCR, gcr);
+	}
+}
+
+/*
+ * e1000_disable_pcie_master_generic - Disables PCI-express master access
+ * @hw: pointer to the HW structure
+ *
+ * Returns 0 (E1000_SUCCESS) if successful, else returns -10
+ * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
+ * the master requests to be disabled.
+ *
+ * Disables PCI-Express master access and verifies there are no pending
+ * requests.
+ */
+s32
+e1000_disable_pcie_master_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 timeout = MASTER_DISABLE_TIMEOUT;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_disable_pcie_master_generic");
+
+	if (hw->bus.type != e1000_bus_type_pci_express)
+		goto out;
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	while (timeout) {
+		if (!(E1000_READ_REG(hw, E1000_STATUS) &
+		    E1000_STATUS_GIO_MASTER_ENABLE))
+			break;
+		usec_delay(100);
+		timeout--;
+	}
+
+	if (!timeout) {
+		DEBUGOUT("Master requests are pending.\n");
+		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
+ * @hw: pointer to the HW structure
+ *
+ * Reset the Adaptive Interframe Spacing throttle to default values.
+ */
+void
+e1000_reset_adaptive_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	DEBUGFUNC("e1000_reset_adaptive_generic");
+
+	if (!mac->adaptive_ifs) {
+		DEBUGOUT("Not in Adaptive IFS mode!\n");
+		return;
+	}
+
+	if (!mac->ifs_params_forced) {
+		mac->current_ifs_val = 0;
+		mac->ifs_min_val = IFS_MIN;
+		mac->ifs_max_val = IFS_MAX;
+		mac->ifs_step_size = IFS_STEP;
+		mac->ifs_ratio = IFS_RATIO;
+	}
+
+	mac->in_ifs_mode = FALSE;
+	E1000_WRITE_REG(hw, E1000_AIT, 0);
+}
+
+/*
+ * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
+ * @hw: pointer to the HW structure
+ *
+ * Update the Adaptive Interframe Spacing Throttle value based on the
+ * time between transmitted packets and time between collisions.
+ */
+void
+e1000_update_adaptive_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	DEBUGFUNC("e1000_update_adaptive_generic");
+
+	if (!mac->adaptive_ifs) {
+		DEBUGOUT("Not in Adaptive IFS mode!\n");
+		return;
+	}
+
+	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
+		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
+			mac->in_ifs_mode = TRUE;
+			if (mac->current_ifs_val < mac->ifs_max_val) {
+				if (!mac->current_ifs_val)
+					mac->current_ifs_val = mac->ifs_min_val;
+				else
+					mac->current_ifs_val +=
+					    mac->ifs_step_size;
+				E1000_WRITE_REG(hw, E1000_AIT,
+				    mac->current_ifs_val);
+			}
+		}
+	} else {
+		if (mac->in_ifs_mode &&
+		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
+			mac->current_ifs_val = 0;
+			mac->in_ifs_mode = FALSE;
+			E1000_WRITE_REG(hw, E1000_AIT, 0);
+		}
+	}
+}
+
+/*
+ * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
+ * @hw: pointer to the HW structure
+ *
+ * Verify that when not using auto-negotitation that MDI/MDIx is correctly
+ * set, which is forced to MDI mode only.
+ */
+s32
+e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_validate_mdi_setting_generic");
+
+	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
+		DEBUGOUT("Invalid MDI setting detected\n");
+		hw->phy.mdix = 1;
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
+ * @hw: pointer to the HW structure
+ * @reg: 32bit register offset such as E1000_SCTL
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes an address/data control type register.  There are several of these
+ * and they all have the format address << 8 | data and bit 31 is polled for
+ * completion.
+ */
+s32
+e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+    u32 offset, u8 data)
+{
+	u32 i, regvalue = 0;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
+
+	/* Set up the address and data */
+	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
+	E1000_WRITE_REG(hw, reg, regvalue);
+
+	/* Poll the ready bit to see if the MDI read completed */
+	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
+		usec_delay(5);
+		regvalue = E1000_READ_REG(hw, reg);
+		if (regvalue & E1000_GEN_CTL_READY)
+			break;
+	}
+	if (!(regvalue & E1000_GEN_CTL_READY)) {
+		DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_mac.h	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,95 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#ifndef _E1000_MAC_H_
+#define	_E1000_MAC_H_
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+ * Functions that should not be called directly from drivers but can be used
+ * by other files in this 'shared code'
+ */
+s32 e1000_blink_led_generic(struct e1000_hw *hw);
+s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw);
+s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw);
+s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_cleanup_led_generic(struct e1000_hw *hw);
+s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw);
+s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw);
+s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw);
+s32 e1000_force_mac_fc_generic(struct e1000_hw *hw);
+s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw);
+s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw);
+s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw);
+s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+    u16 *duplex);
+s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
+    u16 *speed, u16 *duplex);
+s32 e1000_id_led_init_generic(struct e1000_hw *hw);
+s32 e1000_led_on_generic(struct e1000_hw *hw);
+s32 e1000_led_off_generic(struct e1000_hw *hw);
+void e1000_mc_addr_list_update_generic(struct e1000_hw *hw,
+    u8 *mc_addr_list, u32 mc_addr_count,
+    u32 rar_used_count, u32 rar_count);
+s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_set_default_fc_generic(struct e1000_hw *hw);
+s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw);
+s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_setup_led_generic(struct e1000_hw *hw);
+s32 e1000_setup_link_generic(struct e1000_hw *hw);
+s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
+s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+    u32 offset, u8 data);
+
+u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr);
+
+void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw);
+void e1000_clear_vfta_generic(struct e1000_hw *hw);
+void e1000_config_collision_dist_generic(struct e1000_hw *hw);
+void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count);
+void e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value);
+void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw);
+void e1000_put_hw_semaphore_generic(struct e1000_hw *hw);
+void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
+void e1000_remove_device_generic(struct e1000_hw *hw);
+void e1000_reset_adaptive_generic(struct e1000_hw *hw);
+void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop);
+void e1000_update_adaptive_generic(struct e1000_hw *hw);
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif	/* _E1000_MAC_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_manage.c	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,393 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#include "e1000_api.h"
+#include "e1000_manage.h"
+
+static u8 e1000_calculate_checksum(u8 *buffer, u32 length);
+
+/*
+ * e1000_calculate_checksum - Calculate checksum for buffer
+ * @buffer: pointer to EEPROM
+ * @length: size of EEPROM to calculate a checksum for
+ *
+ * Calculates the checksum for some buffer on a specified length.  The
+ * checksum calculated is returned.
+ */
+static u8
+e1000_calculate_checksum(u8 *buffer, u32 length)
+{
+	u32 i;
+	u8 sum = 0;
+
+	DEBUGFUNC("e1000_calculate_checksum");
+
+	if (!buffer)
+		return (0);
+
+	for (i = 0; i < length; i++)
+		sum += buffer[i];
+
+	return (u8)(0 - sum);
+}
+
+/*
+ * e1000_mng_enable_host_if_generic - Checks host interface is enabled
+ * @hw: pointer to the HW structure
+ *
+ * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ * This function checks whether the HOST IF is enabled for command operaton
+ * and also checks whether the previous command is completed.  It busy waits
+ * in case of previous command is not completed.
+ */
+s32
+e1000_mng_enable_host_if_generic(struct e1000_hw *hw)
+{
+	u32 hicr;
+	s32 ret_val = E1000_SUCCESS;
+	u8 i;
+
+	DEBUGFUNC("e1000_mng_enable_host_if_generic");
+
+	/* Check that the host interface is enabled. */
+	hicr = E1000_READ_REG(hw, E1000_HICR);
+	if ((hicr & E1000_HICR_EN) == 0) {
+		DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+		ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+		goto out;
+	}
+	/* check the previous command is completed */
+	for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
+		hicr = E1000_READ_REG(hw, E1000_HICR);
+		if (!(hicr & E1000_HICR_C))
+			break;
+		msec_delay_irq(1);
+	}
+
+	if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
+		DEBUGOUT("Previous command timeout failed .\n");
+		ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+		goto out;
+	}
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_check_mng_mode_generic - Generic check managament mode
+ * @hw: pointer to the HW structure
+ *
+ * Reads the firmware semaphore register and returns true (>0) if
+ * manageability is enabled, else false (0).
+ */
+boolean_t
+e1000_check_mng_mode_generic(struct e1000_hw *hw)
+{
+	u32 fwsm;
+
+	DEBUGFUNC("e1000_check_mng_mode_generic");
+
+	fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+	return ((fwsm & E1000_FWSM_MODE_MASK) ==
+	    (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
+}
+
+/*
+ * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on TX
+ * @hw: pointer to the HW structure
+ *
+ * Enables packet filtering on transmit packets if manageability is enabled
+ * and host interface is enabled.
+ */
+boolean_t
+e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw)
+{
+	struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
+	u32 *buffer = (u32 *)&hw->mng_cookie;
+	u32 offset;
+	s32 ret_val, hdr_csum, csum;
+	u8 i, len;
+	boolean_t tx_filter = TRUE;
+
+	DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic");
+
+	/* No manageability, no filtering */
+	if (!e1000_check_mng_mode(hw)) {
+		tx_filter = FALSE;
+		goto out;
+	}
+
+	/*
+	 * If we can't read from the host interface for whatever reason,
+	 * disable filtering.
+	 */
+	ret_val = e1000_mng_enable_host_if(hw);
+	if (ret_val != E1000_SUCCESS) {
+		tx_filter = FALSE;
+		goto out;
+	}
+
+	/* Read in the header.  Length and offset are in dwords. */
+	len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
+	offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
+	for (i = 0; i < len; i++) {
+		*(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw,
+		    E1000_HOST_IF,
+		    offset + i);
+	}
+	hdr_csum = hdr->checksum;
+	hdr->checksum = 0;
+	csum = e1000_calculate_checksum((u8 *)hdr,
+	    E1000_MNG_DHCP_COOKIE_LENGTH);
+	/*
+	 * If either the checksums or signature don't match, then the cookie
+	 * area isn't considered valid, in which case we take the safe route
+	 * of assuming Tx filtering is enabled.
+	 */
+	if (hdr_csum != csum)
+		goto out;
+	if (hdr->signature != E1000_IAMT_SIGNATURE)
+		goto out;
+
+	/* Cookie area is valid, make the final check for filtering. */
+	if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING))
+		tx_filter = FALSE;
+
+out:
+	hw->mac.tx_pkt_filtering = tx_filter;
+	return (tx_filter);
+}
+
+/*
+ * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface
+ * @length: size of the buffer
+ *
+ * Writes the DHCP information to the host interface.
+ */
+s32
+e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer,
+    u16 length)
+{
+	struct e1000_host_mng_command_header hdr;
+	s32 ret_val;
+	u32 hicr;
+
+	DEBUGFUNC("e1000_mng_write_dhcp_info_generic");
+
+	hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
+	hdr.command_length = length;
+	hdr.reserved1 = 0;
+	hdr.reserved2 = 0;
+	hdr.checksum = 0;
+
+	/* Enable the host interface */
+	ret_val = e1000_mng_enable_host_if(hw);
+	if (ret_val)
+		goto out;
+
+	/* Populate the host interface with the contents of "buffer". */
+	ret_val = e1000_mng_host_if_write(hw, buffer, length,
+	    sizeof (hdr), &(hdr.checksum));
+	if (ret_val)
+		goto out;
+
+	/* Write the manageability command header */
+	ret_val = e1000_mng_write_cmd_header(hw, &hdr);
+	if (ret_val)
+		goto out;
+
+	/* Tell the ARC a new command is pending. */
+	hicr = E1000_READ_REG(hw, E1000_HICR);
+	E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_mng_write_cmd_header_generic - Writes manageability command header
+ * @hw: pointer to the HW structure
+ * @hdr: pointer to the host interface command header
+ *
+ * Writes the command header after does the checksum calculation.
+ */
+s32
+e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
+    struct e1000_host_mng_command_header *hdr)
+{
+	u16 i, length = sizeof (struct e1000_host_mng_command_header);
+
+	DEBUGFUNC("e1000_mng_write_cmd_header_generic");
+
+	/* Write the whole command header structure with new checksum. */
+
+	hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
+
+	length >>= 2;
+	/* Write the relevant command block into the ram area. */
+	for (i = 0; i < length; i++) {
+		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
+		    *((u32 *) hdr + i));
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_mng_host_if_write_generic - Writes to the manageability host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface buffer
+ * @length: size of the buffer
+ * @offset: location in the buffer to write to
+ * @sum: sum of the data (not checksum)
+ *
+ * This function writes the buffer content at the offset given on the host if.
+ * It also does alignment considerations to do the writes in most efficient
+ * way.  Also fills up the sum of the buffer in *buffer parameter.
+ */
+s32
+e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
+    u16 length, u16 offset, u8 *sum)
+{
+	u8 *tmp;
+	u8 *bufptr = buffer;
+	u32 data = 0;
+	s32 ret_val = E1000_SUCCESS;
+	u16 remaining, i, j, prev_bytes;
+
+	DEBUGFUNC("e1000_mng_host_if_write_generic");
+
+	/* sum = only sum of the data and it is not checksum */
+
+	if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
+		ret_val = -E1000_ERR_PARAM;
+		goto out;
+	}
+
+	tmp = (u8 *)&data;
+	prev_bytes = offset & 0x3;
+	offset >>= 2;
+
+	if (prev_bytes) {
+		data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset);
+		for (j = prev_bytes; j < sizeof (u32); j++) {
+			*(tmp + j) = *bufptr++;
+			*sum += *(tmp + j);
+		}
+		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data);
+		length -= j - prev_bytes;
+		offset++;
+	}
+
+	remaining = length & 0x3;
+	length -= remaining;
+
+	/* Calculate length in DWORDs */
+	length >>= 2;
+
+	/*
+	 * The device driver writes the relevant command block into the ram
+	 * area.
+	 */
+	for (i = 0; i < length; i++) {
+		for (j = 0; j < sizeof (u32); j++) {
+			*(tmp + j) = *bufptr++;
+			*sum += *(tmp + j);
+		}
+
+		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
+		    offset + i, data);
+	}
+	if (remaining) {
+		for (j = 0; j < sizeof (u32); j++) {
+			if (j < remaining)
+				*(tmp + j) = *bufptr++;
+			else
+				*(tmp + j) = 0;
+
+			*sum += *(tmp + j);
+		}
+		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
+		    offset + i, data);
+	}
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_enable_mng_pass_thru - Enable processing of ARP's
+ * @hw: pointer to the HW structure
+ *
+ * Verifies the hardware needs to allow ARPs to be processed by the host.
+ */
+boolean_t
+e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+	u32 manc;
+	u32 fwsm, factps;
+	boolean_t ret_val = FALSE;
+
+	DEBUGFUNC("e1000_enable_mng_pass_thru");
+
+	if (!hw->mac.asf_firmware_present)
+		goto out;
+
+	manc = E1000_READ_REG(hw, E1000_MANC);
+
+	if (!(manc & E1000_MANC_RCV_TCO_EN) ||
+	    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
+		goto out;
+
+	if (hw->mac.arc_subsystem_valid) {
+		fwsm = E1000_READ_REG(hw, E1000_FWSM);
+		factps = E1000_READ_REG(hw, E1000_FACTPS);
+
+		if (!(factps & E1000_FACTPS_MNGCG) &&
+		    ((fwsm & E1000_FWSM_MODE_MASK) ==
+		    (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
+			ret_val = TRUE;
+			goto out;
+		}
+	} else {
+		if ((manc & E1000_MANC_SMBUS_EN) &&
+		    !(manc & E1000_MANC_ASF_EN)) {
+			ret_val = TRUE;
+			goto out;
+		}
+	}
+
+out:
+	return (ret_val);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_manage.h	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,91 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#ifndef _E1000_MANAGE_H_
+#define	_E1000_MANAGE_H_
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+boolean_t e1000_check_mng_mode_generic(struct e1000_hw *hw);
+boolean_t e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw);
+s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw);
+s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
+    u16 length, u16 offset, u8 *sum);
+s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
+    struct e1000_host_mng_command_header *hdr);
+s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw,
+    u8 *buffer, u16 length);
+
+typedef enum {
+	e1000_mng_mode_none = 0,
+	e1000_mng_mode_asf,
+	e1000_mng_mode_pt,
+	e1000_mng_mode_ipmi,
+	e1000_mng_mode_host_if_only
+} e1000_mng_mode;
+
+#define	E1000_FACTPS_MNGCG	0x20000000
+
+#define	E1000_FWSM_MODE_MASK	0xE
+#define	E1000_FWSM_MODE_SHIFT	1
+
+#define	E1000_MNG_IAMT_MODE			0x3
+#define	E1000_MNG_DHCP_COOKIE_LENGTH		0x10
+#define	E1000_MNG_DHCP_COOKIE_OFFSET		0x6F0
+#define	E1000_MNG_DHCP_COMMAND_TIMEOUT		10
+#define	E1000_MNG_DHCP_TX_PAYLOAD_CMD		64
+#define	E1000_MNG_DHCP_COOKIE_STATUS_PARSING	0x1
+#define	E1000_MNG_DHCP_COOKIE_STATUS_VLAN	0x2
+
+#define	E1000_VFTA_ENTRY_SHIFT		5
+#define	E1000_VFTA_ENTRY_MASK		0x7F
+#define	E1000_VFTA_ENTRY_BIT_SHIFT_MASK	0x1F
+
+#define	E1000_HI_MAX_BLOCK_BYTE_LENGTH	1792	/* Number of bytes in range */
+#define	E1000_HI_MAX_BLOCK_DWORD_LENGTH	448	/* Number of dwords in range */
+#define	E1000_HI_COMMAND_TIMEOUT	500	/* Process HI command limit */
+
+#define	E1000_HICR_EN			0x01	/* Enable bit - RO */
+/* Driver sets this bit when done to put command in RAM */
+#define	E1000_HICR_C			0x02
+#define	E1000_HICR_SV			0x04	/* Status Validity */
+#define	E1000_HICR_FW_RESET_ENABLE	0x40
+#define	E1000_HICR_FW_RESET		0x80
+
+/* Intel(R) Active Management Technology signature */
+#define	E1000_IAMT_SIGNATURE	0x544D4149
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif	/* _E1000_MANAGE_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_nvm.c	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,914 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#include "e1000_api.h"
+#include "e1000_nvm.h"
+
+/*
+ * e1000_raise_eec_clk - Raise EEPROM clock
+ * @hw: pointer to the HW structure
+ * @eecd: pointer to the EEPROM
+ *
+ * Enable/Raise the EEPROM clock bit.
+ */
+static void
+e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	*eecd = *eecd | E1000_EECD_SK;
+	E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+	E1000_WRITE_FLUSH(hw);
+	usec_delay(hw->nvm.delay_usec);
+}
+
+/*
+ * e1000_lower_eec_clk - Lower EEPROM clock
+ * @hw: pointer to the HW structure
+ * @eecd: pointer to the EEPROM
+ *
+ * Clear/Lower the EEPROM clock bit.
+ */
+static void
+e1000_lower_eec_clk(struct e1000_hw *hw, u32 * eecd)
+{
+	*eecd = *eecd & ~E1000_EECD_SK;
+	E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+	E1000_WRITE_FLUSH(hw);
+	usec_delay(hw->nvm.delay_usec);
+}
+
+/*
+ * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
+ * @hw: pointer to the HW structure
+ * @data: data to send to the EEPROM
+ * @count: number of bits to shift out
+ *
+ * We need to shift 'count' bits out to the EEPROM.  So, the value in the
+ * "data" parameter will be shifted out to the EEPROM one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ */
+static void
+e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	u32 mask;
+
+	DEBUGFUNC("e1000_shift_out_eec_bits");
+
+	mask = 0x01 << (count - 1);
+	if (nvm->type == e1000_nvm_eeprom_microwire)
+		eecd &= ~E1000_EECD_DO;
+	else if (nvm->type == e1000_nvm_eeprom_spi)
+		eecd |= E1000_EECD_DO;
+
+	do {
+		eecd &= ~E1000_EECD_DI;
+
+		if (data & mask)
+			eecd |= E1000_EECD_DI;
+
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+
+		usec_delay(nvm->delay_usec);
+
+		e1000_raise_eec_clk(hw, &eecd);
+		e1000_lower_eec_clk(hw, &eecd);
+
+		mask >>= 1;
+	} while (mask);
+
+	eecd &= ~E1000_EECD_DI;
+	E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/*
+ * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
+ * @hw: pointer to the HW structure
+ * @count: number of bits to shift in
+ *
+ * In order to read a register from the EEPROM, we need to shift 'count' bits
+ * in from the EEPROM.  Bits are "shifted in" by raising the clock input to
+ * the EEPROM (setting the SK bit), and then reading the value of the data out
+ * "DO" bit.  During this "shifting in" process the data in "DI" bit should
+ * always be clear.
+ */
+static u16
+e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
+{
+	u32 eecd;
+	u32 i;
+	u16 data;
+
+	DEBUGFUNC("e1000_shift_in_eec_bits");
+
+	eecd = E1000_READ_REG(hw, E1000_EECD);
+
+	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+	data = 0;
+
+	for (i = 0; i < count; i++) {
+		data <<= 1;
+		e1000_raise_eec_clk(hw, &eecd);
+
+		eecd = E1000_READ_REG(hw, E1000_EECD);
+
+		eecd &= ~E1000_EECD_DI;
+		if (eecd & E1000_EECD_DO)
+			data |= 1;
+
+		e1000_lower_eec_clk(hw, &eecd);
+	}
+
+	return (data);
+}
+
+/*
+ * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
+ * @hw: pointer to the HW structure
+ * @ee_reg: EEPROM flag for polling
+ *
+ * Polls the EEPROM status bit for either read or write completion based
+ * upon the value of 'ee_reg'.
+ */
+s32
+e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+{
+	u32 attempts = 100000;
+	u32 i, reg = 0;
+	s32 ret_val = -E1000_ERR_NVM;
+
+	DEBUGFUNC("e1000_poll_eerd_eewr_done");
+
+	for (i = 0; i < attempts; i++) {
+		if (ee_reg == E1000_NVM_POLL_READ)
+			reg = E1000_READ_REG(hw, E1000_EERD);
+		else
+			reg = E1000_READ_REG(hw, E1000_EEWR);
+
+		if (reg & E1000_NVM_RW_REG_DONE) {
+			ret_val = E1000_SUCCESS;
+			break;
+		}
+
+		usec_delay(5);
+	}
+
+	return (ret_val);
+}
+
+/*
+ * e1000_acquire_nvm_generic - Generic request for access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ * Return successful if access grant bit set, else clear the request for
+ * EEPROM access and return -E1000_ERR_NVM (-1).
+ */
+s32
+e1000_acquire_nvm_generic(struct e1000_hw *hw)
+{
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_acquire_nvm_generic");
+
+	E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
+	eecd = E1000_READ_REG(hw, E1000_EECD);
+
+	while (timeout) {
+		if (eecd & E1000_EECD_GNT)
+			break;
+		usec_delay(5);
+		eecd = E1000_READ_REG(hw, E1000_EECD);
+		timeout--;
+	}
+
+	if (!timeout) {
+		eecd &= ~E1000_EECD_REQ;
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		DEBUGOUT("Could not acquire NVM grant\n");
+		ret_val = -E1000_ERR_NVM;
+	}
+	return (ret_val);
+}
+
+/*
+ * e1000_standby_nvm - Return EEPROM to standby state
+ * @hw: pointer to the HW structure
+ *
+ * Return the EEPROM to a standby state.
+ */
+static void
+e1000_standby_nvm(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+
+	DEBUGFUNC("e1000_standby_nvm");
+
+	if (nvm->type == e1000_nvm_eeprom_microwire) {
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		usec_delay(nvm->delay_usec);
+
+		e1000_raise_eec_clk(hw, &eecd);
+
+		/* Select EEPROM */
+		eecd |= E1000_EECD_CS;
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		usec_delay(nvm->delay_usec);
+
+		e1000_lower_eec_clk(hw, &eecd);
+	} else if (nvm->type == e1000_nvm_eeprom_spi) {
+		/* Toggle CS to flush commands */
+		eecd |= E1000_EECD_CS;
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		usec_delay(nvm->delay_usec);
+		eecd &= ~E1000_EECD_CS;
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		usec_delay(nvm->delay_usec);
+	}
+}
+
+/*
+ * e1000_stop_nvm - Terminate EEPROM command
+ * @hw: pointer to the HW structure
+ *
+ * Terminates the current command by inverting the EEPROM's chip select pin.
+ */
+void
+e1000_stop_nvm(struct e1000_hw *hw)
+{
+	u32 eecd;
+
+	DEBUGFUNC("e1000_stop_nvm");
+
+	eecd = E1000_READ_REG(hw, E1000_EECD);
+	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
+		/* Pull CS high */
+		eecd |= E1000_EECD_CS;
+		e1000_lower_eec_clk(hw, &eecd);
+	} else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
+		/* CS on Microcwire is active-high */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		e1000_raise_eec_clk(hw, &eecd);
+		e1000_lower_eec_clk(hw, &eecd);
+	}
+}
+
+/*
+ * e1000_release_nvm_generic - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ */
+void
+e1000_release_nvm_generic(struct e1000_hw *hw)
+{
+	u32 eecd;
+
+	DEBUGFUNC("e1000_release_nvm_generic");
+
+	e1000_stop_nvm(hw);
+
+	eecd = E1000_READ_REG(hw, E1000_EECD);
+	eecd &= ~E1000_EECD_REQ;
+	E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/*
+ * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
+ * @hw: pointer to the HW structure
+ *
+ * Setups the EEPROM for reading and writing.
+ */
+static s32
+e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	s32 ret_val = E1000_SUCCESS;
+	u16 timeout = 0;
+	u8 spi_stat_reg;
+
+	DEBUGFUNC("e1000_ready_nvm_eeprom");
+
+	if (nvm->type == e1000_nvm_eeprom_microwire) {
+		/* Clear SK and DI */
+		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		/* Set CS */
+		eecd |= E1000_EECD_CS;
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+	} else if (nvm->type == e1000_nvm_eeprom_spi) {
+		/* Clear SK and CS */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		usec_delay(1);
+		timeout = NVM_MAX_RETRY_SPI;
+
+		/*
+		 * Read "Status Register" repeatedly until the LSB is cleared.
+		 * The EEPROM will signal that the command has been completed
+		 * by clearing bit 0 of the internal status register.  If it's
+		 * not cleared within 'timeout', then error out.
+		 */
+		while (timeout) {
+			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
+			    hw->nvm.opcode_bits);
+			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
+			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
+				break;
+
+			usec_delay(5);
+			e1000_standby_nvm(hw);
+			timeout--;
+		}
+
+		if (!timeout) {
+			DEBUGOUT("SPI NVM Status error\n");
+			ret_val = -E1000_ERR_NVM;
+			goto out;
+		}
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_read_nvm_spi - Read EEPROM's using SPI
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM.
+ */
+s32
+e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 * data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i = 0;
+	s32 ret_val;
+	u16 word_in;
+	u8 read_opcode = NVM_READ_OPCODE_SPI;
+
+	DEBUGFUNC("e1000_read_nvm_spi");
+
+	/*
+	 * A check for invalid values:  offset too large, too many words, and
+	 * not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	ret_val = e1000_acquire_nvm(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_ready_nvm_eeprom(hw);
+	if (ret_val)
+		goto release;
+
+	e1000_standby_nvm(hw);
+
+	if ((nvm->address_bits == 8) && (offset >= 128))
+		read_opcode |= NVM_A8_OPCODE_SPI;
+
+	/* Send the READ command (opcode + addr) */
+	e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+	e1000_shift_out_eec_bits(hw, (u16)(offset * 2), nvm->address_bits);
+
+	/*
+	 * Read the data.  SPI NVMs increment the address with each byte read
+	 * and will roll over if reading beyond the end.  This allows us to
+	 * read the whole NVM from any offset
+	 */
+	for (i = 0; i < words; i++) {
+		word_in = e1000_shift_in_eec_bits(hw, 16);
+		data[i] = (word_in >> 8) | (word_in << 8);
+	}
+
+release:
+	e1000_release_nvm(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_read_nvm_microwire - Reads EEPROM's using microwire
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM.
+ */
+s32
+e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i = 0;
+	s32 ret_val;
+	u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
+
+	DEBUGFUNC("e1000_read_nvm_microwire");
+
+	/*
+	 * A check for invalid values:  offset too large, too many words, and
+	 * not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	ret_val = e1000_acquire_nvm(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_ready_nvm_eeprom(hw);
+	if (ret_val)
+		goto release;
+
+	for (i = 0; i < words; i++) {
+		/* Send the READ command (opcode + addr) */
+		e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+		e1000_shift_out_eec_bits(hw, (u16)(offset + i),
+		    nvm->address_bits);
+
+		/*
+		 * Read the data.  For microwire, each word requires the
+		 * overhead of setup and tear-down.
+		 */
+		data[i] = e1000_shift_in_eec_bits(hw, 16);
+		e1000_standby_nvm(hw);
+	}
+
+release:
+	e1000_release_nvm(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_read_nvm_eerd - Reads EEPROM using EERD register
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM using the EERD register.
+ */
+s32
+e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i, eerd = 0;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_read_nvm_eerd");
+
+	/*
+	 * A check for invalid values:  offset too large, too many words, and
+	 * not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	for (i = 0; i < words; i++) {
+		eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
+		    E1000_NVM_RW_REG_START;
+
+		E1000_WRITE_REG(hw, E1000_EERD, eerd);
+		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
+		if (ret_val)
+			break;
+
+		data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
+		    E1000_NVM_RW_REG_DATA);
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_write_nvm_spi - Write to EEPROM using SPI
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * Writes data to EEPROM at offset using SPI interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function , the
+ * EEPROM will most likley contain an invalid checksum.
+ */
+s32
+e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 * data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	s32 ret_val;
+	u16 widx = 0;
+
+	DEBUGFUNC("e1000_write_nvm_spi");
+
+	/*
+	 * A check for invalid values:  offset too large, too many words, and
+	 * not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	ret_val = e1000_acquire_nvm(hw);
+	if (ret_val)
+		goto out;
+
+	msec_delay(10);
+
+	while (widx < words) {
+		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
+
+		ret_val = e1000_ready_nvm_eeprom(hw);
+		if (ret_val)
+			goto release;
+
+		e1000_standby_nvm(hw);
+
+		/* Send the WRITE ENABLE command (8 bit opcode) */
+		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
+		    nvm->opcode_bits);
+
+		e1000_standby_nvm(hw);
+
+		/*
+		 * Some SPI eeproms use the 8th address bit embedded in the
+		 * opcode
+		 */
+		if ((nvm->address_bits == 8) && (offset >= 128))
+			write_opcode |= NVM_A8_OPCODE_SPI;
+
+		/* Send the Write command (8-bit opcode + addr) */
+		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
+		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
+		    nvm->address_bits);
+
+		/* Loop to allow for up to whole page write of eeprom */
+		while (widx < words) {
+			u16 word_out = data[widx];
+
+			word_out = (word_out >> 8) | (word_out << 8);
+			e1000_shift_out_eec_bits(hw, word_out, 16);
+			widx++;
+
+			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
+				e1000_standby_nvm(hw);
+				break;
+			}
+		}
+	}
+
+	msec_delay(10);
+release:
+	e1000_release_nvm(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_write_nvm_microwire - Writes EEPROM using microwire
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * Writes data to EEPROM at offset using microwire interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function , the
+ * EEPROM will most likley contain an invalid checksum.
+ */
+s32
+e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	s32 ret_val;
+	u32 eecd;
+	u16 words_written = 0;
+	u16 widx = 0;
+
+	DEBUGFUNC("e1000_write_nvm_microwire");
+
+	/*
+	 * A check for invalid values:  offset too large, too many words, and
+	 * not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	ret_val = e1000_acquire_nvm(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_ready_nvm_eeprom(hw);
+	if (ret_val)
+		goto release;
+
+	e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
+	    (u16)(nvm->opcode_bits + 2));
+
+	e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+	e1000_standby_nvm(hw);
+
+	while (words_written < words) {
+		e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
+		    nvm->opcode_bits);
+
+		e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
+		    nvm->address_bits);
+
+		e1000_shift_out_eec_bits(hw, data[words_written], 16);
+
+		e1000_standby_nvm(hw);
+
+		for (widx = 0; widx < 200; widx++) {
+			eecd = E1000_READ_REG(hw, E1000_EECD);
+			if (eecd & E1000_EECD_DO)
+				break;
+			usec_delay(50);
+		}
+
+		if (widx == 200) {
+			DEBUGOUT("NVM Write did not complete\n");
+			ret_val = -E1000_ERR_NVM;
+			goto release;
+		}
+
+		e1000_standby_nvm(hw);
+
+		words_written++;
+	}
+
+	e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
+	    (u16)(nvm->opcode_bits + 2));
+
+	e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+release:
+	e1000_release_nvm(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_read_part_num_generic - Read device part number
+ * @hw: pointer to the HW structure
+ * @part_num: pointer to device part number
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in part_num.
+ */
+s32
+e1000_read_part_num_generic(struct e1000_hw *hw, u32 *part_num)
+{
+	s32 ret_val;
+	u16 nvm_data;
+
+	DEBUGFUNC("e1000_read_part_num_generic");
+
+	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+	*part_num = (u32)(nvm_data << 16);
+
+	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+	*part_num |= nvm_data;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_read_mac_addr_generic - Read device MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the device MAC address from the EEPROM and stores the value.
+ * Since devices with two ports use the same EEPROM, we increment the
+ * last bit in the MAC address for the second port.
+ */
+s32
+e1000_read_mac_addr_generic(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 offset, nvm_data, i;
+
+	DEBUGFUNC("e1000_read_mac_addr");
+
+	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+		offset = i >> 1;
+		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error\n");
+			goto out;
+		}
+		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
+		hw->mac.perm_addr[i + 1] = (u8)(nvm_data >> 8);
+	}
+
+	/* Flip last bit of mac address if we're on second port */
+	if (hw->bus.func == E1000_FUNC_1)
+		hw->mac.perm_addr[5] ^= 1;
+
+	for (i = 0; i < ETH_ADDR_LEN; i++)
+		hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ */
+s32
+e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 checksum = 0;
+	u16 i, nvm_data;
+
+	DEBUGFUNC("e1000_validate_nvm_checksum_generic");
+
+	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
+		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error\n");
+			goto out;
+		}
+		checksum += nvm_data;
+	}
+
+	if (checksum != (u16)NVM_SUM) {
+		DEBUGOUT("NVM Checksum Invalid\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_update_nvm_checksum_generic - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ * up to the checksum.  Then calculates the EEPROM checksum and writes the
+ * value to the EEPROM.
+ */
+s32
+e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 checksum = 0;
+	u16 i, nvm_data;
+
+	DEBUGFUNC("e1000_update_nvm_checksum");
+
+	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error while updating checksum.\n");
+			goto out;
+		}
+		checksum += nvm_data;
+	}
+	checksum = (u16)NVM_SUM - checksum;
+	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
+	if (ret_val) {
+		DEBUGOUT("NVM Write Error while updating checksum.\n");
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_reload_nvm_generic - Reloads EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ * extended control register.
+ */
+void
+e1000_reload_nvm_generic(struct e1000_hw *hw)
+{
+	u32 ctrl_ext;
+
+	DEBUGFUNC("e1000_reload_nvm_generic");
+
+	usec_delay(10);
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/* Function pointers local to this file and not intended for public use */
+
+/*
+ * e1000_acquire_nvm - Acquire exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * For those silicon families which have implemented a NVM acquire function,
+ * run the defined function else return success.
+ */
+s32
+e1000_acquire_nvm(struct e1000_hw *hw)
+{
+	if (hw->func.acquire_nvm)
+		return (hw->func.acquire_nvm(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_release_nvm - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * For those silicon families which have implemented a NVM release function,
+ * run the defined fucntion else return success.
+ */
+void
+e1000_release_nvm(struct e1000_hw *hw)
+{
+	if (hw->func.release_nvm)
+		hw->func.release_nvm(hw);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_nvm.h	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,69 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#ifndef _E1000_NVM_H_
+#define	_E1000_NVM_H_
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+s32 e1000_acquire_nvm_generic(struct e1000_hw *hw);
+
+s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw);
+s32 e1000_read_part_num_generic(struct e1000_hw *hw, u32 *part_num);
+s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset,
+    u16 words, u16 *data);
+s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data);
+s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw);
+s32 e1000_write_nvm_eewr(struct e1000_hw *hw, u16 offset,
+    u16 words, u16 *data);
+s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset,
+    u16 words, u16 *data);
+s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw);
+void e1000_stop_nvm(struct e1000_hw *hw);
+void e1000_release_nvm_generic(struct e1000_hw *hw);
+void e1000_reload_nvm_generic(struct e1000_hw *hw);
+
+/* Function pointers */
+s32 e1000_acquire_nvm(struct e1000_hw *hw);
+void e1000_release_nvm(struct e1000_hw *hw);
+
+#define	E1000_STM_OPCODE	0xDB00
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif	/* _E1000_NVM_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_osdep.c	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,153 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#include "e1000_osdep.h"
+#include "e1000_api.h"
+
+
+s32
+e1000_alloc_zeroed_dev_spec_struct(struct e1000_hw *hw, u32 size)
+{
+	hw->dev_spec = kmem_zalloc(size, KM_SLEEP);
+
+	return (E1000_SUCCESS);
+}
+
+void
+e1000_free_dev_spec_struct(struct e1000_hw *hw)
+{
+	if (hw->dev_spec == NULL)
+		return;
+
+	kmem_free(hw->dev_spec, hw->dev_spec_size);
+	hw->dev_spec = NULL;
+}
+
+void
+e1000_pci_set_mwi(struct e1000_hw *hw)
+{
+	uint16_t val = hw->bus.pci_cmd_word | CMD_MEM_WRT_INVALIDATE;
+
+	e1000_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &val);
+}
+
+void
+e1000_pci_clear_mwi(struct e1000_hw *hw)
+{
+	uint16_t val = hw->bus.pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE;
+
+	e1000_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &val);
+}
+
+void
+e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
+{
+	pci_config_put16(OS_DEP(hw)->cfg_handle, reg, *value);
+}
+
+void
+e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
+{
+	*value =
+	    pci_config_get16(OS_DEP(hw)->cfg_handle, reg);
+}
+
+/*
+ * phy_spd_state - set smart-power-down (SPD) state
+ *
+ * This only acts on the 82541/47 family and the 82571/72 family.
+ * For any others, return without doing anything.
+ */
+void
+phy_spd_state(struct e1000_hw *hw, boolean_t enable)
+{
+	int32_t offset;		/* offset to register */
+	uint16_t spd_bit;	/* bit to be set */
+	uint16_t reg;		/* register contents */
+
+	switch (hw->mac.type) {
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		offset = IGP01E1000_GMII_FIFO;
+		spd_bit = IGP01E1000_GMII_SPD;
+		break;
+	case e1000_82571:
+	case e1000_82572:
+		offset = IGP02E1000_PHY_POWER_MGMT;
+		spd_bit = IGP02E1000_PM_SPD;
+		break;
+	default:
+		return;		/* no action */
+	}
+
+	e1000_read_phy_reg(hw, offset, &reg);
+
+	if (enable)
+		reg |= spd_bit;		/* enable: set the spd bit */
+	else
+		reg &= ~spd_bit;	/* disable: clear the spd bit */
+
+	e1000_write_phy_reg(hw, offset, reg);
+}
+
+/*
+ * The real intent of this routine is to return the value from pci-e
+ * config space at offset reg into the capability space.
+ * ICH devices are "PCI Express"-ish.  They have a configuration space,
+ * but do not contain PCI Express Capability registers, so this returns
+ * the equivalent of "not supported"
+ */
+int32_t
+e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
+{
+	*value = pci_config_get16(OS_DEP(hw)->cfg_handle,
+	    PCI_EX_CONF_CAP + reg);
+
+	return (0);
+}
+
+/*
+ * Enables PCI-Express master access.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - none.
+ */
+void
+e1000_enable_pciex_master(struct e1000_hw *hw)
+{
+	uint32_t ctrl;
+
+	if (hw->bus.type != e1000_bus_type_pci_express)
+		return;
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+}
--- a/usr/src/uts/common/io/e1000g/e1000_osdep.h	Mon Aug 20 23:01:08 2007 -0700
+++ b/usr/src/uts/common/io/e1000g/e1000_osdep.h	Tue Aug 21 00:30:10 2007 -0700
@@ -46,79 +46,118 @@
 #include <sys/ddi.h>
 #include <sys/sunddi.h>
 #include <sys/pci.h>
+#include <sys/atomic.h>
+#include "e1000g_debug.h"
 
 /*
  * === BEGIN CONTENT FORMERLY IN FXHW.H ===
  */
-#define	DelayInMicroseconds(x)	drv_usecwait(x)
-#define	DelayInMilliseconds(x)	drv_usecwait(x * 1000)
 #define	usec_delay(x)		drv_usecwait(x)
 #define	msec_delay(x)		drv_usecwait(x * 1000)
 
-#ifdef e1000g_DEBUG
-#define	DEBUGOUT(S)		cmn_err(CE_CONT, S)
-#define	DEBUGOUT1(S, A)		cmn_err(CE_CONT, S, A)
-#define	DEBUGOUT2(S, A, B)	cmn_err(CE_CONT, S, A, B)
-#define	DEBUGOUT3(S, A, B, C)	cmn_err(CE_CONT, S, A, B, C)
-#define	DEBUGOUT7(S, A, B, C, D, E, F, G)	\
-				cmn_err(CE_CONT, S, A, B, C, D, E, F, G)
+#ifdef E1000G_DEBUG
+#define	DEBUGOUT(S)		\
+	E1000G_DEBUGLOG_0(NULL, E1000G_INFO_LEVEL, S)
+#define	DEBUGOUT1(S, A)		\
+	E1000G_DEBUGLOG_1(NULL, E1000G_INFO_LEVEL, S, A)
+#define	DEBUGOUT2(S, A, B)	\
+	E1000G_DEBUGLOG_2(NULL, E1000G_INFO_LEVEL, S, A, B)
+#define	DEBUGOUT3(S, A, B, C)	\
+	E1000G_DEBUGLOG_3(NULL, E1000G_INFO_LEVEL, S, A, B, C)
+#define	DEBUGFUNC(F)		\
+	E1000G_DEBUGLOG_0(NULL, E1000G_TRACE_LEVEL, F)
 #else
 #define	DEBUGOUT(S)
 #define	DEBUGOUT1(S, A)
 #define	DEBUGOUT2(S, A, B)
 #define	DEBUGOUT3(S, A, B, C)
-#define	DEBUGOUT7(S, A, B, C, D, E, F, G)
+#define	DEBUGFUNC(F)
 #endif
 
-#define	DEBUGFUNC(F)		DEBUGOUT(F)
+#define	OS_DEP(hw)		((struct e1000g_osdep *)((hw)->back))
 
-#define	IN
-#define	OUT
 #define	FALSE		0
 #define	TRUE		1
 #define	CMD_MEM_WRT_INVALIDATE	0x0010	/* BIT_4 */
 #define	PCI_COMMAND_REGISTER	0x04
+#define	PCI_EX_CONF_CAP		0xE0
+#define	ICH_FLASH_REG_SET	2	/* solaris mapping of flash memory */
 
-#define	E1000_WRITE_FLUSH(a)	/* NOOP */
+#define	RECEIVE_BUFFER_ALIGN_SIZE	256
+#define	E1000_MDALIGN			4096
+#define	E1000_ERT_2048			0x100
+
+/* PHY Extended Status Register */
+#define	IEEE_ESR_1000T_HD_CAPS	0x1000	/* 1000T HD capable */
+#define	IEEE_ESR_1000T_FD_CAPS	0x2000	/* 1000T FD capable */
+#define	IEEE_ESR_1000X_HD_CAPS	0x4000	/* 1000X HD capable */
+#define	IEEE_ESR_1000X_FD_CAPS	0x8000	/* 1000X FD capable */
+
+#define	E1000_WRITE_FLUSH(a)	E1000_READ_REG(a, E1000_STATUS)
+
+#ifdef NO_82542_SUPPORT
+#define	E1000_WRITE_REG(hw, reg, value)	\
+	ddi_put32((OS_DEP(hw))->reg_handle, \
+	    (uint32_t *)((hw)->hw_addr + reg), (value))
 
-#define	E1000_WRITE_REG(a, reg, value)	\
+#define	E1000_READ_REG(hw, reg)	\
+	ddi_get32((OS_DEP(hw))->reg_handle, \
+	    (uint32_t *)((hw)->hw_addr + reg))
+
+#define	E1000_WRITE_REG_ARRAY(hw, reg, offset, value)	\
+	ddi_put32((OS_DEP(hw))->reg_handle, \
+	    (uint32_t *)((hw)->hw_addr + reg + ((offset) << 2)), \
+	    (value))
+
+#define	E1000_READ_REG_ARRAY(hw, reg, offset)	\
+	ddi_get32((OS_DEP(hw))->reg_handle, \
+	    (uint32_t *)((hw)->hw_addr + reg + ((offset) << 2)))
+
+#else	/* NO_82542_SUPPORT */
+
+#define	E1000_WRITE_REG(hw, reg, value)	\
 {\
-	if ((a)->mac_type >= e1000_82543) \
-		ddi_put32(((struct e1000g_osdep *)((a)->back))->E1000_handle, \
-		    (uint32_t *)((a)->hw_addr + E1000_##reg), \
+	if ((hw)->mac.type != e1000_82542) \
+		ddi_put32((OS_DEP(hw))->reg_handle, \
+		    (uint32_t *)((hw)->hw_addr + reg), \
 		    value); \
 	else \
-		ddi_put32(((struct e1000g_osdep *)((a)->back))->E1000_handle, \
-		    (uint32_t *)((a)->hw_addr + E1000_82542_##reg), \
+		ddi_put32((OS_DEP(hw))->reg_handle, \
+		    (uint32_t *)((hw)->hw_addr + \
+		    e1000_translate_register_82542(reg)), \
 		    value); \
 }
 
-#define	E1000_READ_REG(a, reg) (\
-	((a)->mac_type >= e1000_82543) ? \
-	    ddi_get32(((struct e1000g_osdep *)(a)->back)->E1000_handle, \
-		(uint32_t *)((a)->hw_addr + E1000_##reg)) : \
-	    ddi_get32(((struct e1000g_osdep *)(a)->back)->E1000_handle, \
-		(uint32_t *)((a)->hw_addr + E1000_82542_##reg)))
+#define	E1000_READ_REG(hw, reg) (\
+	((hw)->mac.type != e1000_82542) ? \
+	    ddi_get32((OS_DEP(hw))->reg_handle, \
+		(uint32_t *)((hw)->hw_addr + reg)) : \
+	    ddi_get32((OS_DEP(hw))->reg_handle, \
+		(uint32_t *)((hw)->hw_addr + \
+		e1000_translate_register_82542(reg))))
 
-#define	E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
+#define	E1000_WRITE_REG_ARRAY(hw, reg, offset, value) \
 {\
-	if ((a)->mac_type >= e1000_82543) \
-		ddi_put32(((struct e1000g_osdep *)((a)->back))->E1000_handle, \
-		    (uint32_t *)((a)->hw_addr + E1000_##reg + ((offset) << 2)),\
+	if ((hw)->mac.type != e1000_82542) \
+		ddi_put32((OS_DEP(hw))->reg_handle, \
+		    (uint32_t *)((hw)->hw_addr + reg + ((offset) << 2)),\
 		    value); \
 	else \
-		ddi_put32(((struct e1000g_osdep *)((a)->back))->E1000_handle, \
-		    (uint32_t *)((a)->hw_addr + E1000_82542_##reg + \
+		ddi_put32((OS_DEP(hw))->reg_handle, \
+		    (uint32_t *)((hw)->hw_addr + \
+		    e1000_translate_register_82542(reg) + \
 		    ((offset) << 2)), value); \
 }
 
-#define	E1000_READ_REG_ARRAY(a, reg, offset) (\
-	((a)->mac_type >= e1000_82543) ? \
-	    ddi_get32(((struct e1000g_osdep *)(a)->back)->E1000_handle, \
-		(uint32_t *)((a)->hw_addr + E1000_##reg + ((offset) << 2))) : \
-	    ddi_get32(((struct e1000g_osdep *)(a)->back)->E1000_handle, \
-		(uint32_t *)((a)->hw_addr + E1000_82542_##reg + \
+#define	E1000_READ_REG_ARRAY(hw, reg, offset) (\
+	((hw)->mac.type != e1000_82542) ? \
+	    ddi_get32((OS_DEP(hw))->reg_handle, \
+		(uint32_t *)((hw)->hw_addr + reg + ((offset) << 2))) : \
+	    ddi_get32((OS_DEP(hw))->reg_handle, \
+		(uint32_t *)((hw)->hw_addr + \
+		e1000_translate_register_82542(reg) + \
 		((offset) << 2))))
+#endif	/* NO_82542_SUPPORT */
 
 
 #define	E1000_WRITE_REG_ARRAY_BYTE(a, reg, offset, value)	NULL
@@ -129,36 +168,21 @@
 #define	E1000_READ_REG_ARRAY_DWORD(a, reg, offset)		NULL
 
 
-#define	ICH_FLASH_REG_SET	2	/* solaris mapping of flash memory */
-#define	OS_DEP(hw)		((struct e1000g_osdep *)((hw)->back))
-
-#define	E1000_READ_ICH_FLASH_REG(hw, reg)	\
+#define	E1000_READ_FLASH_REG(hw, reg)	\
 	ddi_get32((OS_DEP(hw))->ich_flash_handle, \
-		(uint32_t *)((OS_DEP(hw))->ich_flash_base + (reg)))
+		(uint32_t *)((hw)->flash_address + (reg)))
 
-#define	E1000_READ_ICH_FLASH_REG16(hw, reg)	\
+#define	E1000_READ_FLASH_REG16(hw, reg)	\
 	ddi_get16((OS_DEP(hw))->ich_flash_handle, \
-		(uint16_t *)((OS_DEP(hw))->ich_flash_base + (reg)))
-
-#define	E1000_WRITE_ICH_FLASH_REG(hw, reg, value)	\
-	ddi_put32((OS_DEP(hw))->ich_flash_handle, \
-		(uint32_t *)((OS_DEP(hw))->ich_flash_base + (reg)), (value))
+		(uint16_t *)((hw)->flash_address + (reg)))
 
-#define	E1000_WRITE_ICH_FLASH_REG16(hw, reg, value)	\
-	ddi_put16((OS_DEP(hw))->ich_flash_handle, \
-		(uint16_t *)((OS_DEP(hw))->ich_flash_base + (reg)), (value))
+#define	E1000_WRITE_FLASH_REG(hw, reg, value)	\
+	ddi_put32((OS_DEP(hw))->ich_flash_handle, \
+		(uint32_t *)((hw)->flash_address + (reg)), (value))
 
-/*
- * The size of the receive buffers we allocate,
- */
-#define	E1000_SIZE_OF_RECEIVE_BUFFERS	(2048)
-
-/*
- * Use this define refer to the size of a recieve buffer plus its
- * align size
- */
-#define	E1000_SIZE_OF_UNALIGNED_RECEIVE_BUFFERS	\
-	E1000_SIZE_OF_RECEIVE_BUFFERS + RECEIVE_BUFFER_ALIGN_SIZE
+#define	E1000_WRITE_FLASH_REG16(hw, reg, value)	\
+	ddi_put16((OS_DEP(hw))->ich_flash_handle, \
+		(uint16_t *)((hw)->flash_address + (reg)), (value))
 
 /*
  * === END CONTENT FORMERLY IN FXHW.H ===
@@ -166,6 +190,15 @@
 
 #define	msec_delay_irq	msec_delay
 
+typedef	int8_t		s8;
+typedef	int16_t		s16;
+typedef	int32_t		s32;
+typedef	int64_t		s64;
+typedef	uint8_t		u8;
+typedef	uint16_t	u16;
+typedef	uint32_t	u32;
+typedef	uint64_t	u64;
+
 typedef uint8_t		UCHAR;	/* 8-bit unsigned */
 typedef UCHAR		UINT8;	/* 8-bit unsigned */
 typedef uint16_t	USHORT;	/* 16-bit unsigned */
@@ -186,26 +219,18 @@
 	*PFX_64_BIT_PHYSICAL_ADDRESS;
 
 struct e1000g_osdep {
-	ddi_acc_handle_t E1000_handle;
-	ddi_acc_handle_t handle;
-	/* flash access */
+	ddi_acc_handle_t reg_handle;
+	ddi_acc_handle_t cfg_handle;
 	ddi_acc_handle_t ich_flash_handle;
-	caddr_t ich_flash_base;
-	off_t ich_flash_size;
+	struct e1000g *adapter;
 };
 
 #ifdef __sparc	/* on SPARC, use only memory-mapped routines */
-
-#define	E1000_READ_REG_IO	E1000_READ_REG
 #define	E1000_WRITE_REG_IO	E1000_WRITE_REG
-
 #else	/* on x86, use port io routines */
-
-#define	E1000_READ_REG_IO(a, reg)	\
-	e1000_read_reg_io((a), E1000_##reg)
-#define	E1000_WRITE_REG_IO(a, reg, val)	\
-	e1000_write_reg_io((a), E1000_##reg, val)
-
+#define	E1000_WRITE_REG_IO(a, reg, val)	{ \
+	outl(((a)->io_base), reg); \
+	outl(((a)->io_base + 4), val); }
 #endif	/* __sparc */
 
 #ifdef __cplusplus
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_phy.c	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,2384 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#include "e1000_api.h"
+#include "e1000_phy.h"
+
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
+static void e1000_release_phy(struct e1000_hw *hw);
+static s32 e1000_acquire_phy(struct e1000_hw *hw);
+static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
+
+/* Cable length tables */
+static const u16 e1000_m88_cable_length_table[] =
+	{0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED};
+
+#define	M88E1000_CABLE_LENGTH_TABLE_SIZE \
+	(sizeof (e1000_m88_cable_length_table) / \
+	sizeof (e1000_m88_cable_length_table[0]))
+
+static const u16 e1000_igp_2_cable_length_table[] =
+	{0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
+	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
+	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
+	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
+	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
+	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
+	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
+	104, 109, 114, 118, 121, 124};
+
+#define	IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
+	(sizeof (e1000_igp_2_cable_length_table) / \
+	sizeof (e1000_igp_2_cable_length_table[0]))
+
+/*
+ * e1000_check_reset_block_generic - Check if PHY reset is blocked
+ * @hw: pointer to the HW structure
+ *
+ * Read the PHY management control register and check whether a PHY reset
+ * is blocked.  If a reset is not blocked return E1000_SUCCESS, otherwise
+ * return E1000_BLK_PHY_RESET (12).
+ */
+s32
+e1000_check_reset_block_generic(struct e1000_hw *hw)
+{
+	u32 manc;
+
+	DEBUGFUNC("e1000_check_reset_block");
+
+	manc = E1000_READ_REG(hw, E1000_MANC);
+
+	return ((manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+	    E1000_BLK_PHY_RESET : E1000_SUCCESS);
+}
+
+/*
+ * e1000_get_phy_id - Retrieve the PHY ID and revision
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY registers and stores the PHY ID and possibly the PHY
+ * revision in the hardware structure.
+ */
+s32
+e1000_get_phy_id(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+	u16 phy_id;
+
+	DEBUGFUNC("e1000_get_phy_id");
+
+	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id);
+	if (ret_val)
+		goto out;
+
+	phy->id = (u32)(phy_id << 16);
+	usec_delay(20);
+	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id);
+	if (ret_val)
+		goto out;
+
+	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
+	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_phy_reset_dsp_generic - Reset PHY DSP
+ * @hw: pointer to the HW structure
+ *
+ * Reset the digital signal processor.
+ */
+s32
+e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_phy_reset_dsp_generic");
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_read_phy_reg_mdic - Read MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the MDI control regsiter in the PHY at offset and stores the
+ * information read to data.
+ */
+static s32
+e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, mdic = 0;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_read_phy_reg_mdic");
+
+	if (offset > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", offset);
+		ret_val = -E1000_ERR_PARAM;
+		goto out;
+	}
+
+	/*
+	 * Set up Op-code, Phy Address, and register offset in the MDI Control
+	 * register.  The MAC will take care of interfacing with the PHY to
+	 * retrieve the desired data.
+	 */
+	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
+	    (phy->addr << E1000_MDIC_PHY_SHIFT) |
+	    (E1000_MDIC_OP_READ));
+
+	E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+	/* Poll the ready bit to see if the MDI read completed */
+	for (i = 0; i < 64; i++) {
+		usec_delay(50);
+		mdic = E1000_READ_REG(hw, E1000_MDIC);
+		if (mdic & E1000_MDIC_READY)
+			break;
+	}
+	if (!(mdic & E1000_MDIC_READY)) {
+		DEBUGOUT("MDI Read did not complete\n");
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+	if (mdic & E1000_MDIC_ERROR) {
+		DEBUGOUT("MDI Error\n");
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+	*data = (u16)mdic;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_write_phy_reg_mdic - Write MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write to register at offset
+ *
+ * Writes data to MDI control register in the PHY at offset.
+ */
+static s32
+e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, mdic = 0;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_write_phy_reg_mdic");
+
+	if (offset > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", offset);
+		ret_val = -E1000_ERR_PARAM;
+		goto out;
+	}
+
+	/*
+	 * Set up Op-code, Phy Address, and register offset in the MDI Control
+	 * register.  The MAC will take care of interfacing with the PHY to
+	 * retrieve the desired data.
+	 */
+	mdic = (((u32)data) |
+	    (offset << E1000_MDIC_REG_SHIFT) |
+	    (phy->addr << E1000_MDIC_PHY_SHIFT) |
+	    (E1000_MDIC_OP_WRITE));
+
+	E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+	/* Poll the ready bit to see if the MDI read completed */
+	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
+		usec_delay(5);
+		mdic = E1000_READ_REG(hw, E1000_MDIC);
+		if (mdic & E1000_MDIC_READY)
+			break;
+	}
+	if (!(mdic & E1000_MDIC_READY)) {
+		DEBUGOUT("MDI Write did not complete\n");
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_read_phy_reg_m88 - Read m88 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data.  Release any acquired
+ * semaphores before exiting.
+ */
+s32
+e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_read_phy_reg_m88");
+
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_phy_reg_mdic(hw,
+	    MAX_PHY_REG_ADDRESS & offset,
+	    data);
+
+	e1000_release_phy(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_write_phy_reg_m88 - Write m88 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset.  Release any acquired semaphores before exiting.
+ */
+s32
+e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_write_phy_reg_m88");
+
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_write_phy_reg_mdic(hw,
+	    MAX_PHY_REG_ADDRESS & offset,
+	    data);
+
+	e1000_release_phy(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_read_phy_reg_igp - Read igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data.  Release any acquired
+ * semaphores before exiting.
+ */
+s32
+e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_read_phy_reg_igp");
+
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val)
+		goto out;
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		ret_val = e1000_write_phy_reg_mdic(hw,
+		    IGP01E1000_PHY_PAGE_SELECT,
+		    (u16)offset);
+		if (ret_val) {
+			e1000_release_phy(hw);
+			goto out;
+		}
+	}
+	ret_val = e1000_read_phy_reg_mdic(hw,
+	    MAX_PHY_REG_ADDRESS & offset,
+	    data);
+
+	e1000_release_phy(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_write_phy_reg_igp - Write igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset.  Release any acquired semaphores before exiting.
+ */
+s32
+e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_write_phy_reg_igp");
+
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val)
+		goto out;
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		ret_val = e1000_write_phy_reg_mdic(hw,
+		    IGP01E1000_PHY_PAGE_SELECT,
+		    (u16)offset);
+		if (ret_val) {
+			e1000_release_phy(hw);
+			goto out;
+		}
+	}
+
+	ret_val = e1000_write_phy_reg_mdic(hw,
+	    MAX_PHY_REG_ADDRESS & offset,
+	    data);
+
+	e1000_release_phy(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_read_kmrn_reg_generic - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary.  Then reads the PHY register at offset
+ * using the kumeran interface.  The information retrieved is stored in data.
+ * Release any acquired semaphores before exiting.
+ */
+s32
+e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	u32 kmrnctrlsta;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_read_kmrn_reg_generic");
+
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val)
+		goto out;
+
+	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+	    E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+
+	usec_delay(2);
+
+	kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
+	*data = (u16)kmrnctrlsta;
+
+	e1000_release_phy(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_write_kmrn_reg_generic - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary.  Then write the data to PHY register
+ * at the offset using the kumeran interface.  Release any acquired semaphores
+ * before exiting.
+ */
+s32
+e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	u32 kmrnctrlsta;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_write_kmrn_reg_generic");
+
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val)
+		goto out;
+
+	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+	    E1000_KMRNCTRLSTA_OFFSET) | data;
+	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+
+	usec_delay(2);
+	e1000_release_phy(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
+ * and downshift values are set also.
+ */
+s32
+e1000_copper_link_setup_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_copper_link_setup_m88");
+
+	if (phy->reset_disable) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	/* Enable CRS on TX. This must be set for half-duplex operation. */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	/* For newer PHYs this bit is downshift enable */
+	if (phy->type == e1000_phy_m88)
+		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+	/*
+	 * Options:
+	 *   MDI/MDI-X = 0 (default)
+	 *   0 - Auto for all speeds
+	 *   1 - MDI mode
+	 *   2 - MDI-X mode
+	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+	 */
+	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+	switch (phy->mdix) {
+	case 1:
+		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+		break;
+	case 2:
+		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+		break;
+	case 3:
+		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+		break;
+	case 0:
+	default:
+		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+		break;
+	}
+
+	/*
+	 * Options:
+	 *   disable_polarity_correction = 0 (default)
+	 *	Automatic Correction for Reversed Cable Polarity
+	 *   0 - Disabled
+	 *   1 - Enabled
+	 */
+	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+	if (phy->disable_polarity_correction == 1)
+		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		goto out;
+
+	if (phy->revision < E1000_REVISION_4) {
+		/*
+		 * Force TX_CLK in the Extended PHY Specific Control Register
+		 * to 25MHz clock.
+		 */
+		ret_val = e1000_read_phy_reg(hw,
+		    M88E1000_EXT_PHY_SPEC_CTRL,
+		    &phy_data);
+		if (ret_val)
+			goto out;
+
+		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+		if ((phy->revision == E1000_REVISION_2) &&
+		    (phy->id == M88E1111_I_PHY_ID)) {
+			/* 82573L PHY - set the downshift counter to 5x. */
+			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
+			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+		} else {
+			/* Configure Master and Slave downshift values */
+			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+			    M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+			    M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+		}
+		ret_val = e1000_write_phy_reg(hw,
+		    M88E1000_EXT_PHY_SPEC_CTRL,
+		    phy_data);
+		if (ret_val)
+			goto out;
+	}
+
+	/* Commit the changes. */
+	ret_val = e1000_phy_commit(hw);
+	if (ret_val) {
+		DEBUGOUT("Error committing the PHY changes\n");
+		goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_copper_link_setup_igp - Setup igp PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
+ * igp PHY's.
+ */
+s32
+e1000_copper_link_setup_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_copper_link_setup_igp");
+
+	if (phy->reset_disable) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	ret_val = e1000_phy_hw_reset(hw);
+	if (ret_val) {
+		DEBUGOUT("Error resetting the PHY.\n");
+		goto out;
+	}
+
+	/* Wait 15ms for MAC to configure PHY from NVM settings. */
+	msec_delay(15);
+
+	/*
+	 * The NVM settings will configure LPLU in D3 for non-IGP1 PHYs.
+	 */
+	if (phy->type == e1000_phy_igp) {
+		/* disable lplu d3 during driver init */
+		ret_val = e1000_set_d3_lplu_state(hw, FALSE);
+		if (ret_val) {
+			DEBUGOUT("Error Disabling LPLU D3\n");
+			goto out;
+		}
+	}
+
+	/* disable lplu d0 during driver init */
+	ret_val = e1000_set_d0_lplu_state(hw, FALSE);
+	if (ret_val) {
+		DEBUGOUT("Error Disabling LPLU D0\n");
+		goto out;
+	}
+	/* Configure mdi-mdix settings */
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
+	if (ret_val)
+		goto out;
+
+	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+	switch (phy->mdix) {
+	case 1:
+		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+		break;
+	case 2:
+		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+		break;
+	case 0:
+	default:
+		data |= IGP01E1000_PSCR_AUTO_MDIX;
+		break;
+	}
+	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
+	if (ret_val)
+		goto out;
+
+	/* set auto-master slave resolution settings */
+	if (hw->mac.autoneg) {
+		/*
+		 * when autonegotiation advertisement is only 1000Mbps then we
+		 * should disable SmartSpeed and enable Auto MasterSlave
+		 * resolution as hardware default.
+		 */
+		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
+			/* Disable SmartSpeed */
+			ret_val = e1000_read_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    data);
+			if (ret_val)
+				goto out;
+
+			/* Set auto Master/Slave resolution process */
+			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~CR_1000T_MS_ENABLE;
+			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, data);
+			if (ret_val)
+				goto out;
+		}
+
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &data);
+		if (ret_val)
+			goto out;
+
+		/* load defaults for future use */
+		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
+		    ((data & CR_1000T_MS_VALUE) ?
+		    e1000_ms_force_master :
+		    e1000_ms_force_slave) :
+		    e1000_ms_auto;
+
+		switch (phy->ms_type) {
+		case e1000_ms_force_master:
+			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_force_slave:
+			data |= CR_1000T_MS_ENABLE;
+			data &= ~(CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_auto:
+			data &= ~CR_1000T_MS_ENABLE;
+		default:
+			break;
+		}
+		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, data);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Performs initial bounds checking on autoneg advertisement parameter, then
+ * configure to advertise the full capability.  Setup the PHY to autoneg
+ * and restart the negotiation process between the link partner.  If
+ * wait_for_link, then wait for autoneg to complete before exiting.
+ */
+s32
+e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_ctrl;
+
+	DEBUGFUNC("e1000_copper_link_autoneg");
+
+	/*
+	 * Perform some bounds checking on the autoneg advertisement
+	 * parameter.
+	 */
+	phy->autoneg_advertised &= phy->autoneg_mask;
+
+	/*
+	 * If autoneg_advertised is zero, we assume it was not defaulted by
+	 * the calling code so we set to advertise full capability.
+	 */
+	if (phy->autoneg_advertised == 0)
+		phy->autoneg_advertised = phy->autoneg_mask;
+
+	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+	ret_val = e1000_phy_setup_autoneg(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Setting up Auto-Negotiation\n");
+		goto out;
+	}
+	DEBUGOUT("Restarting Auto-Neg\n");
+
+	/*
+	 * Restart auto-negotiation by setting the Auto Neg Enable bit and the
+	 * Auto Neg Restart bit in the PHY control register.
+	 */
+	ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
+	if (ret_val)
+		goto out;
+
+	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+	ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Does the user want to wait for Auto-Neg to complete here, or check
+	 * at a later time (for example, callback routine).
+	 */
+	if (phy->wait_for_link) {
+		ret_val = e1000_wait_autoneg(hw);
+		if (ret_val) {
+			DEBUGOUT("Error while waiting for "
+			    "autoneg to complete\n");
+			goto out;
+		}
+	}
+
+	hw->mac.get_link_status = TRUE;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
+ * @hw: pointer to the HW structure
+ *
+ * Reads the MII auto-neg advertisement register and/or the 1000T control
+ * register and if the PHY is already setup for auto-negotiation, then
+ * return successful.  Otherwise, setup advertisement and flow control to
+ * the appropriate values for the wanted auto-negotiation.
+ */
+s32
+e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 mii_autoneg_adv_reg;
+	u16 mii_1000t_ctrl_reg = 0;
+
+	DEBUGFUNC("e1000_phy_setup_autoneg");
+
+	phy->autoneg_advertised &= phy->autoneg_mask;
+
+	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
+	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+	if (ret_val)
+		goto out;
+
+	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+		/* Read the MII 1000Base-T Control Register (Address 9). */
+		ret_val = e1000_read_phy_reg(hw,
+		    PHY_1000T_CTRL,
+		    &mii_1000t_ctrl_reg);
+		if (ret_val)
+			goto out;
+	}
+
+	/*
+	 * Need to parse both autoneg_advertised and fc and set up the
+	 * appropriate PHY registers.  First we will parse for
+	 * autoneg_advertised software override.  Since we can advertise a
+	 * plethora of combinations, we need to check each bit individually.
+	 */
+
+	/*
+	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
+	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
+	 * the  1000Base-T Control Register (Address 9).
+	 */
+	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
+	    NWAY_AR_100TX_HD_CAPS |
+	    NWAY_AR_10T_FD_CAPS |
+	    NWAY_AR_10T_HD_CAPS);
+	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
+
+	DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
+
+	/* Do we want to advertise 10 Mb Half Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
+		DEBUGOUT("Advertise 10mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+	}
+
+	/* Do we want to advertise 10 Mb Full Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
+		DEBUGOUT("Advertise 10mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Half Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
+		DEBUGOUT("Advertise 100mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Full Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
+		DEBUGOUT("Advertise 100mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+	}
+
+	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+	if (phy->autoneg_advertised & ADVERTISE_1000_HALF) {
+		DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
+	}
+
+	/* Do we want to advertise 1000 Mb Full Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
+		DEBUGOUT("Advertise 1000mb Full duplex\n");
+		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+	}
+
+	/*
+	 * Check for a software override of the flow control settings, and
+	 * setup the PHY advertisement registers accordingly.  If
+	 * auto-negotiation is enabled, then software will have to set the
+	 * "PAUSE" bits to the correct value in the Auto-Negotiation
+	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
+	 * negotiation.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 * 0:	Flow control is completely disabled
+	 * 1:	Rx flow control is enabled (we can receive pause frames
+	 *	but not send pause frames).
+	 * 2:	Tx flow control is enabled (we can send pause frames
+	 *	but we do not support receiving pause frames).
+	 * 3:	Both Rx and TX flow control (symmetric) are enabled.
+	 * other: No software override.  The flow control configuration
+	 *	in the EEPROM is used.
+	 */
+	switch (hw->mac.fc) {
+	case e1000_fc_none:
+		/*
+		 * Flow control (RX & TX) is completely disabled by a software
+		 * over-ride.
+		 */
+		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case e1000_fc_rx_pause:
+		/*
+		 * RX Flow control is enabled, and TX Flow control is
+		 * disabled, by a software over-ride.
+		 *
+		 * Since there really isn't a way to advertise that we are
+		 * capable of RX Pause ONLY, we will advertise that we support
+		 * both symmetric and asymmetric RX PAUSE.  Later (in
+		 * e1000_config_fc_after_link_up) we will disable the hw's
+		 * ability to send PAUSE frames.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case e1000_fc_tx_pause:
+		/*
+		 * TX Flow control is enabled, and RX Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+		break;
+	case e1000_fc_full:
+		/*
+		 * Flow control (both RX and TX) is enabled by a software
+		 * over-ride.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+	if (ret_val)
+		goto out;
+
+	DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+		ret_val = e1000_write_phy_reg(hw,
+		    PHY_1000T_CTRL,
+		    mii_1000t_ctrl_reg);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_setup_copper_link_generic - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Calls the appropriate function to configure the link for auto-neg or forced
+ * speed and duplex.  Then we check for link, once link is established calls
+ * to configure collision distance and flow control are called.  If link is
+ * not established, we return -E1000_ERR_PHY (-2).
+ */
+s32
+e1000_setup_copper_link_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	boolean_t link;
+
+	DEBUGFUNC("e1000_setup_copper_link_generic");
+
+	if (hw->mac.autoneg) {
+		/*
+		 * Setup autoneg and flow control advertisement and perform
+		 * autonegotiation.
+		 */
+		ret_val = e1000_copper_link_autoneg(hw);
+		if (ret_val)
+			goto out;
+	} else {
+		/*
+		 * PHY will be set to 10H, 10F, 100H or 100F depending on user
+		 * settings.
+		 */
+		DEBUGOUT("Forcing Speed and Duplex\n");
+		ret_val = e1000_phy_force_speed_duplex(hw);
+		if (ret_val) {
+			DEBUGOUT("Error Forcing Speed and Duplex\n");
+			goto out;
+		}
+	}
+
+	/*
+	 * Check link status. Wait up to 100 microseconds for link to become
+	 * valid.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw,
+	    COPPER_LINK_UP_LIMIT,
+	    10,
+	    &link);
+	if (ret_val)
+		goto out;
+
+	if (link) {
+		DEBUGOUT("Valid link established!!!\n");
+		e1000_config_collision_dist_generic(hw);
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+	} else {
+		DEBUGOUT("Unable to establish link!!!\n");
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex.  Clears the
+ * auto-crossover to force MDI manually.  Waits for link and returns
+ * successful if link up is successful, else -E1000_ERR_PHY (-2).
+ */
+s32
+e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+	boolean_t link;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
+
+	ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
+	 * forced whenever speed and duplex are forced.
+	 */
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+	if (ret_val)
+		goto out;
+
+	DEBUGOUT1("IGP PSCR: %X\n", phy_data);
+
+	usec_delay(1);
+
+	if (phy->wait_for_link) {
+		DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
+
+		ret_val = e1000_phy_has_link_generic(hw,
+		    PHY_FORCE_LIMIT,
+		    100000,
+		    &link);
+		if (ret_val)
+			goto out;
+
+		if (!link) {
+			DEBUGOUT("Link taking longer than expected.\n");
+		}
+
+		/* Try once more */
+		ret_val = e1000_phy_has_link_generic(hw,
+		    PHY_FORCE_LIMIT,
+		    100000,
+		    &link);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex.  Clears the
+ * auto-crossover to force MDI manually.  Resets the PHY to commit the
+ * changes.  If time expires while waiting for link up, we reset the DSP.
+ * After reset, TX_CLK and CRS on TX must be set.  Return successful upon
+ * successful completion, else return corresponding error code.
+ */
+s32
+e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+	boolean_t link;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
+
+	/*
+	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
+	 * forced whenever speed and duplex are forced.
+	 */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		goto out;
+
+	DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
+
+	ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	/* Reset the phy to commit changes. */
+	phy_data |= MII_CR_RESET;
+
+	ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		goto out;
+
+	usec_delay(1);
+
+	if (phy->wait_for_link) {
+		DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
+
+		ret_val = e1000_phy_has_link_generic(hw,
+		    PHY_FORCE_LIMIT,
+		    100000,
+		    &link);
+		if (ret_val)
+			goto out;
+
+		if (!link) {
+			/*
+			 * We didn't get link. Reset the DSP and cross our
+			 * fingers.
+			 */
+			ret_val = e1000_write_phy_reg(hw,
+			    M88E1000_PHY_PAGE_SELECT,
+			    0x001d);
+			if (ret_val)
+				goto out;
+			ret_val = e1000_phy_reset_dsp_generic(hw);
+			if (ret_val)
+				goto out;
+		}
+		/* Try once more */
+		ret_val = e1000_phy_has_link_generic(hw,
+		    PHY_FORCE_LIMIT,
+		    100000,
+		    &link);
+		if (ret_val)
+			goto out;
+	}
+	ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Resetting the phy means we need to re-force TX_CLK in the Extended
+	 * PHY Specific Control Register to 25MHz clock from the reset value
+	 * of 2.5MHz.
+	 */
+	phy_data |= M88E1000_EPSCR_TX_CLK_25;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * In addition, we must re-enable CRS on Tx for both half and full
+	 * duplex.
+	 */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
+ * @hw: pointer to the HW structure
+ * @phy_ctrl: pointer to current value of PHY_CONTROL
+ *
+ * Forces speed and duplex on the PHY by doing the following: disable flow
+ * control, force speed/duplex on the MAC, disable auto speed detection,
+ * disable auto-negotiation, configure duplex, configure speed, configure
+ * the collision distance, write configuration to CTRL register.  The
+ * caller must write to the PHY_CONTROL register for these settings to
+ * take affect.
+ */
+void
+e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
+
+	/* Turn off flow control when forcing speed/duplex */
+	mac->fc = e1000_fc_none;
+
+	/* Force speed/duplex on the mac */
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~E1000_CTRL_SPD_SEL;
+
+	/* Disable Auto Speed Detection */
+	ctrl &= ~E1000_CTRL_ASDE;
+
+	/* Disable autoneg on the phy */
+	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
+
+	/* Forcing Full or Half Duplex? */
+	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
+		ctrl &= ~E1000_CTRL_FD;
+		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
+		DEBUGOUT("Half Duplex\n");
+	} else {
+		ctrl |= E1000_CTRL_FD;
+		*phy_ctrl |= MII_CR_FULL_DUPLEX;
+		DEBUGOUT("Full Duplex\n");
+	}
+
+	/* Forcing 10mb or 100mb? */
+	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
+		ctrl |= E1000_CTRL_SPD_100;
+		*phy_ctrl |= MII_CR_SPEED_100;
+		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+		DEBUGOUT("Forcing 100mb\n");
+	} else {
+		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+		*phy_ctrl |= MII_CR_SPEED_10;
+		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+		DEBUGOUT("Forcing 10mb\n");
+	}
+
+	e1000_config_collision_dist_generic(hw);
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+}
+
+/*
+ * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is true, else clear lplu for D3
+ * and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.
+ */
+s32
+e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, boolean_t active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d3_lplu_state_generic");
+
+	ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+	if (ret_val)
+		goto out;
+
+	if (!active) {
+		data &= ~IGP02E1000_PM_D3_LPLU;
+		ret_val = e1000_write_phy_reg(hw,
+		    IGP02E1000_PHY_POWER_MGMT,
+		    data);
+		if (ret_val)
+			goto out;
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1000_read_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    &data);
+			if (ret_val)
+				goto out;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    data);
+			if (ret_val)
+				goto out;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1000_read_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1000_write_phy_reg(hw,
+			    IGP01E1000_PHY_PORT_CONFIG,
+			    data);
+			if (ret_val)
+				goto out;
+		}
+	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+	    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+	    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+		data |= IGP02E1000_PM_D3_LPLU;
+		ret_val = e1000_write_phy_reg(hw,
+		    IGP02E1000_PHY_POWER_MGMT,
+		    data);
+		if (ret_val)
+			goto out;
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1000_read_phy_reg(hw,
+		    IGP01E1000_PHY_PORT_CONFIG,
+		    &data);
+		if (ret_val)
+			goto out;
+
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1000_write_phy_reg(hw,
+		    IGP01E1000_PHY_PORT_CONFIG,
+		    data);
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_check_downshift_generic - Checks whether a downshift in speed occured
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * A downshift is detected by querying the PHY link health.
+ */
+s32
+e1000_check_downshift_generic(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, offset, mask;
+
+	DEBUGFUNC("e1000_check_downshift_generic");
+
+	switch (phy->type) {
+	case e1000_phy_m88:
+	case e1000_phy_gg82563:
+	case e1000_phy_bm:
+		offset = M88E1000_PHY_SPEC_STATUS;
+		mask = M88E1000_PSSR_DOWNSHIFT;
+		break;
+	case e1000_phy_igp_2:
+	case e1000_phy_igp:
+	case e1000_phy_igp_3:
+		offset = IGP01E1000_PHY_LINK_HEALTH;
+		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
+		break;
+	default:
+		/* speed downshift not supported */
+		phy->speed_downgraded = FALSE;
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, offset, &phy_data);
+
+	if (!ret_val)
+		phy->speed_downgraded = (phy_data & mask) ? TRUE : FALSE;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_check_polarity_m88 - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY specific status register.
+ */
+s32
+e1000_check_polarity_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_check_polarity_m88");
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
+
+	if (!ret_val)
+		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
+		    ? e1000_rev_polarity_reversed
+		    : e1000_rev_polarity_normal;
+
+	return (ret_val);
+}
+
+/*
+ * e1000_check_polarity_igp - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY port status register, and the
+ * current speed (since there is no polarity at 100Mbps).
+ */
+s32
+e1000_check_polarity_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data, offset, mask;
+
+	DEBUGFUNC("e1000_check_polarity_igp");
+
+	/*
+	 * Polarity is determined based on the speed of our connection.
+	 */
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+	if (ret_val)
+		goto out;
+
+	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+		offset = IGP01E1000_PHY_PCS_INIT_REG;
+		mask = IGP01E1000_PHY_POLARITY_MASK;
+	} else {
+		/*
+		 * This really only applies to 10Mbps since there is no
+		 * polarity for 100Mbps (always 0).
+		 */
+		offset = IGP01E1000_PHY_PORT_STATUS;
+		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, offset, &data);
+
+	if (!ret_val)
+		phy->cable_polarity = (data & mask)
+		    ? e1000_rev_polarity_reversed
+		    : e1000_rev_polarity_normal;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_wait_autoneg_generic - Wait for auto-neg compeletion
+ * @hw: pointer to the HW structure
+ *
+ * Waits for auto-negotiation to complete or for the auto-negotiation time
+ * limit to expire, which ever happens first.
+ */
+s32
+e1000_wait_autoneg_generic(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 i, phy_status;
+
+	DEBUGFUNC("e1000_wait_autoneg_generic");
+
+	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
+	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		if (phy_status & MII_SR_AUTONEG_COMPLETE)
+			break;
+		msec_delay(100);
+	}
+
+	/*
+	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation has
+	 * completed.
+	 */
+	return (ret_val);
+}
+
+/*
+ * e1000_phy_has_link_generic - Polls PHY for link
+ * @hw: pointer to the HW structure
+ * @iterations: number of times to poll for link
+ * @usec_interval: delay between polling attempts
+ * @success: pointer to whether polling was successful or not
+ *
+ * Polls the PHY status register for link, 'iterations' number of times.
+ */
+s32
+e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+    u32 usec_interval, boolean_t *success)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 i, phy_status;
+
+	DEBUGFUNC("e1000_phy_has_link_generic");
+
+	for (i = 0; i < iterations; i++) {
+		/*
+		 * Some PHYs require the PHY_STATUS register to be read twice
+		 * due to the link bit being sticky.  No harm doing it across
+		 * the board.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		if (phy_status & MII_SR_LINK_STATUS)
+			break;
+		if (usec_interval >= 1000)
+			msec_delay_irq(usec_interval / 1000);
+		else
+			usec_delay(usec_interval);
+	}
+
+	*success = (i < iterations) ? TRUE : FALSE;
+
+	return (ret_val);
+}
+
+/*
+ * e1000_get_cable_length_m88 - Determine cable length for m88 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY specific status register to retrieve the cable length
+ * information.  The cable length is determined by averaging the minimum and
+ * maximum values to get the "average" cable length.  The m88 PHY has four
+ * possible cable length values, which are:
+ *	Register Value		Cable Length
+ *	0			< 50 meters
+ *	1			50 - 80 meters
+ *	2			80 - 110 meters
+ *	3			110 - 140 meters
+ *	4			> 140 meters
+ */
+s32
+e1000_get_cable_length_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, index;
+
+	DEBUGFUNC("e1000_get_cable_length_m88");
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		goto out;
+
+	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+	    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+	phy->min_cable_length = e1000_m88_cable_length_table[index];
+	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
+ * @hw: pointer to the HW structure
+ *
+ * The automatic gain control (agc) normalizes the amplitude of the
+ * received signal, adjusting for the attenuation produced by the
+ * cable.  By reading the AGC registers, which reperesent the
+ * cobination of course and fine gain value, the value can be put
+ * into a lookup table to obtain the approximate cable length
+ * for each channel.
+ */
+s32
+e1000_get_cable_length_igp_2(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, i, agc_value = 0;
+	u16 cur_agc_index, max_agc_index = 0;
+	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
+	u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
+		{IGP02E1000_PHY_AGC_A,
+		IGP02E1000_PHY_AGC_B,
+		IGP02E1000_PHY_AGC_C,
+		IGP02E1000_PHY_AGC_D};
+
+	DEBUGFUNC("e1000_get_cable_length_igp_2");
+
+	/* Read the AGC registers for all channels */
+	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
+		ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
+		if (ret_val)
+			goto out;
+
+		/*
+		 * Getting bits 15:9, which represent the combination of
+		 * course and fine gain values.  The result is a number that
+		 * can be put into the lookup table to obtain the approximate
+		 * cable length.
+		 */
+		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+		    IGP02E1000_AGC_LENGTH_MASK;
+
+		/* Array index bound check. */
+		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
+		    (cur_agc_index == 0)) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+
+		/* Remove min & max AGC values from calculation. */
+		if (e1000_igp_2_cable_length_table[min_agc_index] >
+		    e1000_igp_2_cable_length_table[cur_agc_index])
+			min_agc_index = cur_agc_index;
+		if (e1000_igp_2_cable_length_table[max_agc_index] <
+		    e1000_igp_2_cable_length_table[cur_agc_index])
+			max_agc_index = cur_agc_index;
+
+		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
+	}
+
+	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
+	    e1000_igp_2_cable_length_table[max_agc_index]);
+	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
+
+	/* Calculate cable length with the error range of +/- 10 meters. */
+	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
+	    (agc_value - IGP02E1000_AGC_RANGE) : 0;
+	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_get_phy_info_m88 - Retrieve PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Valid for only copper links.  Read the PHY status register (sticky read)
+ * to verify that link is up.  Read the PHY special control register to
+ * determine the polarity and 10base-T extended distance.  Read the PHY
+ * special status register to determine MDI/MDIx and current speed.  If
+ * speed is 1000, then determine cable length, local and remote receiver.
+ */
+s32
+e1000_get_phy_info_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+	boolean_t link;
+
+	DEBUGFUNC("e1000_get_phy_info_m88");
+
+	if (hw->media_type != e1000_media_type_copper) {
+		DEBUGOUT("Phy info is only valid for copper media\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link) {
+		DEBUGOUT("Phy info is only valid if link is up\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
+	    ? TRUE
+	    : FALSE;
+
+	ret_val = e1000_check_polarity_m88(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? TRUE : FALSE;
+
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+		ret_val = e1000_get_cable_length(hw);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			goto out;
+
+		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
+		    ? e1000_1000t_rx_status_ok
+		    : e1000_1000t_rx_status_not_ok;
+
+		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
+		    ? e1000_1000t_rx_status_ok
+		    : e1000_1000t_rx_status_not_ok;
+	} else {
+		/* Set values to "undefined" */
+		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+		phy->local_rx = e1000_1000t_rx_status_undefined;
+		phy->remote_rx = e1000_1000t_rx_status_undefined;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_get_phy_info_igp - Retrieve igp PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Read PHY status to determine if link is up.  If link is up, then
+ * set/determine 10base-T extended distance and polarity correction.  Read
+ * PHY port status to determine MDI/MDIx and speed.  Based on the speed,
+ * determine on the cable length, local and remote receiver.
+ */
+s32
+e1000_get_phy_info_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	boolean_t link;
+
+	DEBUGFUNC("e1000_get_phy_info_igp");
+
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link) {
+		DEBUGOUT("Phy info is only valid if link is up\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	phy->polarity_correction = TRUE;
+
+	ret_val = e1000_check_polarity_igp(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+	if (ret_val)
+		goto out;
+
+	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? TRUE : FALSE;
+
+	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+		ret_val = e1000_get_cable_length(hw);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &data);
+		if (ret_val)
+			goto out;
+
+		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+		    ? e1000_1000t_rx_status_ok
+		    : e1000_1000t_rx_status_not_ok;
+
+		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+		    ? e1000_1000t_rx_status_ok
+		    : e1000_1000t_rx_status_not_ok;
+	} else {
+		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+		phy->local_rx = e1000_1000t_rx_status_undefined;
+		phy->remote_rx = e1000_1000t_rx_status_undefined;
+	}
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_phy_sw_reset_generic - PHY software reset
+ * @hw: pointer to the HW structure
+ *
+ * Does a software reset of the PHY by reading the PHY control register and
+ * setting/write the control register reset bit to the PHY.
+ */
+s32
+e1000_phy_sw_reset_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_ctrl;
+
+	DEBUGFUNC("e1000_phy_sw_reset_generic");
+
+	ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
+	if (ret_val)
+		goto out;
+
+	phy_ctrl |= MII_CR_RESET;
+	ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
+	if (ret_val)
+		goto out;
+
+	usec_delay(1);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_phy_hw_reset_generic - PHY hardware reset
+ * @hw: pointer to the HW structure
+ *
+ * Verify the reset block is not blocking us from resetting.  Acquire
+ * semaphore (if necessary) and read/set/write the device control reset
+ * bit in the PHY.  Wait the appropriate delay time for the device to
+ * reset and relase the semaphore (if necessary).
+ */
+s32
+e1000_phy_hw_reset_generic(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_phy_hw_reset_generic");
+
+	ret_val = e1000_check_reset_block(hw);
+	if (ret_val) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val)
+		goto out;
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
+	E1000_WRITE_FLUSH(hw);
+
+	usec_delay(phy->reset_delay_us);
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	E1000_WRITE_FLUSH(hw);
+
+	usec_delay(150);
+
+	e1000_release_phy(hw);
+
+	ret_val = e1000_get_phy_cfg_done(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_get_cfg_done_generic - Generic configuration done
+ * @hw: pointer to the HW structure
+ *
+ * Generic function to wait 10 milli-seconds for configuration to complete
+ * and return success.
+ */
+s32
+e1000_get_cfg_done_generic(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_get_cfg_done_generic");
+
+	msec_delay_irq(10);
+
+	return (E1000_SUCCESS);
+}
+
+/* Internal function pointers */
+
+/*
+ * e1000_get_phy_cfg_done - Generic PHY configuration done
+ * @hw: pointer to the HW structure
+ *
+ * Return success if silicon family did not implement a family specific
+ * get_cfg_done function.
+ */
+s32
+e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+	if (hw->func.get_cfg_done)
+		return (hw->func.get_cfg_done(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_release_phy - Generic release PHY
+ * @hw: pointer to the HW structure
+ *
+ * Return if silicon family does not require a semaphore when accessing the
+ * PHY.
+ */
+void
+e1000_release_phy(struct e1000_hw *hw)
+{
+	if (hw->func.release_phy)
+		hw->func.release_phy(hw);
+}
+
+/*
+ * e1000_acquire_phy - Generic acquire PHY
+ * @hw: pointer to the HW structure
+ *
+ * Return success if silicon family does not require a semaphore when
+ * accessing the PHY.
+ */
+s32
+e1000_acquire_phy(struct e1000_hw *hw)
+{
+	if (hw->func.acquire_phy)
+		return (hw->func.acquire_phy(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
+ * @hw: pointer to the HW structure
+ *
+ * When the silicon family has not implemented a forced speed/duplex
+ * function for the PHY, simply return E1000_SUCCESS.
+ */
+s32
+e1000_phy_force_speed_duplex(struct e1000_hw *hw)
+{
+	if (hw->func.force_speed_duplex)
+		return (hw->func.force_speed_duplex(hw));
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_phy_init_script_igp3 - Inits the IGP3 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
+ */
+s32
+e1000_phy_init_script_igp3(struct e1000_hw *hw)
+{
+	DEBUGOUT("Running IGP 3 PHY init script\n");
+
+	/* PHY init IGP 3 */
+	/* Enable rise/fall, 10-mode work in class-A */
+	e1000_write_phy_reg(hw, 0x2F5B, 0x9018);
+	/* Remove all caps from Replica path filter */
+	e1000_write_phy_reg(hw, 0x2F52, 0x0000);
+	/* Bias trimming for ADC, AFE and Driver (Default) */
+	e1000_write_phy_reg(hw, 0x2FB1, 0x8B24);
+	/* Increase Hybrid poly bias */
+	e1000_write_phy_reg(hw, 0x2FB2, 0xF8F0);
+	/* Add 4% to TX amplitude in Giga mode */
+	e1000_write_phy_reg(hw, 0x2010, 0x10B0);
+	/* Disable trimming (TTT) */
+	e1000_write_phy_reg(hw, 0x2011, 0x0000);
+	/* Poly DC correction to 94.6% + 2% for all channels */
+	e1000_write_phy_reg(hw, 0x20DD, 0x249A);
+	/* ABS DC correction to 95.9% */
+	e1000_write_phy_reg(hw, 0x20DE, 0x00D3);
+	/* BG temp curve trim */
+	e1000_write_phy_reg(hw, 0x28B4, 0x04CE);
+	/* Increasing ADC OPAMP stage 1 currents to max */
+	e1000_write_phy_reg(hw, 0x2F70, 0x29E4);
+	/* Force 1000 ( required for enabling PHY regs configuration) */
+	e1000_write_phy_reg(hw, 0x0000, 0x0140);
+	/* Set upd_freq to 6 */
+	e1000_write_phy_reg(hw, 0x1F30, 0x1606);
+	/* Disable NPDFE */
+	e1000_write_phy_reg(hw, 0x1F31, 0xB814);
+	/* Disable adaptive fixed FFE (Default) */
+	e1000_write_phy_reg(hw, 0x1F35, 0x002A);
+	/* Enable FFE hysteresis */
+	e1000_write_phy_reg(hw, 0x1F3E, 0x0067);
+	/* Fixed FFE for short cable lengths */
+	e1000_write_phy_reg(hw, 0x1F54, 0x0065);
+	/* Fixed FFE for medium cable lengths */
+	e1000_write_phy_reg(hw, 0x1F55, 0x002A);
+	/* Fixed FFE for long cable lengths */
+	e1000_write_phy_reg(hw, 0x1F56, 0x002A);
+	/* Enable Adaptive Clip Threshold */
+	e1000_write_phy_reg(hw, 0x1F72, 0x3FB0);
+	/* AHT reset limit to 1 */
+	e1000_write_phy_reg(hw, 0x1F76, 0xC0FF);
+	/* Set AHT master delay to 127 msec */
+	e1000_write_phy_reg(hw, 0x1F77, 0x1DEC);
+	/* Set scan bits for AHT */
+	e1000_write_phy_reg(hw, 0x1F78, 0xF9EF);
+	/* Set AHT Preset bits */
+	e1000_write_phy_reg(hw, 0x1F79, 0x0210);
+	/* Change integ_factor of channel A to 3 */
+	e1000_write_phy_reg(hw, 0x1895, 0x0003);
+	/* Change prop_factor of channels BCD to 8 */
+	e1000_write_phy_reg(hw, 0x1796, 0x0008);
+	/* Change cg_icount + enable integbp for channels BCD */
+	e1000_write_phy_reg(hw, 0x1798, 0xD008);
+	/*
+	 * Change cg_icount + enable integbp + change prop_factor_master to 8
+	 * for channel A
+	 */
+	e1000_write_phy_reg(hw, 0x1898, 0xD918);
+	/* Disable AHT in Slave mode on channel A */
+	e1000_write_phy_reg(hw, 0x187A, 0x0800);
+	/*
+	 * Enable LPLU and disable AN to 1000 in non-D0a states, Enable
+	 * SPD+B2B
+	 */
+	e1000_write_phy_reg(hw, 0x0019, 0x008D);
+	/* Enable restart AN on an1000_dis change */
+	e1000_write_phy_reg(hw, 0x001B, 0x2080);
+	/* Enable wh_fifo read clock in 10/100 modes */
+	e1000_write_phy_reg(hw, 0x0014, 0x0045);
+	/* Restart AN, Speed selection is 1000 */
+	e1000_write_phy_reg(hw, 0x0000, 0x1340);
+
+	return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_get_phy_type_from_id - Get PHY type from id
+ * @phy_id: phy_id read from the phy
+ *
+ * Returns the phy type from the id.
+ */
+e1000_phy_type
+e1000_get_phy_type_from_id(u32 phy_id)
+{
+	e1000_phy_type phy_type = e1000_phy_unknown;
+
+	switch (phy_id) {
+	case M88E1000_I_PHY_ID:
+	case M88E1000_E_PHY_ID:
+	case M88E1111_I_PHY_ID:
+	case M88E1011_I_PHY_ID:
+		phy_type = e1000_phy_m88;
+		break;
+	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
+		phy_type = e1000_phy_igp_2;
+		break;
+	case GG82563_E_PHY_ID:
+		phy_type = e1000_phy_gg82563;
+		break;
+	case IGP03E1000_E_PHY_ID:
+		phy_type = e1000_phy_igp_3;
+		break;
+	case IFE_E_PHY_ID:
+	case IFE_PLUS_E_PHY_ID:
+	case IFE_C_E_PHY_ID:
+		phy_type = e1000_phy_ife;
+		break;
+	case BME1000_E_PHY_ID:
+		phy_type = e1000_phy_bm;
+		break;
+	default:
+		phy_type = e1000_phy_unknown;
+		break;
+	}
+	return (phy_type);
+}
+
+/*
+ * e1000_determine_phy_address - Determines PHY address.
+ * @hw: pointer to the HW structure
+ *
+ * This uses a trial and error method to loop through possible PHY
+ * addresses. It tests each by reading the PHY ID registers and
+ * checking for a match.
+ */
+s32
+e1000_determine_phy_address(struct e1000_hw *hw)
+{
+	s32 ret_val = -E1000_ERR_PHY_TYPE;
+	u32 phy_addr = 0;
+	e1000_phy_type phy_type = e1000_phy_unknown;
+
+	for (phy_addr = 1; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
+		hw->phy.addr = phy_addr;
+		e1000_get_phy_id(hw);
+		phy_type = e1000_get_phy_type_from_id(hw->phy.id);
+
+		/* if phy_type is valid, break - we found our PHY address */
+		if (phy_type != e1000_phy_unknown) {
+			ret_val = E1000_SUCCESS;
+			break;
+		}
+	}
+
+	return (ret_val);
+}
+
+/*
+ * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
+ * @page: page to access
+ *
+ * Returns the phy address for the page requested.
+ */
+static u32
+e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
+{
+	u32 phy_addr = 2;
+
+	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
+		phy_addr = 1;
+
+	return (phy_addr);
+}
+
+/*
+ * e1000_write_phy_reg_bm - Write BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset.  Release any acquired semaphores before exiting.
+ */
+s32
+e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	s32 ret_val;
+	u32 page_select = 0;
+	u32 page = offset >> IGP_PAGE_SHIFT;
+	u32 page_shift = 0;
+
+	DEBUGFUNC("e1000_write_phy_reg_bm");
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw,
+		    offset, &data, FALSE);
+		goto out;
+	}
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val)
+		goto out;
+
+	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		/*
+		 * Page select is register 31 for phy address 1 and 22 for phy
+		 * address 2 and 3. Page select is shifted only for phy
+		 * address 1.
+		 */
+		if (hw->phy.addr == 1) {
+			page_shift = IGP_PAGE_SHIFT;
+			page_select = IGP01E1000_PHY_PAGE_SELECT;
+		} else {
+			page_shift = 0;
+			page_select = BM_PHY_PAGE_SELECT;
+		}
+
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000_write_phy_reg_mdic(hw, page_select,
+		    (page << page_shift));
+		if (ret_val) {
+			e1000_release_phy(hw);
+			goto out;
+		}
+	}
+
+	ret_val = e1000_write_phy_reg_mdic(hw,
+	    MAX_PHY_REG_ADDRESS & offset,
+	    data);
+
+	e1000_release_phy(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_read_phy_reg_bm - Read BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data.  Release any acquired
+ * semaphores before exiting.
+ */
+s32
+e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+	u32 page_select = 0;
+	u32 page = offset >> IGP_PAGE_SHIFT;
+	u32 page_shift = 0;
+
+	DEBUGFUNC("e1000_write_phy_reg_bm");
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw,
+		    offset, data, TRUE);
+		goto out;
+	}
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val)
+		goto out;
+
+	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		/*
+		 * Page select is register 31 for phy address 1 and 22 for phy
+		 * address 2 and 3. Page select is shifted only for phy
+		 * address 1.
+		 */
+		if (hw->phy.addr == 1) {
+			page_shift = IGP_PAGE_SHIFT;
+			page_select = IGP01E1000_PHY_PAGE_SELECT;
+		} else {
+			page_shift = 0;
+			page_select = BM_PHY_PAGE_SELECT;
+		}
+
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000_write_phy_reg_mdic(hw, page_select,
+		    (page << page_shift));
+		if (ret_val) {
+			e1000_release_phy(hw);
+			goto out;
+		}
+	}
+
+	ret_val = e1000_read_phy_reg_mdic(hw,
+	    MAX_PHY_REG_ADDRESS & offset,
+	    data);
+	e1000_release_phy(hw);
+
+out:
+	return (ret_val);
+}
+
+/*
+ * e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read or written
+ * @data: pointer to the data to read or write
+ * @read: determines if operation is read or write
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data.  Release any acquired
+ * semaphores before exiting. Note that procedure to read the wakeup
+ * registers are different. It works as such:
+ * 1) Set page 769, register 17, bit 2 = 1
+ * 2) Set page to 800 for host (801 if we were manageability)
+ * 3) Write the address using the address opcode (0x11)
+ * 4) Read or write the data using the data opcode (0x12)
+ * 5) Restore 769_17.2 to its original value
+ */
+s32
+e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw,
+    u32 offset, u16 *data, boolean_t read)
+{
+	s32 ret_val;
+	u16 reg = ((u16)offset) & PHY_REG_MASK;
+	u16 phy_reg = 0;
+	u8 phy_acquired = 1;
+
+	DEBUGFUNC("e1000_read_phy_wakeup_reg_bm");
+
+	ret_val = e1000_acquire_phy(hw);
+	if (ret_val) {
+		DEBUGOUT("Couldnt acquire PHY\n");
+		phy_acquired = 0;
+		goto out;
+	}
+
+	/* All operations in this function are phy address 1 */
+	hw->phy.addr = 1;
+
+	/* Set page 769 */
+	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+	    (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
+
+	ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
+	if (ret_val) {
+		DEBUGOUT("Couldnt read PHY page 769\n");
+		goto out;
+	}
+
+	/* First clear bit 4 to avoid a power state change */
+	phy_reg &= ~(BM_WUC_HOST_WU_BIT);
+	ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+	if (ret_val) {
+		DEBUGOUT("Couldnt clear PHY page 769 bit 4\n");
+		goto out;
+	}
+
+	/* Write bit 2 = 1, and clear bit 4 to 769_17 */
+	ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
+	    phy_reg | BM_WUC_ENABLE_BIT);
+	if (ret_val) {
+		DEBUGOUT("Couldnt write PHY page 769 bit 2\n");
+		goto out;
+	}
+
+	/* Select page 800 */
+	ret_val = e1000_write_phy_reg_mdic(hw,
+	    IGP01E1000_PHY_PAGE_SELECT,
+	    (BM_WUC_PAGE << IGP_PAGE_SHIFT));
+
+	/* Write the page 800 offset value using opcode 0x11 */
+	ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
+	if (ret_val) {
+		DEBUGOUT("Couldnt write address opcode to page 800\n");
+		goto out;
+	}
+
+	if (read) {
+		/* Read the page 800 value using opcode 0x12 */
+		ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+		    data);
+	} else {
+		/* Read the page 800 value using opcode 0x12 */
+		ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+		    *data);
+	}
+
+	if (ret_val) {
+		DEBUGOUT("Couldnt read data value from page 800\n");
+		goto out;
+	}
+
+	/*
+	 * Restore 769_17.2 to its original value Set page 769
+	 */
+	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+	    (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
+
+	/* Clear 769_17.2 */
+	ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+	if (ret_val) {
+		DEBUGOUT("Couldnt clear PHY page 769 bit 2\n");
+		goto out;
+	}
+
+out:
+	if (phy_acquired == 1)
+		e1000_release_phy(hw);
+	return (ret_val);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_phy.h	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,186 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#ifndef _E1000_PHY_H_
+#define	_E1000_PHY_H_
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef enum {
+	e1000_ms_hw_default = 0,
+	e1000_ms_force_master,
+	e1000_ms_force_slave,
+	e1000_ms_auto
+} e1000_ms_type;
+
+typedef enum {
+	e1000_smart_speed_default = 0,
+	e1000_smart_speed_on,
+	e1000_smart_speed_off
+} e1000_smart_speed;
+
+s32 e1000_check_downshift_generic(struct e1000_hw *hw);
+s32 e1000_check_polarity_m88(struct e1000_hw *hw);
+s32 e1000_check_polarity_igp(struct e1000_hw *hw);
+s32 e1000_check_reset_block_generic(struct e1000_hw *hw);
+s32 e1000_copper_link_autoneg(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_igp(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_m88(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw);
+s32 e1000_get_cable_length_m88(struct e1000_hw *hw);
+s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw);
+s32 e1000_get_cfg_done_generic(struct e1000_hw *hw);
+s32 e1000_get_phy_id(struct e1000_hw *hw);
+s32 e1000_get_phy_info_igp(struct e1000_hw *hw);
+s32 e1000_get_phy_info_m88(struct e1000_hw *hw);
+s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw);
+void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
+s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw);
+s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw);
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw);
+s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, boolean_t active);
+s32 e1000_setup_copper_link_generic(struct e1000_hw *hw);
+s32 e1000_wait_autoneg_generic(struct e1000_hw *hw);
+s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
+s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+    u32 usec_interval, boolean_t *success);
+s32 e1000_phy_init_script_igp3(struct e1000_hw *hw);
+e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id);
+s32 e1000_determine_phy_address(struct e1000_hw *hw);
+s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data,
+    boolean_t read);
+
+#define	E1000_MAX_PHY_ADDR		4
+
+/* IGP01E1000 Specific Registers */
+#define	IGP01E1000_PHY_PORT_CONFIG	0x10 /* Port Config */
+#define	IGP01E1000_PHY_PORT_STATUS	0x11 /* Status */
+#define	IGP01E1000_PHY_PORT_CTRL	0x12 /* Control */
+#define	IGP01E1000_PHY_LINK_HEALTH	0x13 /* PHY Link Health */
+#define	IGP01E1000_GMII_FIFO		0x14 /* GMII FIFO */
+#define	IGP01E1000_PHY_CHANNEL_QUALITY	0x15 /* PHY Channel Quality */
+#define	IGP02E1000_PHY_POWER_MGMT	0x19 /* Power Management */
+#define	IGP01E1000_PHY_PAGE_SELECT	0x1F /* Page Select */
+#define	BM_PHY_PAGE_SELECT		22   /* Page Select for IGP 4 */
+#define	IGP_PAGE_SHIFT			5
+#define	PHY_REG_MASK			0x1F
+
+#define	BM_WUC_PAGE			800
+#define	BM_WUC_ADDRESS_OPCODE		0x11
+#define	BM_WUC_DATA_OPCODE		0x12
+#define	BM_WUC_ENABLE_PAGE		769
+#define	BM_WUC_ENABLE_REG		17
+#define	BM_WUC_ENABLE_BIT		(1 << 2)
+#define	BM_WUC_HOST_WU_BIT		(1 << 4)
+
+#define	IGP01E1000_PHY_PCS_INIT_REG	0x00B4
+#define	IGP01E1000_PHY_POLARITY_MASK	0x0078
+
+#define	IGP01E1000_PSCR_AUTO_MDIX	0x1000
+#define	IGP01E1000_PSCR_FORCE_MDI_MDIX	0x2000	/* 0=MDI, 1=MDIX */
+
+#define	IGP01E1000_PSCFR_SMART_SPEED	0x0080
+
+/* Enable flexible speed on link-up */
+#define	IGP01E1000_GMII_FLEX_SPD	0x0010
+#define	IGP01E1000_GMII_SPD		0x0020	/* Enable SPD */
+
+#define	IGP02E1000_PM_SPD		0x0001	/* Smart Power Down */
+#define	IGP02E1000_PM_D0_LPLU		0x0002	/* For D0a states */
+#define	IGP02E1000_PM_D3_LPLU		0x0004	/* For all other states */
+
+#define	IGP01E1000_PLHR_SS_DOWNGRADE	0x8000
+
+#define	IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
+#define	IGP01E1000_PSSR_MDIX		0x0008
+#define	IGP01E1000_PSSR_SPEED_MASK	0xC000
+#define	IGP01E1000_PSSR_SPEED_1000MBPS	0xC000
+
+#define	IGP02E1000_PHY_CHANNEL_NUM	4
+#define	IGP02E1000_PHY_AGC_A		0x11B1
+#define	IGP02E1000_PHY_AGC_B		0x12B1
+#define	IGP02E1000_PHY_AGC_C		0x14B1
+#define	IGP02E1000_PHY_AGC_D		0x18B1
+
+#define	IGP02E1000_AGC_LENGTH_SHIFT	9 /* Course - 15:13, Fine - 12:9 */
+#define	IGP02E1000_AGC_LENGTH_MASK	0x7F
+#define	IGP02E1000_AGC_RANGE		15
+
+#define	IGP03E1000_PHY_MISC_CTRL	0x1B
+#define	IGP03E1000_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Manually Set Duplex */
+
+#define	E1000_CABLE_LENGTH_UNDEFINED	0xFF
+
+#define	E1000_KMRNCTRLSTA_OFFSET	0x001F0000
+#define	E1000_KMRNCTRLSTA_OFFSET_SHIFT	16
+#define	E1000_KMRNCTRLSTA_REN		0x00200000
+#define	E1000_KMRNCTRLSTA_DIAG_OFFSET	0x3	/* Kumeran Diagnostic */
+#define	E1000_KMRNCTRLSTA_DIAG_NELPBK	0x1000	/* Nearend Loopback mode */
+
+#define	IFE_PHY_EXTENDED_STATUS_CONTROL	0x10
+#define	IFE_PHY_SPECIAL_CONTROL		0x11 /* 100BaseTx PHY Special Control */
+#define	IFE_PHY_SPECIAL_CONTROL_LED	0x1B /* PHY Special and LED Control */
+#define	IFE_PHY_MDIX_CONTROL		0x1C /* MDI/MDI-X Control */
+
+/* IFE PHY Extended Status Control */
+#define	IFE_PESC_POLARITY_REVERSED	0x0100
+
+/* IFE PHY Special Control */
+#define	IFE_PSC_AUTO_POLARITY_DISABLE	0x0010
+#define	IFE_PSC_FORCE_POLARITY		0x0020
+#define	IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100
+
+/* IFE PHY Special Control and LED Control */
+#define	IFE_PSCL_PROBE_MODE		0x0020
+#define	IFE_PSCL_PROBE_LEDS_OFF		0x0006 /* Force LEDs 0 and 2 off */
+#define	IFE_PSCL_PROBE_LEDS_ON		0x0007 /* Force LEDs 0 and 2 on */
+
+/* IFE PHY MDIX Control */
+#define	IFE_PMC_MDIX_STATUS	0x0020 /* 1=MDI-X, 0=MDI */
+#define	IFE_PMC_FORCE_MDIX	0x0040 /* 1=force MDI-X, 0=force MDI */
+#define	IFE_PMC_AUTO_MDIX	0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif	/* _E1000_PHY_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/io/e1000g/e1000_regs.h	Tue Aug 21 00:30:10 2007 -0700
@@ -0,0 +1,651 @@
+/*
+ * This file is provided under a CDDLv1 license.  When using or
+ * redistributing this file, you may do so under this license.
+ * In redistributing this file this license must be included
+ * and no other modification of this header file is permitted.
+ *
+ * CDDL LICENSE SUMMARY
+ *
+ * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
+ *
+ * The contents of this file are subject to the terms of Version
+ * 1.0 of the Common Development and Distribution License (the "License").
+ *
+ * You should have received a copy of the License with this software.
+ * You can obtain a copy of the License at
+ *	http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms of the CDDLv1.
+ */
+
+/*
+ * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
+ */
+#ifndef _E1000_REGS_H_
+#define	_E1000_REGS_H_
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define	E1000_CTRL	0x00000  /* Device Control - RW */
+#define	E1000_CTRL_DUP	0x00004  /* Device Control Duplicate (Shadow) - RW */
+#define	E1000_STATUS	0x00008  /* Device Status - RO */
+#define	E1000_EECD	0x00010  /* EEPROM/Flash Control - RW */
+#define	E1000_EERD	0x00014  /* EEPROM Read - RW */
+#define	E1000_CTRL_EXT	0x00018  /* Extended Device Control - RW */
+#define	E1000_FLA	0x0001C  /* Flash Access - RW */
+#define	E1000_MDIC	0x00020  /* MDI Control - RW */
+#define	E1000_SCTL	0x00024  /* SerDes Control - RW */
+#define	E1000_FCAL	0x00028  /* Flow Control Address Low - RW */
+#define	E1000_FCAH	0x0002C  /* Flow Control Address High -RW */
+#define	E1000_FEXTNVM	0x00028  /* Future Extended NVM - RW */
+#define	E1000_FCT	0x00030  /* Flow Control Type - RW */
+#define	E1000_CONNSW	0x00034  /* Copper/Fiber switch control - RW */
+#define	E1000_VET	0x00038  /* VLAN Ether Type - RW */
+#define	E1000_ICR	0x000C0  /* Interrupt Cause Read - R/clr */
+#define	E1000_ITR	0x000C4  /* Interrupt Throttling Rate - RW */
+#define	E1000_ICS	0x000C8  /* Interrupt Cause Set - WO */
+#define	E1000_IMS	0x000D0  /* Interrupt Mask Set - RW */
+#define	E1000_IMC	0x000D8  /* Interrupt Mask Clear - WO */
+#define	E1000_IAM	0x000E0  /* Interrupt Acknowledge Auto Mask */
+#define	E1000_RCTL	0x00100  /* RX Control - RW */
+#define	E1000_RDTR1	0x02820  /* RX Delay Timer (1) - RW */
+#define	E1000_RDBAL1	0x02900  /* RX Descriptor Base Address Low (1) - RW */
+#define	E1000_RDBAH1	0x02904  /* RX Descriptor Base Address High (1) - RW */
+#define	E1000_RDLEN1	0x02908  /* RX Descriptor Length (1) - RW */
+#define	E1000_RDH1	0x02910  /* RX Descriptor Head (1) - RW */
+#define	E1000_RDT1	0x02918  /* RX Descriptor Tail (1) - RW */
+#define	E1000_FCTTV	0x00170  /* Flow Control Transmit Timer Value - RW */
+#define	E1000_TXCW	0x00178  /* TX Configuration Word - RW */
+#define	E1000_RXCW	0x00180  /* RX Configuration Word - RO */
+#define	E1000_EICR	0x01580  /* Ext. Interrupt Cause Read - R/clr */
+#define	E1000_EITR0	0x01680  /* Ext. Int. Throttling Rate Vector 0 - RW */
+#define	E1000_EITR1	0x01684  /* Ext. Int. Throttling Rate Vector 1 - RW */
+#define	E1000_EITR2	0x01688  /* Ext. Int. Throttling Rate Vector 2 - RW */
+#define	E1000_EITR3	0x0168C  /* Ext. Int. Throttling Rate Vector 3 - RW */
+#define	E1000_EITR4	0x01690  /* Ext. Int. Throttling Rate Vector 4 - RW */
+#define	E1000_EITR5	0x01694  /* Ext. Int. Throttling Rate Vector 5 - RW */
+#define	E1000_EITR6	0x01698  /* Ext. Int. Throttling Rate Vector 6 - RW */
+#define	E1000_EITR7	0x0169C  /* Ext. Int. Throttling Rate Vector 7 - RW */
+#define	E1000_EITR8	0x016A0  /* Ext. Int. Throttling Rate Vector 8 - RW */
+#define	E1000_EITR9	0x016A4  /* Ext. Int. Throttling Rate Vector 9 - RW */
+#define	E1000_EICS	0x01520  /* Ext. Interrupt Cause Set - W0 */
+#define	E1000_EIMS	0x01524  /* Ext. Interrupt Mask Set/Read - RW */
+#define	E1000_EIMC	0x01528  /* Ext. Interrupt Mask Clear - WO */
+#define	E1000_EIAC	0x0152C  /* Ext. Interrupt Auto Clear - RW */
+#define	E1000_EIAM	0x01530  /* Ext. Interrupt Ack Auto Clear Mask - RW */
+#define	E1000_GPIE	0x01514  /* General Purpose Interrupt Enable - RW */
+#define	E1000_IVAR0	0x01700  /* Interrupt Vector Allocation (array) - RW */
+#define	E1000_IVAR_MISC	0x01740  /* IVAR for "other" causes - RW */
+#define	E1000_TCTL	0x00400  /* TX Control - RW */
+#define	E1000_TCTL_EXT	0x00404  /* Extended TX Control - RW */
+#define	E1000_TIPG	0x00410  /* TX Inter-packet gap -RW */
+#define	E1000_TBT	0x00448  /* TX Burst Timer - RW */
+#define	E1000_AIT	0x00458  /* Adaptive Interframe Spacing Throttle - RW */
+#define	E1000_LEDCTL	0x00E00  /* LED Control - RW */
+#define	E1000_EXTCNF_CTRL 0x00F00  /* Extended Configuration Control */
+#define	E1000_EXTCNF_SIZE 0x00F08  /* Extended Configuration Size */
+#define	E1000_PHY_CTRL	0x00F10  /* PHY Control Register in CSR */
+#define	E1000_PBA	0x01000  /* Packet Buffer Allocation - RW */
+#define	E1000_PBS	0x01008  /* Packet Buffer Size */
+#define	E1000_EEMNGCTL	0x01010  /* MNG EEprom Control */
+#define	E1000_EEARBC	0x01024  /* EEPROM Auto Read Bus Control */
+#define	E1000_FLASHT	0x01028  /* FLASH Timer Register */
+#define	E1000_EEWR	0x0102C  /* EEPROM Write Register - RW */
+#define	E1000_FLSWCTL	0x01030  /* FLASH control register */
+#define	E1000_FLSWDATA	0x01034  /* FLASH data register */
+#define	E1000_FLSWCNT	0x01038  /* FLASH Access Counter */
+#define	E1000_FLOP	0x0103C  /* FLASH Opcode Register */
+#define	E1000_I2CCMD	0x01028  /* SFPI2C Command Register - RW */
+#define	E1000_I2CPARAMS	0x0102C  /* SFPI2C Parameters Register - RW */
+#define	E1000_WDSTP	0x01040  /* Watchdog Setup - RW */
+#define	E1000_SWDSTS	0x01044  /* SW Device Status - RW */
+#define	E1000_FRTIMER	0x01048  /* Free Running Timer - RW */
+#define	E1000_TCPTIMER	0x0104C  /* TCP Timer - RW */
+#define	E1000_VPDDIAG	0x01060  /* VPD Diagnostic - RO */
+#define	E1000_ICR_V2	0x01500  /* Interrupt Cause - new location - RC */
+#define	E1000_ICS_V2	0x01504  /* Interrupt Cause Set - new location - WO */
+#define	E1000_IMS_V2	0x01508  /* Interrupt Mask Set/Read -new location -RW */
+#define	E1000_IMC_V2	0x0150C  /* Interrupt Mask Clear - new location - WO */
+#define	E1000_IAM_V2	0x01510  /* Interrupt Ack Auto Mask -new location -RW */
+#define	E1000_ERT	0x02008  /* Early Rx Threshold - RW */
+#define	E1000_FCRTL	0x02160  /* Flow Control Receive Threshold Low - RW */
+#define	E1000_FCRTH	0x02168  /* Flow Control Receive Threshold High - RW */
+#define	E1000_PSRCTL	0x02170  /* Packet Split Receive Control - RW */
+#define	E1000_RDFPCQ0	0x02430
+#define	E1000_RDFPCQ1	0x02434
+#define	E1000_RDFPCQ2	0x02438
+#define	E1000_RDFPCQ3	0x0243C
+#define	E1000_PBRTH	0x02458  /* PB RX Arbitration Threshold - RW */
+#define	E1000_FCRTV	0x02460  /* Flow Control Refresh Timer Value - RW */
+#define	E1000_SRRCTL0	0x0280C
+/* Split and Replication RX Control - RW */
+#define	E1000_SRRCTL(_n) (0x280C + (_n << 8))
+#define	E1000_RDPUMB	0x025CC  /* DMA RX Descriptor uC Mailbox - RW */
+#define	E1000_RDPUAD	0x025D0  /* DMA RX Descriptor uC Addr Command - RW */
+#define	E1000_RDPUWD	0x025D4  /* DMA RX Descriptor uC Data Write - RW */
+#define	E1000_RDPURD	0x025D8  /* DMA RX Descriptor uC Data Read - RW */
+#define	E1000_RDPUCTL	0x025DC  /* DMA RX Descriptor uC Control - RW */
+#define	E1000_PBDIAG	0x02458  /* Packet Buffer Diagnostic - RW */
+#define	E1000_RXPBS	0x02404  /* RX Packet Buffer Size - RW */
+#define	E1000_RDBAL_REG_V2(_n)	(0x0C000 + (0x40 * (_n)))
+#define	E1000_RDBAH_REG_V2(_n)	(0x0C004 + (0x40 * (_n)))
+#define	E1000_RDLEN_REG_V2(_n)	(0x0C008 + (0x40 * (_n)))
+#define	E1000_SRRCTL_REG_V2(_n)	(0x0C00C + (0x40 * (_n)))
+#define	E1000_RDH_REG_V2(_n)	(0x0C010 + (0x40 * (_n)))
+#define	E1000_RXCTL_REG_V2(_n)	(0x0C014 + (0x40 * (_n)))
+#define	E1000_RDT_REG_V2(_n)	(0x0C018 + (0x40 * (_n)))
+#define	E1000_RXDCTL_REG_V2(_n)	(0x0C028 + (0x40 * (_n)))
+#define	E1000_RQDPC_REG(_n)	(0x0C030 + (0x40 * (_n)))
+#define	E1000_TDBAL_REG_V2(_n)	(0x0E000 + (0x40 * (_n)))
+#define	E1000_TDBAH_REG_V2(_n)	(0x0E004 + (0x40 * (_n)))
+#define	E1000_TDLEN_REG_V2(_n)	(0x0E008 + (0x40 * (_n)))
+#define	E1000_TDH_REG_V2(_n)	(0x0E010 + (0x40 * (_n)))
+#define	E1000_TXCTL_REG_V2(_n)	(0x0E014 + (0x40 * (_n)))
+#define	E1000_TDT_REG_V2(_n)	(0x0E018 + (0x40 * (_n)))
+#define	E1000_TXDCTL_REG_V2(_n)	(0x0E028 + (0x40 * (_n)))
+#define	E1000_TDWBAL_REG_V2(_n)	(0x0E038 + (0x40 * (_n)))
+#define	E1000_TDWBAH_REG_V2(_n)	(0x0E03C + (0x40 * (_n)))
+#define	E1000_RDBAL	0x02800  /* RX Descriptor Base Address Low - RW */
+#define	E1000_RDBAH	0x02804  /* RX Descriptor Base Address High - RW */
+#define	E1000_RDLEN	0x02808  /* RX Descriptor Length - RW */
+#define	E1000_RDH	0x02810  /* RX Descriptor Head - RW */
+#define	E1000_RDT	0x02818  /* RX Descriptor Tail - RW */
+#define	E1000_RDTR	0x02820  /* RX Delay Timer - RW */
+#define	E1000_RDBAL0	E1000_RDBAL /* RX Desc Base Address Low (0) - RW */
+#define	E1000_RDBAH0	E1000_RDBAH /* RX Desc Base Address High (0) - RW */
+#define	E1000_RDLEN0	E1000_RDLEN /* RX Desc Length (0) - RW */
+#define	E1000_RDH0	E1000_RDH   /* RX Desc Head (0) - RW */
+#define	E1000_RDT0	E1000_RDT   /* RX Desc Tail (0) - RW */
+#define	E1000_RDTR0	E1000_RDTR  /* RX Delay Timer (0) - RW */
+#define	E1000_RXDCTL	0x02828  /* RX Descriptor Control queue 0 - RW */
+#define	E1000_RXDCTL1	0x02928  /* RX Descriptor Control queue 1 - RW */
+#define	E1000_RADV	0x0282C  /* RX Interrupt Absolute Delay Timer - RW */
+/*
+ * Convenience macros
+ *
+ * Note: "_n" is the queue number of the register to be written to.
+ *
+ * Example usage:
+ * E1000_RDBAL_REG(current_rx_queue)
+ */
+#define	E1000_RDBAL_REG(_n)	(E1000_RDBAL + (_n << 8))
+#define	E1000_RDBAH_REG(_n)	(E1000_RDBAH + (_n << 8))
+#define	E1000_RDLEN_REG(_n)	(E1000_RDLEN + (_n << 8))
+#define	E1000_RDH_REG(_n)	(E1000_RDH + (_n << 8))
+#define	E1000_RDT_REG(_n)	(E1000_RDT + (_n << 8))
+#define	E1000_RXDCTL_REG(_n)	(E1000_RXDCTL + (_n << 8))
+#define	E1000_TDBAL_REG(_n)	(E1000_TDBAL + (_n << 8))
+#define	E1000_TDBAH_REG(_n)	(E1000_TDBAH + (_n << 8))
+#define	E1000_TDLEN_REG(_n)	(E1000_TDLEN + (_n << 8))
+#define	E1000_TDH_REG(_n)	(E1000_TDH + (_n << 8))
+#define	E1000_TDT_REG(_n)	(E1000_TDT + (_n << 8))
+#define	E1000_TXDCTL_REG(_n)	(E1000_TXDCTL + (_n << 8))
+#define	E1000_TARC_REG(_n)	(E1000_TARC0 + (_n << 8))
+#define	E1000_DCA_RXCTRL(_n)	(0x02814 + (_n << 8))
+#define	E1000_DCA_RXCTRL0	0x02814 /* RX Queue 0 DCA CTRL - RW */
+#define	E1000_DCA_RXCTRL1	0x02914 /* RX Queue 1 DCA CTRL - RW */
+#define	E1000_RDBAL2	0x02A00 /* RX Descriptor Base Low Queue 2 - RW */
+#define	E1000_RDBAH2	0x02A04 /* RX Descriptor Base High Queue 2 - RW */
+#define	E1000_RDLEN2	0x02A08 /* RX Descriptor Length Queue 2 - RW */
+#define	E1000_RDH2	0x02A10 /* RX Descriptor Head Queue 2 - RW */
+#define	E1000_DCA_RXCTRL2 0x02A14 /* RX Queue 2 DCA CTRL - RW */
+#define	E1000_RDT2	0x02A18 /* RX Descriptor Tail Queue 2 - RW */
+#define	E1000_RXDCTL2	0x02A28 /* RX Descriptor Control queue 2 - RW */
+#define	E1000_RDBAL3	0x02B00 /* RX Descriptor Base Low Queue 3 - RW */
+#define	E1000_RDBAH3	0x02B04 /* RX Descriptor Base High Queue 3 - RW */
+#define	E1000_RDLEN3	0x02B08 /* RX Descriptor Length Queue 3 - RW */
+#define	E1000_RDH3	0x02B10 /* RX Descriptor Head Queue 3 - RW */
+#define	E1000_DCA_RXCTRL3 0x02B14 /* RX Queue 3 DCA Control - RW */
+#define	E1000_RDT3	0x02B18 /* RX Descriptor Tail Queue 3 - RW */
+#define	E1000_RXDCTL3	0x02B28 /* RX Descriptor Control Queue 3 - RW */
+#define	E1000_RSRPD	0x02C00  /* RX Small Packet Detect - RW */
+#define	E1000_RAID	0x02C08  /* Receive Ack Interrupt Delay - RW */
+#define	E1000_TXDMAC	0x03000  /* TX DMA Control - RW */
+#define	E1000_KABGTXD	0x03004  /* AFE Band Gap Transmit Ref Data */
+#define	E1000_PBSLAC	0x03100  /* Packet Buffer Slave Access Control */
+#define	E1000_PBSLAD0	0x03110  /* Packet Buffer DWORD 0 */
+#define	E1000_PBSLAD1	0x03114  /* Packet Buffer DWORD 1 */
+#define	E1000_PBSLAD2	0x03118  /* Packet Buffer DWORD 2 */
+#define	E1000_PBSLAD3	0x0311C  /* Packet Buffer DWORD 3 */
+#define	E1000_TXPBS	0x03404  /* TX Packet Buffer Size - RW */
+#define	E1000_TDFH	0x03410  /* TX Data FIFO Head - RW */
+#define	E1000_TDFT	0x03418  /* TX Data FIFO Tail - RW */
+#define	E1000_TDFHS	0x03420  /* TX Data FIFO Head Saved - RW */
+#define	E1000_TDFTS	0x03428  /* TX Data FIFO Tail Saved - RW */
+#define	E1000_TDFPC	0x03430  /* TX Data FIFO Packet Count - RW */
+#define	E1000_TDPUMB	0x0357C  /* DMA TX Descriptor uC Mail Box - RW */
+#define	E1000_TDPUAD	0x03580  /* DMA TX Descriptor uC Addr Command - RW */
+#define	E1000_TDPUWD	0x03584  /* DMA TX Descriptor uC Data Write - RW */
+#define	E1000_TDPURD	0x03588  /* DMA TX Descriptor uC Data  Read  - RW */
+#define	E1000_TDPUCTL	0x0358C  /* DMA TX Descriptor uC Control - RW */
+#define	E1000_DTXCTL	0x03590  /* DMA TX Control - RW */
+#define	E1000_DTXTCPFLGL 0x0359C /* DMA TX Control flag low - RW */
+#define	E1000_DTXTCPFLGH 0x035A0 /* DMA TX Control flag high - RW */
+#define	E1000_DTXMXSZRQ	0x03540 /* DMA TX Max Total Allow Size Requests - RW */
+#define	E1000_TDBAL	0x03800  /* TX Descriptor Base Address Low - RW */
+#define	E1000_TDBAH	0x03804  /* TX Descriptor Base Address High - RW */
+#define	E1000_TDLEN	0x03808  /* TX Descriptor Length - RW */
+#define	E1000_TDH	0x03810  /* TX Descriptor Head - RW */
+#define	E1000_TDT	0x03818  /* TX Descriptor Tail - RW */
+#define	E1000_TDBAL0	E1000_TDBAL /* TX Descriptor Base Address Low - RW */
+#define	E1000_TDBAH0	E1000_TDBAH /* TX Descriptor Base Address High - RW */
+#define	E1000_TDLEN0	E1000_TDLEN /* TX Descriptor Length - RW */
+#define	E1000_TDH0	E1000_TDH   /* TX Descriptor Head - RW */
+#define	E1000_TDT0	E1000_TDT   /* TX Descriptor Tail - RW */
+#define	E1000_TIDV	0x03820  /* TX Interrupt Delay Value - RW */
+#define	E1000_TXDCTL	0x03828  /* TX Descriptor Control - RW */
+#define	E1000_TADV	0x0382C  /* TX Interrupt Absolute Delay Val - RW */
+#define	E1000_TSPMT	0x03830  /* TCP Segmentation PAD & Min Threshold - RW */
+#define	E1000_TARC0	0x03840  /* TX Arbitration Count (0) */
+#define	E1000_DCA_TXCTRL0 0x03814 /* TX Queue 0 DCA CTRL - RW */
+#define	E1000_TDWBAL0	0x03838 /* TX Desc. WB Addr Low Queue 0 - RW */
+#define	E1000_TDWBAH0	0x0383C /* TX Desc. WB Addr High Queue 0 - RW */
+#define	E1000_DCA_TXCTRL(_n) (E1000_DCA_TXCTRL0 + (_n << 8))
+#define	E1000_TDWBAL_REG(_n) (E1000_TDWBAL0 + (_n << 8))
+#define	E1000_TDWBAH_REG(_n) (E1000_TDWBAH0 + (_n << 8))
+#define	E1000_TDBAL1	0x03900  /* TX Desc Base Address Low (1) - RW */
+#define	E1000_TDBAH1	0x03904  /* TX Desc Base Address High (1) - RW */
+#define	E1000_TDLEN1	0x03908  /* TX Desc Length (1) - RW */
+#define	E1000_TDH1	0x03910  /* TX Desc Head (1) - RW */
+#define	E1000_TDT1	0x03918  /* TX Desc Tail (1) - RW */
+#define	E1000_TXDCTL1	0x03928  /* TX Descriptor Control (1) - RW */
+#define	E1000_TARC1	0x03940  /* TX Arbitration Count (1) */
+#define	E1000_DCA_TXCTRL1 0x03914  /* TX Queue 0 DCA CTRL - RW */
+#define	E1000_TDWBAL1	0x03938  /* TX Descriptor WB Addr Low Queue 1 - RW */
+#define	E1000_TDWBAH1	0x0393C  /* TX Descriptor WB Addr High Queue 1 - RW */
+#define	E1000_TDBAL2	0x03A00  /* TX Descriptor Base Low Queue 2 - RW */
+#define	E1000_TDBAH2	0x03A04  /* TX Descriptor Base High Queue 2 - RW */
+#define	E1000_TDLEN2	0x03A08  /* TX Descriptor Length Queue 2 - RW */
+#define	E1000_TDH2	0x03A10  /* TX Descriptor Head Queue 2 - RW */
+#define	E1000_DCA_TXCTRL2 0x03A14  /* TX Queue 2 DCA Control - RW */
+#define	E1000_TDT2	0x03A18  /* TX Descriptor Tail Queue 2 - RW */
+#define	E1000_TXDCTL2	0x03A28  /* TX Descriptor Control 2 - RW */
+#define	E1000_TDWBAL2	0x03A38  /* TX Descriptor WB Addr Low Queue 2 - RW */
+#define	E1000_TDWBAH2	0x03A3C  /* TX Descriptor WB Addr High Queue 2 - RW */
+#define	E1000_TDBAL3	0x03B00  /* TX Descriptor Base Low Queue 3 - RW */
+#define	E1000_TDBAH3	0x03B04  /* TX Descriptor Base High Queue 3 - RW */
+#define	E1000_TDLEN3	0x03B08  /* TX Descriptor Length Queue 3 - RW */
+#define	E1000_TDH3	0x03B10  /* TX Descriptor Head Queue 3 - RW */
+#define	E1000_DCA_TXCTRL3 0x03B14  /* TX Queue 3 DCA Control - RW */
+#define	E1000_TDT3	0x03B18  /* TX Descriptor Tail Queue 3 - RW */
+#define	E1000_TXDCTL3	0x03B28  /* TX Descriptor Control 3 - RW */
+#define	E1000_TDWBAL3	0x03B38  /* TX Descriptor WB Addr Low Queue 3 - RW */
+#define	E1000_TDWBAH3	0x03B3C  /* TX Descriptor WB Addr High Queue 3 - RW */
+#define	E1000_CRCERRS	0x04000  /* CRC Error Count - R/clr */
+#define	E1000_ALGNERRC	0x04004  /* Alignment Error Count - R/clr */
+#define	E1000_SYMERRS	0x04008  /* Symbol Error Count - R/clr */
+#define	E1000_RXERRC	0x0400C  /* Receive Error Count - R/clr */
+#define	E1000_MPC	0x04010  /* Missed Packet Count - R/clr */
+#define	E1000_SCC	0x04014  /* Single Collision Count - R/clr */
+#define	E1000_ECOL	0x04018  /* Excessive Collision Count - R/clr */
+#define	E1000_MCC	0x0401C  /* Multiple Collision Count - R/clr */
+#define	E1000_LATECOL	0x04020  /* Late Collision Count - R/clr */
+#define	E1000_COLC	0x04028  /* Collision Count - R/clr */
+#define	E1000_DC	0x04030  /* Defer Count - R/clr */
+#define	E1000_TNCRS	0x04034  /* TX-No CRS - R/clr */
+#define	E1000_SEC	0x04038  /* Sequence Error Count - R/clr */
+#define	E1000_CEXTERR	0x0403C  /* Carrier Extension Error Count - R/clr */
+#define	E1000_RLEC	0x04040  /* Receive Length Error Count - R/clr */
+#define	E1000_XONRXC	0x04048  /* XON RX Count - R/clr */
+#define	E1000_XONTXC	0x0404C  /* XON TX Count - R/clr */
+#define	E1000_XOFFRXC	0x04050  /* XOFF RX Count - R/clr */
+#define	E1000_XOFFTXC	0x04054  /* XOFF TX Count - R/clr */
+#define	E1000_FCRUC	0x04058  /* Flow Control RX Unsupported Count- R/clr */
+#define	E1000_PRC64	0x0405C  /* Packets RX (64 bytes) - R/clr */
+#define	E1000_PRC127	0x04060  /* Packets RX (65-127 bytes) - R/clr */
+#define	E1000_PRC255	0x04064  /* Packets RX (128-255 bytes) - R/clr */
+#define	E1000_PRC511	0x04068  /* Packets RX (255-511 bytes) - R/clr */
+#define	E1000_PRC1023	0x0406C  /* Packets RX (512-1023 bytes) - R/clr */
+#define	E1000_PRC1522	0x04070  /* Packets RX (1024-1522 bytes) - R/clr */
+#define	E1000_GPRC	0x04074  /* Good Packets RX Count - R/clr */
+#define	E1000_BPRC	0x04078  /* Broadcast Packets RX Count - R/clr */
+#define	E1000_MPRC	0x0407C  /* Multicast Packets RX Count - R/clr */
+#define	E1000_GPTC	0x04080  /* Good Packets TX Count - R/clr */
+#define	E1000_GORCL	0x04088  /* Good Octets RX Count Low - R/clr */
+#define	E1000_GORCH	0x0408C  /* Good Octets RX Count High - R/clr */
+#define	E1000_GOTCL	0x04090  /* Good Octets TX Count Low - R/clr */
+#define	E1000_GOTCH	0x04094  /* Good Octets TX Count High - R/clr */
+#define	E1000_RNBC	0x040A0  /* RX No Buffers Count - R/clr */
+#define	E1000_RUC	0x040A4  /* RX Undersize Count - R/clr */
+#define	E1000_RFC	0x040A8  /* RX Fragment Count - R/clr */
+#define	E1000_ROC	0x040AC  /* RX Oversize Count - R/clr */
+#define	E1000_RJC	0x040B0  /* RX Jabber Count - R/clr */
+#define	E1000_MGTPRC	0x040B4  /* Management Packets RX Count - R/clr */
+#define	E1000_MGTPDC	0x040B8  /* Management Packets Dropped Count - R/clr */
+#define	E1000_MGTPTC	0x040BC  /* Management Packets TX Count - R/clr */
+#define	E1000_TORL	0x040C0  /* Total Octets RX Low - R/clr */
+#define	E1000_TORH	0x040C4  /* Total Octets RX High - R/clr */
+#define	E1000_TOTL	0x040C8  /* Total Octets TX Low - R/clr */
+#define	E1000_TOTH	0x040CC  /* Total Octets TX High - R/clr */
+#define	E1000_TPR	0x040D0  /* Total Packets RX - R/clr */
+#define	E1000_TPT	0x040D4  /* Total Packets TX - R/clr */
+#define	E1000_PTC64	0x040D8  /* Packets TX (64 bytes) - R/clr */
+#define	E1000_PTC127	0x040DC  /* Packets TX (65-127 bytes) - R/clr */
+#define	E1000_PTC255	0x040E0  /* Packets TX (128-255 bytes) - R/clr */
+#define	E1000_PTC511	0x040E4  /* Packets TX (256-511 bytes) - R/clr */
+#define	E1000_PTC1023	0x040E8  /* Packets TX (512-1023 bytes) - R/clr */
+#define	E1000_PTC1522	0x040EC  /* Packets TX (1024-1522 Bytes) - R/clr */
+#define	E1000_MPTC	0x040F0  /* Multicast Packets TX Count - R/clr */
+#define	E1000_BPTC	0x040F4  /* Broadcast Packets TX Count - R/clr */
+#define	E1000_TSCTC	0x040F8  /* TCP Segmentation Context TX - R/clr */
+#define	E1000_TSCTFC	0x040FC  /* TCP Segmentation Context TX Fail - R/clr */
+#define	E1000_IAC	0x04100  /* Interrupt Assertion Count */
+/* Interrupt Cause Rx Packet Timer Expire Count */
+#define	E1000_ICRXPTC	0x04104
+/* Interrupt Cause Rx Absolute Timer Expire Count */
+#define	E1000_ICRXATC	0x04108
+/* Interrupt Cause Tx Packet Timer Expire Count */
+#define	E1000_ICTXPTC	0x0410C
+/* Interrupt Cause Tx Absolute Timer Expire Count */
+#define	E1000_ICTXATC	0x04110
+/* Interrupt Cause Tx Queue Empty Count */
+#define	E1000_ICTXQEC	0x04118
+/* Interrupt Cause Tx Queue Minimum Threshold Count */
+#define	E1000_ICTXQMTC	0x0411C
+/* Interrupt Cause Rx Descriptor Minimum Threshold Count */
+#define	E1000_ICRXDMTC	0x04120
+/* Interrupt Cause Receiver Overrun Count */
+#define	E1000_ICRXOC	0x04124
+/* Switch Security Violation Packet Count */
+#define	E1000_SSVPC		0x041A0
+/* LinkSec TX Untagged Packet Count */
+#define	E1000_LSECTXUT		0x0413C
+/* LinkSec Encrypted TX Packets Count */
+#define	E1000_LSECTXPKTE	0x04140
+/* LinkSec Protected TX Packet Count */
+#define	E1000_LSECTXPKTP	0x04144
+/* LinkSec Encrypted TX Octets Count */
+#define	E1000_LSECTXOCTE	0x04148
+/* LinkSec Protected TX Octets Count */
+#define	E1000_LSECTXOCTP	0x0414C
+/* LinkSec Untagged non-Strict RX Packet Count */
+#define	E1000_LSECRXUTNS	0x04150
+/* LinkSec Untagged Strict RX Packet Count */
+#define	E1000_LSECRXUTYS	0x04154
+/* LinkSec RX Octets Decrypted Count */
+#define	E1000_LSECRXOCTE	0x04158
+/* LinkSec RX Octets Validated */
+#define	E1000_LSECRXOCTP	0x0415C
+/* LinkSec RX Bad Tag */
+#define	E1000_LSECRXBAD		0x04160
+/* LinkSec non-Strict RX Packet Unknown SCI Count */
+#define	E1000_LSECRXNOSCINS	0x04164
+/* LinkSec Strict RX Packet Unknown SCI Count */
+#define	E1000_LSECRXNOSCIYS	0x04168
+/* LinkSec RX Unchecked Packets Count */
+#define	E1000_LSECRXNOSCI	0x0416C
+/* LinkSec RX Delayed Packet Count */
+#define	E1000_LSECRXDELAY	0x04170
+/* LinkSec RX Late Packets Count */
+#define	E1000_LSECRXLATE	0x04174
+/* LinkSec TX Capabilities Register - RO */
+#define	E1000_LSECTXCAP		0x0B000
+/* LinkSec RX Capabilities Register - RO */
+#define	E1000_LSECRXCAP		0x0B300
+/* LinkSec TX Control - RW */
+#define	E1000_LSECTXCTRL	0x0B004
+/* LinkSec RX Control - RW */
+#define	E1000_LSECRXCTRL	0x0B304
+/* LinkSec TX SCI Low - RW */
+#define	E1000_LSECTXSCIL	0x0B008
+/* LinkSec TX SCI High - RW */
+#define	E1000_LSECTXSCIH	0x0B00C
+/* LinkSec TX SA0 - RW */
+#define	E1000_LSECTXSA		0x0B010
+/* LinkSec TX SA PN 0 - RW */
+#define	E1000_LSECTXPN0		0x0B018
+/* LinkSec TX SA PN 1 - RW */
+#define	E1000_LSECTXPN1		0x0B01C
+/* LinkSec RX SCI Low - RW */
+#define	E1000_LSECRXSCL		0x0B3D0
+/* LinkSec RX SCI High - RW */
+#define	E1000_LSECRXSCH		0x0B3E0
+/* LinkSec TX 128-bit Key 0 - WO */
+#define	E1000_LSECTXKEY0(_n)	(0x0B020 + (0x04 * (_n)))
+/* LinkSec TX 128-bit Key 1 - WO */
+#define	E1000_LSECTXKEY1(_n)	(0x0B030 + (0x04 * (_n)))
+/* LinkSec RX SAs - RW */
+#define	E1000_LSECRXSA(_n)	(0x0B310 + (0x04 * (_n)))
+/* LinkSec RX SAs - RW */
+#define	E1000_LSECRXPN(_n)	(0x0B318 + (0x04 * (_n)))
+/*
+ * LinkSec RX Keys  - where _n is the SA no. and _m the 4 dwords of the 128 bit
+ * key - RW.
+ */
+#define	E1000_LSECRXKEY(_n, _m)	(0x0B350 + (0x10 * (_n)) + (0x04 * (_m)))
+#define	E1000_IPSCTRL	0xB430   /* IpSec Control Register */
+#define	E1000_IPSRXCMD	0x0B408  /* IPSec RX Command Register - RW */
+#define	E1000_IPSRXIDX	0x0B400  /* IPSec RX Index - RW */
+/* IPSec RX IPv4/v6 Address - RW */
+#define	E1000_IPSRXIPADDR(_n)	(0x0B420 + (0x04 * (_n)))
+/* IPSec RX 128-bit Key - RW */
+#define	E1000_IPSRXKEY(_n)	(0x0B410 + (0x04 * (_n)))
+#define	E1000_IPSRXSALT	0x0B404  /* IPSec RX Salt - RW */
+#define	E1000_IPSRXSPI	0x0B40C  /* IPSec RX SPI - RW */
+/* IPSec TX 128-bit Key - RW */
+#define	E1000_IPSTXKEY(_n)	(0x0B460 + (0x04 * (_n)))
+#define	E1000_IPSTXSALT	0x0B454  /* IPSec TX Salt - RW */
+#define	E1000_IPSTXIDX	0x0B450  /* IPSec TX SA IDX - RW */
+#define	E1000_PCS_CFG0	0x04200  /* PCS Configuration 0 - RW */
+#define	E1000_PCS_LCTL	0x04208  /* PCS Link Control - RW */
+#define	E1000_PCS_LSTAT	0x0420C  /* PCS Link Status - RO */
+#define	E1000_CBTMPC	0x0402C  /* Circuit Breaker TX Packet Count */
+#define	E1000_HTDPMC	0x0403C  /* Host Transmit Discarded Packets */
+#define	E1000_CBRDPC	0x04044  /* Circuit Breaker RX Dropped Count */
+#define	E1000_CBRMPC	0x040FC  /* Circuit Breaker RX Packet Count */
+#define	E1000_RPTHC	0x04104  /* Rx Packets To Host */
+#define	E1000_HGPTC	0x04118  /* Host Good Packets TX Count */
+#define	E1000_HTCBDPC	0x04124  /* Host TX Circuit Breaker Dropped Count */
+#define	E1000_HGORCL	0x04128  /* Host Good Octets Received Count Low */
+#define	E1000_HGORCH	0x0412C  /* Host Good Octets Received Count High */
+#define	E1000_HGOTCL	0x04130  /* Host Good Octets Transmit Count Low */
+#define	E1000_HGOTCH	0x04134  /* Host Good Octets Transmit Count High */
+#define	E1000_LENERRS	0x04138  /* Length Errors Count */
+#define	E1000_SCVPC	0x04228  /* SerDes/SGMII Code Violation Pkt Count */
+#define	E1000_HRMPC	0x0A018  /* Header Redirection Missed Packet Count */
+#define	E1000_PCS_ANADV	0x04218  /* AN advertisement - RW */
+#define	E1000_PCS_LPAB	0x0421C  /* Link Partner Ability - RW */
+#define	E1000_PCS_NPTX	0x04220  /* AN Next Page Transmit - RW */
+#define	E1000_PCS_LPABNP 0x04224  /* Link Partner Ability Next Page - RW */
+#define	E1000_1GSTAT_RCV 0x04228  /* 1GSTAT Code Violation Packet Count - RW */
+#define	E1000_RXCSUM	0x05000  /* RX Checksum Control - RW */
+#define	E1000_RLPML	0x05004  /* RX Long Packet Max Length */
+#define	E1000_RFCTL	0x05008  /* Receive Filter Control */
+#define	E1000_MTA	0x05200  /* Multicast Table Array - RW Array */
+#define	E1000_RA	0x05400  /* Receive Address - RW Array */
+#define	E1000_RA2	0x054E0  /* 2nd half of receive address array - RW */
+#define	E1000_PSRTYPE	0x05480  /* Packet Split Receive Type - RW */
+#define	E1000_VFTA	0x05600  /* VLAN Filter Table Array - RW Array */
+#define	E1000_VMD_CTL	0x0581C  /* VMDq Control - RW */
+#define	E1000_VFQA0	0x0B000  /* VLAN Filter Queue Array 0 - RW Array */
+#define	E1000_VFQA1	0x0B200  /* VLAN Filter Queue Array 1 - RW Array */
+#define	E1000_WUC	0x05800  /* Wakeup Control - RW */
+#define	E1000_WUFC	0x05808  /* Wakeup Filter Control - RW */
+#define	E1000_WUS	0x05810  /* Wakeup Status - RO */
+#define	E1000_MANC	0x05820  /* Management Control - RW */
+#define	E1000_IPAV	0x05838  /* IP Address Valid - RW */
+#define	E1000_IP4AT	0x05840  /* IPv4 Address Table - RW Array */
+#define	E1000_IP6AT	0x05880  /* IPv6 Address Table - RW Array */
+#define	E1000_WUPL	0x05900  /* Wakeup Packet Length - RW */
+#define	E1000_WUPM	0x05A00  /* Wakeup Packet Memory - RO A */
+#define	E1000_FFLT	0x05F00  /* Flexible Filter Length Table - RW Array */
+#define	E1000_HOST_IF	0x08800  /* Host Interface */
+#define	E1000_FFMT	0x09000  /* Flexible Filter Mask Table - RW Array */
+#define	E1000_FFVT	0x09800  /* Flexible Filter Value Table - RW Array */
+
+#define	E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */
+#define	E1000_MDPHYA	0x0003C /* PHY address - RW */
+#define	E1000_MANC2H	0x05860 /* Management Control To Host - RW */
+#define	E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
+#define	E1000_CCMCTL	0x05B48 /* CCM Control Register */
+#define	E1000_GIOCTL	0x05B44 /* GIO Analog Control Register */
+#define	E1000_SCCTL	0x05B4C /* PCIc PLL Configuration Register */
+#define	E1000_GCR	0x05B00 /* PCI-Ex Control */
+#define	E1000_GSCL_1	0x05B10 /* PCI-Ex Statistic Control #1 */
+#define	E1000_GSCL_2	0x05B14 /* PCI-Ex Statistic Control #2 */
+#define	E1000_GSCL_3	0x05B18 /* PCI-Ex Statistic Control #3 */
+#define	E1000_GSCL_4	0x05B1C /* PCI-Ex Statistic Control #4 */
+#define	E1000_FACTPS	0x05B30 /* Function Active and Power State to MNG */
+#define	E1000_SWSM	0x05B50 /* SW Semaphore */
+#define	E1000_FWSM	0x05B54 /* FW Semaphore */
+#define	E1000_DCA_ID	0x05B70 /* DCA Requester ID Information - RO */
+#define	E1000_DCA_CTRL	0x05B74 /* DCA Control - RW */
+#define	E1000_FFLT_DBG	0x05F04 /* Debug Register */
+#define	E1000_HICR	0x08F00 /* Host Inteface Control */
+
+/* RSS registers */
+#define	E1000_CPUVEC	0x02C10 /* CPU Vector Register - RW */
+#define	E1000_MRQC	0x05818 /* Multiple Receive Control - RW */
+#define	E1000_IMIR(_i)	(0x05A80 + ((_i) * 4))  /* Immediate Interrupt */
+#define	E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4))  /* Immediate Interrupt Ext */
+#define	E1000_IMIRVP	0x05AC0 /* Immediate Interrupt RX VLAN Priority - RW */
+#define	E1000_MSIXBM0	0x01600 /* MSI-X Allocation Register 0 - RW */
+#define	E1000_MSIXBM1	0x01604 /* MSI-X Allocation Register 1 - RW */
+#define	E1000_MSIXBM2	0x01608 /* MSI-X Allocation Register 2 - RW */
+#define	E1000_MSIXBM3	0x0160C /* MSI-X Allocation Register 3 - RW */
+#define	E1000_MSIXBM4	0x01610 /* MSI-X Allocation Register 4 - RW */
+#define	E1000_MSIXBM5	0x01614 /* MSI-X Allocation Register 5 - RW */
+#define	E1000_MSIXBM6	0x01618 /* MSI-X Allocation Register 6 - RW */
+#define	E1000_MSIXBM7	0x0161C /* MSI-X Allocation Register 7 - RW */
+#define	E1000_MSIXBM8	0x01620 /* MSI-X Allocation Register 8 - RW */
+#define	E1000_MSIXBM9	0x01624 /* MSI-X Allocation Register 9 - RW */
+#define	E1000_MSIXTADD0	0x0C000 /* MSI-X Table entry addr low reg 0 - RW */
+#define	E1000_MSIXTADD1	0x0C010 /* MSI-X Table entry addr low reg 1 - RW */
+#define	E1000_MSIXTADD2	0x0C020 /* MSI-X Table entry addr low reg 2 - RW */
+#define	E1000_MSIXTADD3	0x0C030 /* MSI-X Table entry addr low reg 3 - RW */
+#define	E1000_MSIXTADD4	0x0C040 /* MSI-X Table entry addr low reg 4 - RW */
+#define	E1000_MSIXTADD5	0x0C050 /* MSI-X Table entry addr low reg 5 - RW */
+#define	E1000_MSIXTADD6	0x0C060 /* MSI-X Table entry addr low reg 6 - RW */
+#define	E1000_MSIXTADD7	0x0C070 /* MSI-X Table entry addr low reg 7 - RW */
+#define	E1000_MSIXTADD8	0x0C080 /* MSI-X Table entry addr low reg 8 - RW */
+#define	E1000_MSIXTADD9	0x0C090 /* MSI-X Table entry addr low reg 9 - RW */
+#define	E1000_MSIXTUADD0 0x0C004 /* MSI-X Table entry addr upper reg 0 - RW */
+#define	E1000_MSIXTUADD1 0x0C014 /* MSI-X Table entry addr upper reg 1 - RW */
+#define	E1000_MSIXTUADD2 0x0C024 /* MSI-X Table entry addr upper reg 2 - RW */
+#define	E1000_MSIXTUADD3 0x0C034 /* MSI-X Table entry addr upper reg 3 - RW */
+#define	E1000_MSIXTUADD4 0x0C044 /* MSI-X Table entry addr upper reg 4 - RW */
+#define	E1000_MSIXTUADD5 0x0C054 /* MSI-X Table entry addr upper reg 5 - RW */
+#define	E1000_MSIXTUADD6 0x0C064 /* MSI-X Table entry addr upper reg 6 - RW */
+#define	E1000_MSIXTUADD7 0x0C074 /* MSI-X Table entry addr upper reg 7 - RW */
+#define	E1000_MSIXTUADD8 0x0C084 /* MSI-X Table entry addr upper reg 8 - RW */
+#define	E1000_MSIXTUADD9 0x0C094 /* MSI-X Table entry addr upper reg 9 - RW */
+#define	E1000_MSIXTMSG0	0x0C008 /* MSI-X Table entry message reg 0 - RW */
+#define	E1000_MSIXTMSG1	0x0C018 /* MSI-X Table entry message reg 1 - RW */
+#define	E1000_MSIXTMSG2	0x0C028 /* MSI-X Table entry message reg 2 - RW */
+#define	E1000_MSIXTMSG3	0x0C038 /* MSI-X Table entry message reg 3 - RW */
+#define	E1000_MSIXTMSG4	0x0C048 /* MSI-X Table entry message reg 4 - RW */
+#define	E1000_MSIXTMSG5	0x0C058 /* MSI-X Table entry message reg 5 - RW */
+#define	E1000_MSIXTMSG6	0x0C068 /* MSI-X Table entry message reg 6 - RW */
+#define	E1000_MSIXTMSG7	0x0C078 /* MSI-X Table entry message reg 7 - RW */
+#define	E1000_MSIXTMSG8	0x0C088 /* MSI-X Table entry message reg 8 - RW */
+#define	E1000_MSIXTMSG9	0x0C098 /* MSI-X Table entry message reg 9 - RW */
+#define	E1000_MSIXVCTRL0 0x0C00C /* MSI-X Table entry vector ctrl reg 0 - RW */
+#define	E1000_MSIXVCTRL1 0x0C01C /* MSI-X Table entry vector ctrl reg 1 - RW */
+#define	E1000_MSIXVCTRL2 0x0C02C /* MSI-X Table entry vector ctrl reg 2 - RW */
+#define	E1000_MSIXVCTRL3 0x0C03C /* MSI-X Table entry vector ctrl reg 3 - RW */
+#define	E1000_MSIXVCTRL4 0x0C04C /* MSI-X Table entry vector ctrl reg 4 - RW */
+#define	E1000_MSIXVCTRL5 0x0C05C /* MSI-X Table entry vector ctrl reg 5 - RW */
+#define	E1000_MSIXVCTRL6 0x0C06C /* MSI-X Table entry vector ctrl reg 6 - RW */
+#define	E1000_MSIXVCTRL7 0x0C07C /* MSI-X Table entry vector ctrl reg 7 - RW */
+#define	E1000_MSIXVCTRL8 0x0C08C /* MSI-X Table entry vector ctrl reg 8 - RW */
+#define	E1000_MSIXVCTRL9 0x0C09C /* MSI-X Table entry vector ctrl reg 9 - RW */
+#define	E1000_MSIXPBA	0x0E000 /* MSI-X Pending bit array */
+#define	E1000_RETA	0x05C00 /* Redirection Table - RW Array */
+#define	E1000_RSSRK	0x05C80 /* RSS Random Key - RW Array */
+#define	E1000_RSSIM	0x05864 /* RSS Interrupt Mask */
+#define	E1000_RSSIR	0x05868 /* RSS Interrupt Request */
+/* VT Registers */
+#define	E1000_SWPBS	0x03004 /* Switch Packet Buffer Size - RW */
+#define	E1000_MBVFICR	0x00C80 /* Mailbox VF Cause - RWC */
+#define	E1000_VFLRE	0x00C88 /* VF Register Events - RWC */
+#define	E1000_VFRE	0x00C8C /* VF Receive Enables */
+#define	E1000_VFTE	0x00C90 /* VF Transmit Enables */
+#define	E1000_QDE	0x02408 /* Queue Drop Enable - RW */
+#define	E1000_DTXSWC	0x03500 /* DMA TX Switch Control - RW */
+#define	E1000_VLVF	0x05D00 /* VLAN Virtual Machine Filter - RW */
+#define	E1000_RPLOLR	0x05AF0 /* Replication Offload - RW */
+#define	E1000_UTA	0x0A000 /* Unicast Table Array - RW */
+#define	E1000_IOVTCL	0x05BBC /* IOV Control Register */
+/* These act per VF so an array friendly macro is used */
+#define	E1000_V2PMAILBOX(_n)	(0x00C40 + (4 * (_n)))
+#define	E1000_P2VMAILBOX(_n)	(0x00C00 + (4 * (_n)))
+#define	E1000_VMBMEM(_n)	(0x00800 + (64  * (_n)))
+#define	E1000_VMOLR(_n)		(0x05AD0 + (4 * (_n)))
+/* Time Sync */
+#define	E1000_TSYNCRXCTL 0x0B620 /* RX Time Sync Control register - RW */
+#define	E1000_RXSTMPL	0x0B624 /* RX timestamp Low - RO */
+#define	E1000_RXSTMPH	0x0B628 /* RX timestamp High - RO */
+#define	E1000_RXSATRL	0x0B62C /* RX timestamp attribute low - RO */
+#define	E1000_RXSATRH	0x0B630 /* RX timestamp attribute high - RO */
+#define	E1000_TSYNCTXCTL 0x0B614 /* TX Time Sync Control register - RW */
+#define	E1000_TXSTMPL	0x0B618 /* TX timestamp value Low - RO */
+#define	E1000_TXSTMPH	0x0B61C /* TX timestamp value High - RO */
+#define	E1000_SYSTIML	0x0B600 /* System time register Low - RO */
+#define	E1000_SYSTIMH	0x0B604 /* System time register High - RO */
+#define	E1000_TIMINCA	0x0B608 /* Increment attributes register - RW */
+#define	E1000_TSYNCRXCFG 0x05F50 /* Time Sync RX Configuration - RW */
+
+/* Filtering Registers */
+#define	E1000_SAQF(_n)  (0x05980 + (4 * (_n))) /* Source Address Queue Fltr */
+#define	E1000_DAQF(_n)  (0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */
+#define	E1000_SPQF(_n)  (0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */
+#define	E1000_FTQF(_n)  (0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */
+#define	E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */
+#define	E1000_ETQF(_n)  (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */
+
+#define	E1000_RTTDCS	0x3600 /* Reedtown TX Desc plane control and status */
+#define	E1000_RTTPCS	0x3474 /* Reedtown TX Packet Plane control and status */
+#define	E1000_RTRPCS	0x2474 /* RX packet plane control and status */
+#define	E1000_RTRUP2TC	0x05AC4 /* RX User Priority to Traffic Class */
+#define	E1000_RTTUP2TC	0x0418 /* Transmit User Priority to Traffic Class */
+/* Tx Desc plane TC Rate-scheduler config */
+#define	E1000_RTTDTCRC(_n)	(0x3610 + ((_n) * 4))
+/* Tx Packet plane TC Rate-Scheduler Config */
+#define	E1000_RTTPTCRC(_n)	(0x3480 + ((_n) * 4))
+/* Rx Packet plane TC Rate-Scheduler Config */
+#define	E1000_RTRPTCRC(_n)	(0x2480 + ((_n) * 4))
+/* Tx Desc Plane TC Rate-Scheduler Status */
+#define	E1000_RTTDTCRS(_n)	(0x3630 + ((_n) * 4))
+/* Tx Desc Plane TC Rate-Scheduler MMW */
+#define	E1000_RTTDTCRM(_n)	(0x3650 + ((_n) * 4))
+/* Tx Packet plane TC Rate-Scheduler Status */
+#define	E1000_RTTPTCRS(_n)	(0x34A0 + ((_n) * 4))
+/* Tx Packet plane TC Rate-scheduler MMW */
+#define	E1000_RTTPTCRM(_n)	(0x34C0 + ((_n) * 4))
+/* Rx Packet plane TC Rate-Scheduler Status */
+#define	E1000_RTRPTCRS(_n)	(0x24A0 + ((_n) * 4))
+/* Rx Packet plane TC Rate-Scheduler MMW */
+#define	E1000_RTRPTCRM(_n)	(0x24C0 + ((_n) * 4))
+/* Tx Desc plane VM Rate-Scheduler MMW */
+#define	E1000_RTTDVMRM(_n)	(0x3670 + ((_n) * 4))
+/* Tx BCN Rate-Scheduler MMW */
+#define	E1000_RTTBCNRM(_n)	(0x3690 + ((_n) * 4))
+#define	E1000_RTTDQSEL	0x3604  /* Tx Desc Plane Queue Select */
+#define	E1000_RTTDVMRC	0x3608  /* Tx Desc Plane VM Rate-Scheduler Config */
+#define	E1000_RTTDVMRS	0x360C  /* Tx Desc Plane VM Rate-Scheduler Status */
+#define	E1000_RTTBCNRC	0x36B0  /* Tx BCN Rate-Scheduler Config */
+#define	E1000_RTTBCNRS	0x36B4  /* Tx BCN Rate-Scheduler Status */
+#define	E1000_RTTBCNCR	0xB200  /* Tx BCN Control Register */
+#define	E1000_RTTBCNTG	0x35A4  /* Tx BCN Tagging */
+#define	E1000_RTTBCNCP	0xB208  /* Tx BCN Congestion point */
+#define	E1000_RTRBCNCR	0xB20C  /* Rx BCN Control Register */
+#define	E1000_RTTBCNRD	0x36B8  /* Tx BCN Rate Drift */
+#define	E1000_PFCTOP	0x1080  /* Priority Flow Control Type and Opcode */
+#define	E1000_RTTBCNIDX	0xB204  /* Tx BCN Congestion Point */
+#define	E1000_RTTBCNACH	0x0B214 /* Tx BCN Control High */
+#define	E1000_RTTBCNACL	0x0B210 /* Tx BCN Control Low */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif	/* _E1000_REGS_H_ */
--- a/usr/src/uts/common/io/e1000g/e1000g_alloc.c	Mon Aug 20 23:01:08 2007 -0700
+++ b/usr/src/uts/common/io/e1000g/e1000g_alloc.c	Tue Aug 21 00:30:10 2007 -0700
@@ -28,18 +28,11 @@
 /*
  * **********************************************************************
  * Module Name:								*
- *   e1000galloc.c							*
+ *   e1000g_alloc.c							*
  *									*
  * Abstract:								*
- *   This file contains some routines that take care of init,		*
- *   uninit, and memory allocation.					*
- *									*
- *									*
- *   This driver runs on the following hardware:			*
- *   - Wiseman based PCI gigabit ethernet adapters			*
- *									*
- * Environment:								*
- *   Kernel Mode -							*
+ *   This file contains some routines that take care of			*
+ *   memory allocation for descriptors and buffers.			*
  *									*
  * **********************************************************************
  */
@@ -48,7 +41,7 @@
 #include "e1000g_debug.h"
 
 #define	TX_SW_PKT_AREA_SZ \
-	(sizeof (TX_SW_PACKET) * Adapter->NumTxSwPacket)
+	(sizeof (tx_sw_packet_t) * Adapter->tx_freelist_num)
 
 static int e1000g_alloc_tx_descriptors(e1000g_tx_ring_t *);
 static int e1000g_alloc_rx_descriptors(e1000g_rx_ring_t *);
@@ -58,15 +51,89 @@
 static int e1000g_alloc_rx_packets(e1000g_rx_ring_t *);
 static void e1000g_free_tx_packets(e1000g_tx_ring_t *);
 static void e1000g_free_rx_packets(e1000g_rx_ring_t *);
-static int e1000g_alloc_dma_buffer(struct e1000g *, dma_buffer_t *, size_t);
+static int e1000g_alloc_dma_buffer(struct e1000g *,
+    dma_buffer_t *, size_t, ddi_dma_attr_t *p_dma_attr);
 static void e1000g_free_dma_buffer(dma_buffer_t *);
 #ifdef __sparc
 static int e1000g_alloc_dvma_buffer(struct e1000g *, dma_buffer_t *, size_t);
 static void e1000g_free_dvma_buffer(dma_buffer_t *);
 #endif
 static int e1000g_alloc_descriptors(struct e1000g *Adapter);
+static void e1000g_free_descriptors(struct e1000g *Adapter);
 static int e1000g_alloc_packets(struct e1000g *Adapter);
-static PRX_SW_PACKET e1000g_alloc_rx_sw_packet(e1000g_rx_ring_t *);
+static void e1000g_free_packets(struct e1000g *Adapter);
+static p_rx_sw_packet_t e1000g_alloc_rx_sw_packet(e1000g_rx_ring_t *,
+    ddi_dma_attr_t *p_dma_attr);
+
+/* DMA access attributes for descriptors <Little Endian> */
+static ddi_device_acc_attr_t e1000g_desc_acc_attr = {
+	DDI_DEVICE_ATTR_V0,
+	DDI_STRUCTURE_LE_ACC,
+	DDI_STRICTORDER_ACC,
+};
+
+/* DMA access attributes for DMA buffers */
+#ifdef __sparc
+static ddi_device_acc_attr_t e1000g_buf_acc_attr = {
+	DDI_DEVICE_ATTR_V0,
+	DDI_STRUCTURE_BE_ACC,
+	DDI_STRICTORDER_ACC,
+};
+#else
+static ddi_device_acc_attr_t e1000g_buf_acc_attr = {
+	DDI_DEVICE_ATTR_V0,
+	DDI_STRUCTURE_LE_ACC,
+	DDI_STRICTORDER_ACC,
+};
+#endif
+
+/* DMA attributes for tx mblk buffers */
+static ddi_dma_attr_t e1000g_tx_dma_attr = {
+	DMA_ATTR_V0,		/* version of this structure */
+	0,			/* lowest usable address */
+	0xffffffffffffffffULL,	/* highest usable address */
+	0x7fffffff,		/* maximum DMAable byte count */
+	1,			/* alignment in bytes */
+	0x7ff,			/* burst sizes (any?) */
+	1,			/* minimum transfer */
+	0xffffffffU,		/* maximum transfer */
+	0xffffffffffffffffULL,	/* maximum segment length */
+	16,			/* maximum number of segments */
+	1,			/* granularity */
+	0,			/* flags (reserved) */
+};
+
+/* DMA attributes for pre-allocated rx/tx buffers */
+static ddi_dma_attr_t e1000g_buf_dma_attr = {
+	DMA_ATTR_V0,		/* version of this structure */
+	0,			/* lowest usable address */
+	0xffffffffffffffffULL,	/* highest usable address */
+	0x7fffffff,		/* maximum DMAable byte count */
+	1,			/* alignment in bytes */
+	0x7ff,			/* burst sizes (any?) */
+	1,			/* minimum transfer */
+	0xffffffffU,		/* maximum transfer */
+	0xffffffffffffffffULL,	/* maximum segment length */
+	1,			/* maximum number of segments */
+	1,			/* granularity */
+	0,			/* flags (reserved) */
+};
+
+/* DMA attributes for rx/tx descriptors */
+static ddi_dma_attr_t e1000g_desc_dma_attr = {
+	DMA_ATTR_V0,		/* version of this structure */
+	0,			/* lowest usable address */
+	0xffffffffffffffffULL,	/* highest usable address */
+	0x7fffffff,		/* maximum DMAable byte count */
+	E1000_MDALIGN,		/* alignment in bytes 4K! */
+	0x7ff,			/* burst sizes (any?) */
+	1,			/* minimum transfer */
+	0xffffffffU,		/* maximum transfer */
+	0xffffffffffffffffULL,	/* maximum segment length */
+	1,			/* maximum number of segments */
+	1,			/* granularity */
+	0,			/* flags (reserved) */
+};
 
 #ifdef __sparc
 static ddi_dma_lim_t e1000g_dma_limits = {
@@ -87,93 +154,58 @@
 
 extern krwlock_t e1000g_dma_type_lock;
 
+
 int
 e1000g_alloc_dma_resources(struct e1000g *Adapter)
 {
-	e1000g_tx_ring_t *tx_ring;
-	e1000g_rx_ring_t *rx_ring;
+	int result;
+
+	result = DDI_FAILURE;
 
-	tx_ring = Adapter->tx_ring;
-	rx_ring = Adapter->rx_ring;
+	while ((result != DDI_SUCCESS) &&
+	    (Adapter->tx_desc_num >= MIN_NUM_TX_DESCRIPTOR) &&
+	    (Adapter->rx_desc_num >= MIN_NUM_RX_DESCRIPTOR) &&
+	    (Adapter->tx_freelist_num >= MIN_NUM_TX_FREELIST) &&
+	    (Adapter->rx_freelist_num >= MIN_NUM_RX_FREELIST)) {
+
+		result = e1000g_alloc_descriptors(Adapter);
+
+		if (result == DDI_SUCCESS) {
+			result = e1000g_alloc_packets(Adapter);
+
+			if (result != DDI_SUCCESS)
+				e1000g_free_descriptors(Adapter);
+		}
 
-	if (e1000g_alloc_descriptors(Adapter) != DDI_SUCCESS)
-		return (DDI_FAILURE);
+		/*
+		 * If the allocation fails due to resource shortage,
+		 * we'll reduce the numbers of descriptors/buffers by
+		 * half, and try the allocation again.
+		 */
+		if (result != DDI_SUCCESS) {
+			/*
+			 * We must ensure the number of descriptors
+			 * is always a multiple of 8.
+			 */
+			Adapter->tx_desc_num =
+			    (Adapter->tx_desc_num >> 4) << 3;
+			Adapter->rx_desc_num =
+			    (Adapter->rx_desc_num >> 4) << 3;
 
-	if (e1000g_alloc_packets(Adapter) != DDI_SUCCESS) {
-		e1000g_free_tx_descriptors(tx_ring);
-		e1000g_free_rx_descriptors(rx_ring);
-		return (DDI_FAILURE);
+			Adapter->tx_freelist_num >>= 1;
+			Adapter->rx_freelist_num >>= 1;
+		}
 	}
 
-	return (DDI_SUCCESS);
+	return (result);
 }
 
 /*
- * **********************************************************************
- * Name:	e1000g_alloc_descriptors				*
- *									*
- * Description:								*
- *     This routine Allocates Neccesary Buffers for the device		*
- *     It allocates memory for						*
- *	 Transmit Descriptor Area					*
- *	 Receive Descrpitor Area					*
- *									*
- *     NOTE -- The device must have been reset before this routine	*
- *		      is called.					*
- *									*
- * Author:	       Hari Seshadri					*
- * Functions Called :							*
- *		       DDI mem functions called				*
- *     ddi_dma_alloc_handle() allocates a new  DMA  handle.  A  DMA	*
- *     handle  is  an  opaque  object used as a reference to subse-	*
- *     quently  allocated  DMA  resources.   ddi_dma_alloc_handle()	*
- *     accepts  as parameters the device information referred to by	*
- *     dip  and  the  device's  DMA  attributes  described   by   a	*
- *     ddi_dma_attr(9S)    structure.    A   successful   call   to	*
- *     ddi_dma_alloc_handle() fills in  the  value  pointed  to  by	*
- *     handlep.   A  DMA handle must only be used by the device for	*
- *     which it was allocated and is only valid for one  I/O  tran-	*
- *     saction at a time.						*
- *									*
- *     ddi_dma_mem_alloc() allocates memory for DMA transfers to or	*
- *     from a device.  The allocation will obey the alignment, pad-	*
- *     ding constraints and device granularity as specified by  the	*
- *     DMA    attributes    (see    ddi_dma_attr(9S))   passed   to	*
- *     ddi_dma_alloc_handle(9F) and the more restrictive attributes	*
- *     imposed by the system.Flags should be set to DDI_DMA_STREAMING	*
- *     if  the  device  is  doing  sequential,  unidirectional,		*
- *     block-sized, and block- aligned transfers to or from memory.	*
- *									*
- *									*
- *     ddi_dma_addr_bind_handle() allocates  DMA  resources  for  a	*
- *     memory  object such that a device can perform DMA to or from	*
- *     the object.  DMA resources  are  allocated  considering  the	*
- *     device's  DMA  attributes  as  expressed by ddi_dma_attr(9S)	*
- *     (see ddi_dma_alloc_handle(9F)).					*
- *     ddi_dma_addr_bind_handle() fills in  the  first  DMA  cookie	*
- *     pointed  to by cookiep with the appropriate address, length,	*
- *     and bus type.	*ccountp is set to the number of DMA  cookies	*
- *     representing this DMA object. Subsequent DMA cookies must be	*
- *     retrieved by calling ddi_dma_nextcookie(9F)  the  number  of	*
- *     times specified by *countp - 1.					*
- *									*
- * Arguments:								*
- *      Adapter - A pointer to context sensitive "Adapter" structure.	*
- *									*
- *									*
- * Returns:								*
- *      DDI_SUCCESS on success						*
- *	  DDI_FAILURE on error						*
- *									*
- * Modification log:							*
- * Date      Who  Description						*
- * --------  ---  -----------------------------------------------------	*
- * 11/11/98  Vinay  Cleaned the entire function to prevents panics and	*
- *		   memory corruption					*
- * 17/11/98  Vinay  Optimized it for proper usages of function calls	*
- * 30/04/99  Vinay  Resolved some more memory problems related to race	*
- *		  conditions						*
- * **********************************************************************
+ * e1000g_alloc_descriptors - allocate DMA buffers for descriptors
+ *
+ * This routine allocates neccesary DMA buffers for
+ *	Transmit Descriptor Area
+ *	Receive Descrpitor Area
  */
 static int
 e1000g_alloc_descriptors(struct e1000g *Adapter)
@@ -199,6 +231,19 @@
 	return (DDI_SUCCESS);
 }
 
+static void
+e1000g_free_descriptors(struct e1000g *Adapter)
+{
+	e1000g_tx_ring_t *tx_ring;
+	e1000g_rx_ring_t *rx_ring;
+
+	tx_ring = Adapter->tx_ring;
+	rx_ring = Adapter->rx_ring;
+
+	e1000g_free_tx_descriptors(tx_ring);
+	e1000g_free_rx_descriptors(rx_ring);
+}
+
 static int
 e1000g_alloc_tx_descriptors(e1000g_tx_ring_t *tx_ring)
 {
@@ -211,12 +256,13 @@
 	dev_info_t *devinfo;
 	ddi_dma_cookie_t cookie;
 	struct e1000g *Adapter;
+	ddi_dma_attr_t dma_attr;
 
 	Adapter = tx_ring->adapter;
+	devinfo = Adapter->dip;
 
 	alloc_flag = B_FALSE;
-
-	devinfo = Adapter->dip;
+	dma_attr = e1000g_desc_dma_attr;
 
 	/*
 	 * Solaris 7 has a problem with allocating physically contiguous memory
@@ -231,29 +277,23 @@
 	 * 4K, ie more than 256 descriptors, we allocate 4k extra memory and
 	 * and then align the memory at a 4k boundary.
 	 */
-	size = sizeof (struct e1000_tx_desc) * Adapter->NumTxDescriptors;
+	size = sizeof (struct e1000_tx_desc) * Adapter->tx_desc_num;
 
 	/*
 	 * Memory allocation for the transmit buffer descriptors.
 	 */
-	/*
-	 * DMA attributes set to asking for 4k alignment and no
-	 * scatter/gather specified.
-	 * This typically does not succeed for Solaris 7, but
-	 * might work for Solaris 2.6
-	 */
-	tbd_dma_attr.dma_attr_sgllen = 1;
+	dma_attr.dma_attr_sgllen = 1;
 
 	/*
 	 * Allocate a new DMA handle for the transmit descriptor
 	 * memory area.
 	 */
-	mystat = ddi_dma_alloc_handle(devinfo, &tbd_dma_attr,
+	mystat = ddi_dma_alloc_handle(devinfo, &dma_attr,
 	    DDI_DMA_DONTWAIT, 0,
 	    &tx_ring->tbd_dma_handle);
 
 	if (mystat != DDI_SUCCESS) {
-		e1000g_log(Adapter, CE_WARN,
+		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 		    "Could not allocate tbd dma handle: %d", mystat);
 		tx_ring->tbd_dma_handle = NULL;
 		return (DDI_FAILURE);
@@ -265,7 +305,7 @@
 	 */
 	mystat = ddi_dma_mem_alloc(tx_ring->tbd_dma_handle,
 	    size,
-	    &accattr, DDI_DMA_CONSISTENT,
+	    &e1000g_desc_acc_attr, DDI_DMA_CONSISTENT,
 	    DDI_DMA_DONTWAIT, 0,
 	    (caddr_t *)&tx_ring->tbd_area,
 	    &len, &tx_ring->tbd_acc_handle);
@@ -302,19 +342,19 @@
 		/*
 		 * DMA attributes set to no scatter/gather and 16 bit alignment
 		 */
-		tbd_dma_attr.dma_attr_align = 1;
-		tbd_dma_attr.dma_attr_sgllen = 1;
+		dma_attr.dma_attr_align = 1;
+		dma_attr.dma_attr_sgllen = 1;
 
 		/*
 		 * Allocate a new DMA handle for the transmit descriptor memory
 		 * area.
 		 */
-		mystat = ddi_dma_alloc_handle(devinfo, &tbd_dma_attr,
+		mystat = ddi_dma_alloc_handle(devinfo, &dma_attr,
 		    DDI_DMA_DONTWAIT, 0,
 		    &tx_ring->tbd_dma_handle);
 
 		if (mystat != DDI_SUCCESS) {
-			e1000g_log(Adapter, CE_WARN,
+			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 			    "Could not re-allocate tbd dma handle: %d", mystat);
 			tx_ring->tbd_dma_handle = NULL;
 			return (DDI_FAILURE);
@@ -326,13 +366,13 @@
 		 */
 		mystat = ddi_dma_mem_alloc(tx_ring->tbd_dma_handle,
 		    size,
-		    &accattr, DDI_DMA_CONSISTENT,
+		    &e1000g_desc_acc_attr, DDI_DMA_CONSISTENT,
 		    DDI_DMA_DONTWAIT, 0,
 		    (caddr_t *)&tx_ring->tbd_area,
 		    &len, &tx_ring->tbd_acc_handle);
 
 		if (mystat != DDI_SUCCESS) {
-			e1000g_log(Adapter, CE_WARN,
+			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 			    "Could not allocate tbd dma memory: %d", mystat);
 			tx_ring->tbd_acc_handle = NULL;
 			tx_ring->tbd_area = NULL;
@@ -371,10 +411,10 @@
 	mystat = ddi_dma_addr_bind_handle(tx_ring->tbd_dma_handle,
 	    (struct as *)NULL, (caddr_t)tx_ring->tbd_area,
 	    len, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
-	    DDI_DMA_SLEEP, 0, &cookie, &cookie_count);
+	    DDI_DMA_DONTWAIT, 0, &cookie, &cookie_count);
 
 	if (mystat != DDI_SUCCESS) {
-		e1000g_log(Adapter, CE_WARN,
+		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 		    "Could not bind tbd dma resource: %d", mystat);
 		if (tx_ring->tbd_acc_handle != NULL) {
 			ddi_dma_mem_free(&tx_ring->tbd_acc_handle);
@@ -391,21 +431,17 @@
 	ASSERT(cookie_count == 1);	/* 1 cookie */
 
 	if (cookie_count != 1) {
-		e1000g_log(Adapter, CE_WARN,
+		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
 		    "Could not bind tbd dma resource in a single frag. "
 		    "Count - %d Len - %d", cookie_count, len);
 		e1000g_free_tx_descriptors(tx_ring);
 		return (DDI_FAILURE);
 	}
 
-	/*
-	 * The FirstTxDescriptor is initialized to the physical address that
-	 * is obtained from the ddi_dma_addr_bind_handle call
-	 */
 	tx_ring->tbd_dma_addr = cookie.dmac_laddress;
 	tx_ring->tbd_first = tx_ring->tbd_area;
 	tx_ring->tbd_last = tx_ring->tbd_first +
-	    (Adapter->NumTxDescriptors - 1);
+	    (Adapter->tx_desc_num - 1);
 
 	return (DDI_SUCCESS);
 }
@@ -422,35 +458,34 @@
 	dev_info_t *devinfo;
 	ddi_dma_cookie_t cookie;
 	struct e1000g *Adapter;
+	ddi_dma_attr_t dma_attr;
 
 	Adapter = rx_ring->adapter;
+	devinfo = Adapter->dip;
 
 	alloc_flag = B_FALSE;
-
-	devinfo = Adapter->dip;
+	dma_attr = e1000g_desc_dma_attr;
 
 	/*
 	 * Memory allocation for the receive buffer descriptors.
 	 */
-	size = (sizeof (struct e1000_rx_desc)) * Adapter->NumRxDescriptors;
+	size = (sizeof (struct e1000_rx_desc)) * Adapter->rx_desc_num;
 
 	/*
 	 * Asking for aligned memory with DMA attributes set for 4k alignment
 	 */
-	tbd_dma_attr.dma_attr_sgllen = 1;
-	tbd_dma_attr.dma_attr_align = E1000_MDALIGN;
+	dma_attr.dma_attr_sgllen = 1;
+	dma_attr.dma_attr_align = E1000_MDALIGN;
 
 	/*
-	 * Allocate a new DMA handle for the receive descriptor
-	 * memory area. re-use the tbd_dma_attr since rbd has
-	 * same attributes.
+	 * Allocate a new DMA handle for the receive descriptors
 	 */
-	mystat = ddi_dma_alloc_handle(devinfo, &tbd_dma_attr,
+	mystat = ddi_dma_alloc_handle(devinfo, &dma_attr,
 	    DDI_DMA_DONTWAIT, 0,
 	    &rx_ring->rbd_dma_handle);
 
 	if (mystat != DDI_SUCCESS) {
-		e1000g_log(Adapter, CE_WARN,
+		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 		    "Could not allocate rbd dma handle: %d", mystat);
 		rx_ring->rbd_dma_handle = NULL;
 		return (DDI_FAILURE);
@@ -461,7 +496,7 @@
 	 */
 	mystat = ddi_dma_mem_alloc(rx_ring->rbd_dma_handle,
 	    size,
-	    &accattr, DDI_DMA_CONSISTENT,
+	    &e1000g_desc_acc_attr, DDI_DMA_CONSISTENT,
 	    DDI_DMA_DONTWAIT, 0,
 	    (caddr_t *)&rx_ring->rbd_area,
 	    &len, &rx_ring->rbd_acc_handle);
@@ -492,24 +527,21 @@
 		bzero((caddr_t)rx_ring->rbd_area, len);
 
 	/*
-	 * If memory allocation did not succeed or if number of descriptors is
-	 * greater than a page size ( more than 256 descriptors ), do the
-	 * alignment yourself
+	 * If memory allocation did not succeed, do the alignment ourselves
 	 */
 	if (!alloc_flag) {
-		tbd_dma_attr.dma_attr_align = 1;
-		tbd_dma_attr.dma_attr_sgllen = 1;
+		dma_attr.dma_attr_align = 1;
+		dma_attr.dma_attr_sgllen = 1;
 		size = size + ROUNDOFF;
 		/*
-		 * Allocate a new DMA handle for the receive descriptor memory
-		 * area. re-use the tbd_dma_attr since rbd has same attributes.
+		 * Allocate a new DMA handle for the receive descriptor.
 		 */
-		mystat = ddi_dma_alloc_handle(devinfo, &tbd_dma_attr,
+		mystat = ddi_dma_alloc_handle(devinfo, &dma_attr,
 		    DDI_DMA_DONTWAIT, 0,
 		    &rx_ring->rbd_dma_handle);
 
 		if (mystat != DDI_SUCCESS) {
-			e1000g_log(Adapter, CE_WARN,
+			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 			    "Could not re-allocate rbd dma handle: %d", mystat);
 			rx_ring->rbd_dma_handle = NULL;
 			return (DDI_FAILURE);
@@ -520,13 +552,13 @@
 		 */
 		mystat = ddi_dma_mem_alloc(rx_ring->rbd_dma_handle,
 		    size,
-		    &accattr, DDI_DMA_CONSISTENT,
+		    &e1000g_desc_acc_attr, DDI_DMA_CONSISTENT,
 		    DDI_DMA_DONTWAIT, 0,
 		    (caddr_t *)&rx_ring->rbd_area,
 		    &len, &rx_ring->rbd_acc_handle);
 
 		if (mystat != DDI_SUCCESS) {
-			e1000g_log(Adapter, CE_WARN,
+			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 			    "Could not allocate rbd dma memory: %d", mystat);
 			rx_ring->rbd_acc_handle = NULL;
 			rx_ring->rbd_area = NULL;
@@ -560,10 +592,10 @@
 	mystat = ddi_dma_addr_bind_handle(rx_ring->rbd_dma_handle,
 	    (struct as *)NULL, (caddr_t)rx_ring->rbd_area,
 	    len, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
-	    DDI_DMA_SLEEP, 0, &cookie, &cookie_count);
+	    DDI_DMA_DONTWAIT, 0, &cookie, &cookie_count);
 
 	if (mystat != DDI_SUCCESS) {
-		e1000g_log(Adapter, CE_WARN,
+		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 		    "Could not bind rbd dma resource: %d", mystat);
 		if (rx_ring->rbd_acc_handle != NULL) {
 			ddi_dma_mem_free(&rx_ring->rbd_acc_handle);
@@ -579,20 +611,17 @@
 
 	ASSERT(cookie_count == 1);
 	if (cookie_count != 1) {
-		e1000g_log(Adapter, CE_WARN,
+		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
 		    "Could not bind rbd dma resource in a single frag. "
 		    "Count - %d Len - %d", cookie_count, len);
 		e1000g_free_rx_descriptors(rx_ring);
 		return (DDI_FAILURE);
 	}
-	/*
-	 * Initialize the FirstRxDescriptor to the cookie address obtained
-	 * from the ddi_dma_addr_bind_handle call.
-	 */
+
 	rx_ring->rbd_dma_addr = cookie.dmac_laddress;
 	rx_ring->rbd_first = rx_ring->rbd_area;
 	rx_ring->rbd_last = rx_ring->rbd_first +
-	    (Adapter->NumRxDescriptors - 1);
+	    (Adapter->rx_desc_num - 1);
 
 	return (DDI_SUCCESS);
 }
@@ -639,44 +668,14 @@
 
 
 /*
- * **********************************************************************
- * Name:	e1000g_alloc_packets					*
- *									*
- * Description: This routine Allocates Neccesary Buffers for the device	*
- *      It allocates memory for						*
- *									*
- *	 Transmit packet Structure					*
- *	 Handle for Transmit buffers					*
- *	 Receive packet structure					*
- *	 Buffer for Receive packet					*
- *									*
- *									*
- *       For ddi memory alloc routine see e1000g_Txalloc description	*
- *       NOTE -- The device must have been reset before this routine	*
- *	       is called.						*
- *									*
- * Author:		   Hari Seshadri				*
- * Functions Called :							*
- *									*
- *									*
- *									*
- * Arguments:								*
- *      Adapter - A pointer to our context sensitive "Adapter"		*
- *		structure.						*
- *									*
- *									*
- * Returns:								*
- *      DDI_SUCCESS on sucess						*
- *	  DDI_FAILURE on error						*
- *									*
- *									*
- *									*
- * Modification log:							*
- * Date      Who  Description						*
- * --------  ---  -----------------------------------------------------	*
- * 30/04/99  VA   Cleaned code for memory corruptions, invalid DMA	*
- *		attributes and prevent panics				*
- * **********************************************************************
+ * e1000g_alloc_packets - allocate DMA buffers for rx/tx
+ *
+ * This routine allocates neccesary buffers for
+ *	 Transmit sw packet structure
+ *	 DMA handle for Transmit
+ *	 DMA buffer for Transmit
+ *	 Receive sw packet structure
+ *	 DMA buffer for Receive
  */
 static int
 e1000g_alloc_packets(struct e1000g *Adapter)
@@ -700,14 +699,14 @@
 			e1000g_dma_type = USE_DMA;
 			rw_exit(&e1000g_dma_type_lock);
 
-			e1000g_DEBUGLOG_0(Adapter, e1000g_CALLTRACE_LEVEL,
+			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
 			    "No enough dvma resource for Tx packets, "
 			    "trying to allocate dma buffers...\n");
 			goto again;
 		}
 		rw_exit(&e1000g_dma_type_lock);
 
-		e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
 		    "Failed to allocate dma buffers for Tx packets\n");
 		return (DDI_FAILURE);
 	}
@@ -722,14 +721,14 @@
 			e1000g_dma_type = USE_DMA;
 			rw_exit(&e1000g_dma_type_lock);
 
-			e1000g_DEBUGLOG_0(Adapter, e1000g_CALLTRACE_LEVEL,
+			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
 			    "No enough dvma resource for Rx packets, "
 			    "trying to allocate dma buffers...\n");
 			goto again;
 		}
 		rw_exit(&e1000g_dma_type_lock);
 
-		e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
 		    "Failed to allocate dma buffers for Rx packets\n");
 		return (DDI_FAILURE);
 	}
@@ -739,6 +738,19 @@
 	return (DDI_SUCCESS);
 }
 
+static void
+e1000g_free_packets(struct e1000g *Adapter)
+{
+	e1000g_tx_ring_t *tx_ring;
+	e1000g_rx_ring_t *rx_ring;
+
+	tx_ring = Adapter->tx_ring;
+	rx_ring = Adapter->rx_ring;
+
+	e1000g_free_tx_packets(tx_ring);
+	e1000g_free_rx_packets(rx_ring);
+}
+
 #ifdef __sparc
 static int
 e1000g_alloc_dvma_buffer(struct e1000g *Adapter,
@@ -760,7 +772,7 @@
 
 	if (mystat != DDI_SUCCESS) {
 		buf->dma_handle = NULL;
-		e1000g_DEBUGLOG_1(Adapter, e1000g_CALLTRACE_LEVEL,
+		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 		    "Could not allocate dvma buffer handle: %d\n", mystat);
 		return (DDI_FAILURE);
 	}
@@ -772,7 +784,7 @@
 			dvma_release(buf->dma_handle);
 			buf->dma_handle = NULL;
 		}
-		e1000g_DEBUGLOG_0(Adapter, e1000g_CALLTRACE_LEVEL,
+		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
 		    "Could not allocate dvma buffer memory\n");
 		return (DDI_FAILURE);
 	}
@@ -815,7 +827,7 @@
 
 static int
 e1000g_alloc_dma_buffer(struct e1000g *Adapter,
-    dma_buffer_t *buf, size_t size)
+    dma_buffer_t *buf, size_t size, ddi_dma_attr_t *p_dma_attr)
 {
 	int mystat;
 	dev_info_t *devinfo;
@@ -829,19 +841,19 @@
 		devinfo = Adapter->dip;
 
 	mystat = ddi_dma_alloc_handle(devinfo,
-	    &buf_dma_attr,
+	    p_dma_attr,
 	    DDI_DMA_DONTWAIT, 0,
 	    &buf->dma_handle);
 
 	if (mystat != DDI_SUCCESS) {
 		buf->dma_handle = NULL;
-		e1000g_DEBUGLOG_1(Adapter, e1000g_CALLTRACE_LEVEL,
+		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 		    "Could not allocate dma buffer handle: %d\n", mystat);
 		return (DDI_FAILURE);
 	}
 
 	mystat = ddi_dma_mem_alloc(buf->dma_handle,
-	    size, &accattr2, DDI_DMA_STREAMING,
+	    size, &e1000g_buf_acc_attr, DDI_DMA_STREAMING,
 	    DDI_DMA_DONTWAIT, 0,
 	    &buf->address,
 	    &len, &buf->acc_handle);
@@ -853,7 +865,7 @@
 			ddi_dma_free_handle(&buf->dma_handle);
 			buf->dma_handle = NULL;
 		}
-		e1000g_DEBUGLOG_1(Adapter, e1000g_CALLTRACE_LEVEL,
+		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 		    "Could not allocate dma buffer memory: %d\n", mystat);
 		return (DDI_FAILURE);
 	}
@@ -862,7 +874,7 @@
 	    (struct as *)NULL,
 	    buf->address,
 	    len, DDI_DMA_READ | DDI_DMA_STREAMING,
-	    DDI_DMA_SLEEP, 0, &cookie, &count);
+	    DDI_DMA_DONTWAIT, 0, &cookie, &count);
 
 	if (mystat != DDI_SUCCESS) {
 		if (buf->acc_handle != NULL) {
@@ -874,7 +886,7 @@
 			ddi_dma_free_handle(&buf->dma_handle);
 			buf->dma_handle = NULL;
 		}
-		e1000g_DEBUGLOG_1(Adapter, e1000g_CALLTRACE_LEVEL,
+		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 		    "Could not bind buffer dma handle: %d\n", mystat);
 		return (DDI_FAILURE);
 	}
@@ -893,7 +905,7 @@
 			ddi_dma_free_handle(&buf->dma_handle);
 			buf->dma_handle = NULL;
 		}
-		e1000g_DEBUGLOG_1(Adapter, e1000g_CALLTRACE_LEVEL,
+		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 		    "Could not bind buffer as a single frag. "
 		    "Count = %d\n", count);
 		return (DDI_FAILURE);
@@ -936,11 +948,16 @@
 e1000g_alloc_tx_packets(e1000g_tx_ring_t *tx_ring)
 {
 	int j;
-	PTX_SW_PACKET packet;
+	p_tx_sw_packet_t packet;
 	int mystat;
 	dma_buffer_t *tx_buf;
-	struct e1000g *Adapter = tx_ring->adapter;
-	dev_info_t *devinfo = Adapter->dip;
+	struct e1000g *Adapter;
+	dev_info_t *devinfo;
+	ddi_dma_attr_t dma_attr;
+
+	Adapter = tx_ring->adapter;
+	devinfo = Adapter->dip;
+	dma_attr = e1000g_buf_dma_attr;
 
 	/*
 	 * Memory allocation for the Transmit software structure, the transmit
@@ -954,7 +971,7 @@
 		return (DDI_FAILURE);
 
 	for (j = 0, packet = tx_ring->packet_area;
-	    j < Adapter->NumTxSwPacket; j++, packet++) {
+	    j < Adapter->tx_freelist_num; j++, packet++) {
 
 		ASSERT(packet != NULL);
 
@@ -976,7 +993,7 @@
 #endif
 		case USE_DMA:
 			mystat = ddi_dma_alloc_handle(devinfo,
-			    &tx_dma_attr,
+			    &e1000g_tx_dma_attr,
 			    DDI_DMA_DONTWAIT, 0,
 			    &packet->tx_dma_handle);
 			break;
@@ -986,7 +1003,7 @@
 		}
 		if (mystat != DDI_SUCCESS) {
 			packet->tx_dma_handle = NULL;
-			e1000g_DEBUGLOG_1(Adapter, e1000g_CALLTRACE_LEVEL,
+			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 			    "Could not allocate tx dma handle: %d\n", mystat);
 			goto tx_pkt_fail;
 		}
@@ -1004,12 +1021,12 @@
 #ifdef __sparc
 		case USE_DVMA:
 			mystat = e1000g_alloc_dvma_buffer(Adapter,
-			    tx_buf, Adapter->TxBufferSize);
+			    tx_buf, Adapter->tx_buffer_size);
 			break;
 #endif
 		case USE_DMA:
 			mystat = e1000g_alloc_dma_buffer(Adapter,
-			    tx_buf, Adapter->TxBufferSize);
+			    tx_buf, Adapter->tx_buffer_size, &dma_attr);
 			break;
 		default:
 			ASSERT(B_FALSE);
@@ -1031,7 +1048,7 @@
 				break;
 			}
 			packet->tx_dma_handle = NULL;
-			e1000g_DEBUGLOG_0(Adapter, e1000g_CALLTRACE_LEVEL,
+			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
 			    "Allocate Tx buffer fail\n");
 			goto tx_pkt_fail;
 		}
@@ -1051,32 +1068,30 @@
 e1000g_alloc_rx_packets(e1000g_rx_ring_t *rx_ring)
 {
 	int i;
-	PRX_SW_PACKET packet;
+	p_rx_sw_packet_t packet;
 	struct e1000g *Adapter;
 	uint32_t packet_num;
+	ddi_dma_attr_t dma_attr;
 
 	Adapter = rx_ring->adapter;
+	dma_attr = e1000g_buf_dma_attr;
 
+#ifndef NO_82542_SUPPORT
+	dma_attr.dma_attr_align = Adapter->rx_buf_align;
+#endif
 	/*
-	 * Allocate memory for the RX_SW_PACKET structures. Each one of these
+	 * Allocate memory for the rx_sw_packet structures. Each one of these
 	 * structures will contain a virtual and physical address to an actual
-	 * receive buffer in host memory. Since we use one RX_SW_PACKET per
-	 * received packet, the maximum number of RX_SW_PACKETs that we'll
+	 * receive buffer in host memory. Since we use one rx_sw_packet per
+	 * received packet, the maximum number of rx_sw_packet that we'll
 	 * need is equal to the number of receive descriptors that we've
 	 * allocated.
-	 *
-	 * Pre allocation for recv packet buffer. The Recv intr constructs
-	 * a new mp using this buffer
-	 *
-	 * On Wiseman these Receive buffers must be aligned with 256 byte
-	 * boundary
-	 * Vinay, Apr19,2000
 	 */
-	packet_num = Adapter->NumRxDescriptors + Adapter->NumRxFreeList;
+	packet_num = Adapter->rx_desc_num + Adapter->rx_freelist_num;
 	rx_ring->packet_area = NULL;
 
 	for (i = 0; i < packet_num; i++) {
-		packet = e1000g_alloc_rx_sw_packet(rx_ring);
+		packet = e1000g_alloc_rx_sw_packet(rx_ring, &dma_attr);
 		if (packet == NULL)
 			goto rx_pkt_fail;
 
@@ -1092,40 +1107,35 @@
 	return (DDI_FAILURE);
 }
 
-static PRX_SW_PACKET
-e1000g_alloc_rx_sw_packet(e1000g_rx_ring_t *rx_ring)
+static p_rx_sw_packet_t
+e1000g_alloc_rx_sw_packet(e1000g_rx_ring_t *rx_ring, ddi_dma_attr_t *p_dma_attr)
 {
 	int mystat;
-	PRX_SW_PACKET packet;
+	p_rx_sw_packet_t packet;
 	dma_buffer_t *rx_buf;
 	struct e1000g *Adapter;
 
 	Adapter = rx_ring->adapter;
 
-	packet = kmem_zalloc(sizeof (RX_SW_PACKET), KM_NOSLEEP);
+	packet = kmem_zalloc(sizeof (rx_sw_packet_t), KM_NOSLEEP);
 	if (packet == NULL) {
-		e1000g_DEBUGLOG_0(Adapter, e1000g_CALLTRACE_LEVEL,
+		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
 		    "Cound not allocate memory for Rx SwPacket\n");
 		return (NULL);
 	}
 
 	rx_buf = packet->rx_buf;
 
-	/*
-	 * Make sure that receive buffers are 256 byte aligned
-	 */
-	buf_dma_attr.dma_attr_align = Adapter->RcvBufferAlignment;
-
 	switch (e1000g_dma_type) {
 #ifdef __sparc
 	case USE_DVMA:
 		mystat = e1000g_alloc_dvma_buffer(Adapter,
-		    rx_buf, Adapter->RxBufferSize);
+		    rx_buf, Adapter->rx_buffer_size);
 		break;
 #endif
 	case USE_DMA:
 		mystat = e1000g_alloc_dma_buffer(Adapter,
-		    rx_buf, Adapter->RxBufferSize);
+		    rx_buf, Adapter->rx_buffer_size, p_dma_attr);
 		break;
 	default:
 		ASSERT(B_FALSE);
@@ -1134,9 +1144,9 @@
 
 	if (mystat != DDI_SUCCESS) {
 		if (packet != NULL)
-			kmem_free(packet, sizeof (RX_SW_PACKET));
+			kmem_free(packet, sizeof (rx_sw_packet_t));
 
-		e1000g_DEBUGLOG_0(Adapter, e1000g_CALLTRACE_LEVEL,
+		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
 		    "Failed to allocate Rx buffer\n");
 		return (NULL);
 	}
@@ -1169,7 +1179,7 @@
 }
 
 void
-e1000g_free_rx_sw_packet(PRX_SW_PACKET packet)
+e1000g_free_rx_sw_packet(p_rx_sw_packet_t packet)
 {
 	dma_buffer_t *rx_buf;
 
@@ -1200,13 +1210,13 @@
 
 	packet->dma_type = USE_NONE;
 
-	kmem_free(packet, sizeof (RX_SW_PACKET));
+	kmem_free(packet, sizeof (rx_sw_packet_t));
 }
 
 static void
 e1000g_free_rx_packets(e1000g_rx_ring_t *rx_ring)
 {
-	PRX_SW_PACKET packet, next_packet, free_list;
+	p_rx_sw_packet_t packet, next_packet, free_list;
 
 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
 
@@ -1215,10 +1225,12 @@
 	for (; packet != NULL; packet = next_packet) {
 		next_packet = packet->next;
 
-		if (packet->flag & E1000G_RX_SW_SENDUP) {
+		if (packet->flag == E1000G_RX_SW_SENDUP) {
+			rx_ring->pending_count++;
 			e1000g_mblks_pending++;
-			packet->flag |= E1000G_RX_SW_DETACHED;
-			packet->next = NULL;
+			packet->flag = E1000G_RX_SW_STOP;
+			packet->next = rx_ring->pending_list;
+			rx_ring->pending_list = packet;
 		} else {
 			packet->next = free_list;
 			free_list = packet;
@@ -1242,13 +1254,13 @@
 {
 	int j;
 	struct e1000g *Adapter;
-	PTX_SW_PACKET packet;
+	p_tx_sw_packet_t packet;
 	dma_buffer_t *tx_buf;
 
 	Adapter = tx_ring->adapter;
 
 	for (j = 0, packet = tx_ring->packet_area;
-	    j < Adapter->NumTxSwPacket; j++, packet++) {
+	    j < Adapter->tx_freelist_num; j++, packet++) {
 
 		if (packet == NULL)
 			break;
@@ -1303,50 +1315,14 @@
 }
 
 /*
- * **********************************************************************
- * Name:      e1000g_release_dma_resources				*
- *									*
- * Description:								*
- *     This function release any pending buffers. that has been		*
- *     previously allocated						*
- *									*
- * Parameter Passed:							*
- *									*
- * Return Value:							*
- *									*
- * Functions called:							*
- *									*
- *									*
- * **********************************************************************
+ * e1000g_release_dma_resources - release allocated DMA resources
+ *
+ * This function releases any pending buffers that has been
+ * previously allocated
  */
 void
-e1000g_release_dma_resources(register struct e1000g *Adapter)
+e1000g_release_dma_resources(struct e1000g *Adapter)
 {
-	e1000g_tx_ring_t *tx_ring;
-	e1000g_rx_ring_t *rx_ring;
-
-	tx_ring = Adapter->tx_ring;
-	rx_ring = Adapter->rx_ring;
-
-	/*
-	 * Release all the handles, memory and DMA resources that are
-	 * allocated for the transmit buffer descriptors.
-	 */
-	e1000g_free_tx_descriptors(tx_ring);
-
-	/*
-	 * Release all the handles, memory and DMA resources that are
-	 * allocated for the receive buffer descriptors.
-	 */
-	e1000g_free_rx_descriptors(rx_ring);
-
-	/*
-	 * Free Tx packet resources
-	 */
-	e1000g_free_tx_packets(tx_ring);
-
-	/*
-	 * TX resources done, now free RX resources
-	 */
-	e1000g_free_rx_packets(rx_ring);
+	e1000g_free_descriptors(Adapter);
+	e1000g_free_packets(Adapter);
 }
--- a/usr/src/uts/common/io/e1000g/e1000g_debug.c	Mon Aug 20 23:01:08 2007 -0700
+++ b/usr/src/uts/common/io/e1000g/e1000g_debug.c	Tue Aug 21 00:30:10 2007 -0700
@@ -29,15 +29,10 @@
  * **********************************************************************
  *									*
  * Module Name:								*
- *   e1000g_debug.c							*
+ * 	e1000g_debug.c							*
  *									*
  * Abstract:								*
- *									*
- *   This driver runs on the following hardware:			*
- *   - Wiseman based PCI gigabit ethernet adapters			*
- *									*
- * Environment:								*
- *   Kernel Mode -							*
+ *	This module includes the debug routines				*
  *									*
  * **********************************************************************
  */
@@ -50,23 +45,69 @@
 #define	_SYS_VARARGS_H
 #endif
 
+#include "e1000g_debug.h"
 #include "e1000g_sw.h"
-#include "e1000g_debug.h"
+
+#ifdef E1000G_DEBUG
+int e1000g_debug = E1000G_WARN_LEVEL;
+#endif
+int e1000g_log_mode = E1000G_LOG_PRINT;
 
 void
-e1000g_log(struct e1000g *Adapter, int level, char *fmt, ...)
+e1000g_log(void *instance, int level, char *fmt, ...)
 {
+	struct e1000g *Adapter = (struct e1000g *)instance;
 	auto char name[NAMELEN];
 	auto char buf[BUFSZ];
 	va_list ap;
 
+	switch (level) {
+#ifdef E1000G_DEBUG
+	case E1000G_VERBOSE_LEVEL:	/* 16 or 0x010 */
+		if (e1000g_debug < E1000G_VERBOSE_LEVEL)
+			return;
+		level = CE_CONT;
+		break;
+
+	case E1000G_TRACE_LEVEL:	/* 8 or 0x008 */
+		if (e1000g_debug < E1000G_TRACE_LEVEL)
+			return;
+		level = CE_CONT;
+		break;
+
+	case E1000G_INFO_LEVEL:		/* 4 or 0x004 */
+		if (e1000g_debug < E1000G_INFO_LEVEL)
+			return;
+		level = CE_CONT;
+		break;
+
+	case E1000G_WARN_LEVEL:		/* 2 or 0x002 */
+		if (e1000g_debug < E1000G_WARN_LEVEL)
+			return;
+		level = CE_CONT;
+		break;
+
+	case E1000G_ERRS_LEVEL:		/* 1 or 0x001 */
+		level = CE_CONT;
+		break;
+#else
+	case CE_CONT:
+	case CE_NOTE:
+	case CE_WARN:
+	case CE_PANIC:
+		break;
+#endif
+	default:
+		level = CE_CONT;
+		break;
+	}
+
 	if (Adapter != NULL) {
 		(void) sprintf(name, "%s - e1000g[%d] ",
 		    ddi_get_name(Adapter->dip), ddi_get_instance(Adapter->dip));
 	} else {
 		(void) sprintf(name, "e1000g");
 	}
-#ifdef GCC
 	/*
 	 * va_start uses built in macro __builtin_va_alist from the
 	 * compiler libs which requires compiler system to have
@@ -92,111 +133,15 @@
 	 * Using GNU gcc compiler it doesn't expand to va_start....
 	 */
 	va_start(ap, fmt);
-#else
-	va_start(ap, fmt);
-#endif	/* GCC */
 	(void) vsprintf(buf, fmt, ap);
 	va_end(ap);
 
-	switch (level) {
-	case CE_CONT:
-	case CE_NOTE:
-	case CE_WARN:
-	case CE_PANIC:
-		if (e1000g_display_only == 1 && e1000g_print_only == 1) {
-			cmn_err(level, "%s: %s", name, buf);
-			break;
-		}
-		if (e1000g_display_only == 1) {
-			cmn_err(level, "^%s: %s", name, buf);
-			break;
-		}
-		if (e1000g_print_only == 1) {
-			cmn_err(level, "!%s: %s", name, buf);
-			break;
-		}
-		/*
-		 * if they are not set properly then do both
-		 */
+	if ((e1000g_log_mode & E1000G_LOG_ALL) == E1000G_LOG_ALL)
 		cmn_err(level, "%s: %s", name, buf);
-		break;
-
-#ifdef e1000g_DEBUG
-	case e1000g_DDI_LEVEL:	/* 256 or 0x100 */
-		if (e1000g_debug != e1000g_DDI_LEVEL)
-			break;
-
-	case e1000g_INT_LEVEL:	/* 128 or 0x080 */
-		if ((e1000g_debug != e1000g_INT_LEVEL) &&
-		    (e1000g_debug < e1000g_INT_LEVEL))
-			break;
-
-	case e1000g_SEND_LEVEL:	/* 64 or 0x040 */
-		if ((e1000g_debug != e1000g_SEND_LEVEL) &&
-		    (e1000g_debug < e1000g_SEND_LEVEL))
-			break;
-
-	case e1000g_RECV_LEVEL:	/* 32 or 0x020 */
-		if ((e1000g_debug != e1000g_RECV_LEVEL) &&
-		    (e1000g_debug < e1000g_RECV_LEVEL))
-			break;
-
-	case e1000g_CALLTRACE_LEVEL:	/* 8 or 0x008 */
-		if ((e1000g_debug != e1000g_CALLTRACE_LEVEL) &&
-		    (e1000g_debug < e1000g_CALLTRACE_LEVEL))
-			break;
-
-	case e1000g_INFO_LEVEL:	/* 4 or 0x004 */
-		if ((e1000g_debug != e1000g_INFO_LEVEL) &&
-		    (e1000g_debug < e1000g_INFO_LEVEL))
-			break;
-
-	case e1000g_VERBOSE_LEVEL:	/* 16 or 0x010 */
-#endif
-	default:
-		if (e1000g_display_only == 1 && e1000g_print_only == 1) {
-			cmn_err(CE_CONT, "%s:\t%s", name, buf);
-			break;
-		}
-
-		if (e1000g_display_only == 1) {
-			cmn_err(CE_CONT, "^%s:\t%s", name, buf);
-			break;
-		}
-
-		if (e1000g_print_only == 1) {
-			cmn_err(CE_CONT, "!%s:\t%s", name, buf);
-			break;
-		}
-
-		/*
-		 * if they are not set properly then do both
-		 */
-		cmn_err(CE_CONT, "%s:\t%s", name, buf);
-		break;
-	}
+	else if (e1000g_log_mode & E1000G_LOG_DISPLAY)
+		cmn_err(level, "^%s: %s", name, buf);
+	else if (e1000g_log_mode & E1000G_LOG_PRINT)
+		cmn_err(level, "!%s: %s", name, buf);
+	else /* if they are not set properly then do both */
+		cmn_err(level, "%s: %s", name, buf);
 }
-
-void
-e1000g_log_hw(char *msg, void *cptr, int length)
-{
-	int i = 0, j;
-	char buf[BUFSZ];
-	char *cp = cptr;
-
-	bzero(buf, BUFSZ);
-	for (i = 0; i < length; i++) {
-		/*
-		 * make sure there is room for longest %x (i.e. 8 for a
-		 * negative number) plus space (1) plus zero (1)
-		 */
-		if ((j = strlen(buf)) >= (BUFSZ - 10)) {
-			buf[BUFSZ - 2] = '>';
-			buf[BUFSZ - 1] = 0;
-			break;
-		}
-
-		(void) sprintf(&buf[j], "%x ", cp[i]);
-	}
-	cmn_err(CE_CONT, "^%s: %s\n", msg, buf);
-}
--- a/usr/src/uts/common/io/e1000g/e1000g_debug.h	Mon Aug 20 23:01:08 2007 -0700
+++ b/usr/src/uts/common/io/e1000g/e1000g_debug.h	Tue Aug 21 00:30:10 2007 -0700
@@ -33,23 +33,6 @@
 #endif
 
 /*
- * **********************************************************************
- *									*
- * Module Name:								*
- *   e1000g_debug.h							*
- *									*
- * Abstract:								*
- *									*
- *   This driver runs on the following hardware:			*
- *   - Wiseman based PCI gigabit ethernet adapters			*
- *									*
- * Environment:								*
- *   Kernel Mode -							*
- *									*
- * **********************************************************************
- */
-
-/*
  * Debug message control
  * Debug Levels:
  *	0x000 - (0)   no messages
@@ -58,19 +41,9 @@
  *	0x004 - (4)   Information
  *	0x008 - (8)   Subroutine calls and control flow
  *	0x010 - (16)  I/O Data (verbose!)
- * Speacialised Debug Levels:
- *	0x020 - (32)  Receive Debug Info
- *	0x040 - (64)  Send Debug Info
- *	0x080 - (128) Interrupt Debug Info
- *	0x100 - (256) DDI Debug Info
  * Variables can be set with entries in the /etc/system file with
- * "set e1000g:e1000g_debug=<value>"
- * "set e1000g:e1000g_debug_hw=<value>"
- * "set e1000g:e1000g_display_only=<value>"
- * "set e1000g:e1000g_print_only=<value>"
- * Alternatively, you can use adb to set variables and debug as
- * follows:
- * # adb -kw /dev/ksyms /dev/mem
+ *	"set e1000g:e1000g_debug=<value>"
+ *	"set e1000g:e1000g_log_mode=<value>"
  * The /etc/system file is read only once at boot time, if you change
  * it you must reboot for the change to take effect.
  *
@@ -78,68 +51,74 @@
  * enables other debugging code as ASSERT statements...
  */
 
-#ifdef e1000g_DEBUG
-
-static int e1000g_debug = DEFAULTDEBUGLEVEL;
-static int e1000g_debug_hw = 1;
+#ifdef DEBUG
+#define	E1000G_DEBUG
+#endif
 
-#define	e1000g_ERRS_LEVEL	0x001	/* (1)	Errors */
-#define	e1000g_WARN_LEVEL	0x002	/* (2)	Warnings */
-#define	e1000g_INFO_LEVEL	0x004	/* (4)	Information */
-#define	e1000g_CALLTRACE_LEVEL	0x008	/* (8)	Subroutine calls and */
-					/*	control flow */
-#define	e1000g_VERBOSE_LEVEL	0x010	/* (16)	I/O Data (verbose!) */
-#define	e1000g_RECV_LEVEL	0x020	/* (32)	Receive Debug Info */
-#define	e1000g_SEND_LEVEL	0x040	/* (64)	Send Debug Info */
-#define	e1000g_INT_LEVEL	0x080	/* (128) Interrupt Debug Info */
-#define	e1000g_DDI_LEVEL	0x100	/* (256) DDI Debug Info */
+/*
+ * By default it will print only to log
+ */
+#define	E1000G_LOG_DISPLAY	0x1
+#define	E1000G_LOG_PRINT	0x2
+#define	E1000G_LOG_ALL		0x3
 
-#define	e1000g_DEBUGLOG_0(Adapter, Level, fmt)	\
+#ifdef E1000G_DEBUG
+
+#define	E1000G_ERRS_LEVEL	0x001	/* (1)	Errors */
+#define	E1000G_WARN_LEVEL	0x002	/* (2)	Warnings */
+#define	E1000G_INFO_LEVEL	0x004	/* (4)	Information */
+#define	E1000G_TRACE_LEVEL	0x008	/* (8)	Subroutine calls */
+#define	E1000G_VERBOSE_LEVEL	0x010	/* (16)	I/O Data (verbose!) */
+
+#define	E1000G_DEBUGLOG_0(Adapter, Level, fmt)	\
 	if (e1000g_debug) e1000g_log((Adapter), (Level), (fmt))
 
-#define	e1000g_DEBUGLOG_1(Adapter, Level, fmt, d1)	\
+#define	E1000G_DEBUGLOG_1(Adapter, Level, fmt, d1)	\
 	if (e1000g_debug) e1000g_log((Adapter), (Level), (fmt), (d1))
 
-#define	e1000g_DEBUGLOG_2(Adapter, Level, fmt, d1, d2)	\
+#define	E1000G_DEBUGLOG_2(Adapter, Level, fmt, d1, d2)	\
 	if (e1000g_debug) e1000g_log((Adapter), (Level), (fmt), (d1), (d2))
 
-#define	e1000g_DEBUGLOG_3(Adapter, Level, fmt, d1, d2, d3)	\
+#define	E1000G_DEBUGLOG_3(Adapter, Level, fmt, d1, d2, d3)	\
 	if (e1000g_debug) e1000g_log((Adapter), (Level), (fmt), (d1),\
 		(d2), (d3))
 
-#define	e1000g_DEBUGLOG_4(Adapter, Level, fmt, d1, d2, d3, d4)	\
+#define	E1000G_DEBUGLOG_4(Adapter, Level, fmt, d1, d2, d3, d4)	\
 	if (e1000g_debug) e1000g_log((Adapter), (Level), (fmt), (d1),\
 		(d2), (d3), (d4))
 
-#define	e1000g_DEBUGLOG_5(Adapter, Level, fmt, d1, d2, d3, d4, d5)	\
+#define	E1000G_DEBUGLOG_5(Adapter, Level, fmt, d1, d2, d3, d4, d5)	\
 	if (e1000g_debug) e1000g_log((Adapter), (Level), (fmt), (d1),\
 		(d2), (d3), (d4), (d5))
 
-#define	e1000g_HW_DEBUGLOG	if (e1000g_debug_hw) e1000g_log_hw
+#define	E1000G_DEBUG_STAT_COND(val, cond)	if (cond) (val)++;
+#define	E1000G_DEBUG_STAT(val)			(val)++;
 
 #else
 
-static int e1000g_debug = 0;
-static int e1000g_debug_hw = 0;
+#define	E1000G_DEBUGLOG_0(Adapter, Level, fmt)
+#define	E1000G_DEBUGLOG_1(Adapter, Level, fmt, d1)
+#define	E1000G_DEBUGLOG_2(Adapter, Level, fmt, d1, d2)
+#define	E1000G_DEBUGLOG_3(Adapter, Level, fmt, d1, d2, d3)
+#define	E1000G_DEBUGLOG_4(Adapter, Level, fmt, d1, d2, d3, d4)
+#define	E1000G_DEBUGLOG_5(Adapter, Level, fmt, d1, d2, d3, d4, d5)
 
-#define	e1000g_DEBUGLOG_0(Adapter, Level, fmt)
-#define	e1000g_DEBUGLOG_1(Adapter, Level, fmt, d1)
-#define	e1000g_DEBUGLOG_2(Adapter, Level, fmt, d1, d2)
-#define	e1000g_DEBUGLOG_3(Adapter, Level, fmt, d1, d2, d3)
-#define	e1000g_DEBUGLOG_4(Adapter, Level, fmt, d1, d2, d3, d4)
-#define	e1000g_DEBUGLOG_5(Adapter, Level, fmt, d1, d2, d3, d4, d5)
-#define	e1000g_HW_DEBUGLOG
+#define	E1000G_DEBUG_STAT_COND(val, cond)
+#define	E1000G_DEBUG_STAT(val)
 
-#endif	/* e1000g_DEBUG */
+#endif	/* E1000G_DEBUG */
 
 #define	NAMELEN		31
 #define	BUFSZ		256
 
-void e1000g_log(struct e1000g *Adapter, int level, char *fmt, ...);
-void e1000g_log_hw(char *msg, void *cptr, int length);
+#define	E1000G_STAT(val)	(val)++;
+
+void e1000g_log(void *instance, int level, char *fmt, ...);
 
-static int e1000g_display_only = DEFAULTDISPLAYONLY;
-static int e1000g_print_only = DEFAULTPRINTONLY;
+#ifdef E1000G_DEBUG
+extern int e1000g_debug;
+#endif
+extern int e1000g_log_mode;
 
 #ifdef __cplusplus
 }
--- a/usr/src/uts/common/io/e1000g/e1000g_main.c	Mon Aug 20 23:01:08 2007 -0700
+++ b/usr/src/uts/common/io/e1000g/e1000g_main.c	Tue Aug 21 00:30:10 2007 -0700
@@ -32,15 +32,11 @@
  *   e1000g_main.c							*
  *									*
  * Abstract:								*
- *   This file contains the interface routine for the solaris OS.	*
- *   It has all DDI entry point routines and GLD entry point		*
- *   routines.								*
- *   This file also contains routines that takes care of initialization	*
- *   uninit routine and interrupt routine				*
+ *   This file contains the interface routines for the solaris OS.	*
+ *   It has all DDI entry point routines and GLD entry point routines.	*
  *									*
- *									*
- * Environment:								*
- *   Kernel Mode -							*
+ *   This file also contains routines that take care of initialization	*
+ *   uninit routine and interrupt routine.				*
  *									*
  * **********************************************************************
  */
@@ -53,28 +49,28 @@
 #define	E1000_RX_INTPT_TIME	128
 #define	E1000_RX_PKT_CNT	8
 
-static char ident[] = "Intel PRO/1000 Ethernet 5.1.11";
+static char ident[] = "Intel PRO/1000 Ethernet 5.2.0";
 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
-static char e1000g_version[] = "Driver Ver. 5.1.11";
+static char e1000g_version[] = "Driver Ver. 5.2.0";
 
 /*
  * Proto types for DDI entry points
  */
-static int e1000gattach(dev_info_t *, ddi_attach_cmd_t);
-static int e1000gdetach(dev_info_t *, ddi_detach_cmd_t);
+static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
+static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
 
 /*
  * init and intr routines prototype
  */
-static int e1000g_resume(dev_info_t *devinfo);
-static int e1000g_suspend(dev_info_t *devinfo);
+static int e1000g_resume(dev_info_t *);
+static int e1000g_suspend(dev_info_t *);
 static uint_t e1000g_intr_pciexpress(caddr_t);
 static uint_t e1000g_intr(caddr_t);
 static void e1000g_intr_work(struct e1000g *, uint32_t);
 #pragma inline(e1000g_intr_work)
 static int e1000g_init(struct e1000g *);
-static int e1000g_start(struct e1000g *);
-static void e1000g_stop(struct e1000g *);
+static int e1000g_start(struct e1000g *, boolean_t);
+static void e1000g_stop(struct e1000g *, boolean_t);
 static int e1000g_m_start(void *);
 static void e1000g_m_stop(void *);
 static int e1000g_m_promisc(void *, boolean_t);
@@ -88,59 +84,63 @@
 static void e1000g_m_blank(void *, time_t, uint32_t);
 static void e1000g_m_resources(void *);
 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
-static void e1000g_init_locks(struct e1000g *Adapter);
-static void e1000g_destroy_locks(struct e1000g *Adapter);
-static int e1000g_set_driver_params(struct e1000g *Adapter);
-static int e1000g_register_mac(struct e1000g *Adapter);
-static boolean_t e1000g_rx_drain(struct e1000g *Adapter);
-static boolean_t e1000g_tx_drain(struct e1000g *Adapter);
-static void e1000g_init_unicst(struct e1000g *Adapter);
+static void e1000g_init_locks(struct e1000g *);
+static void e1000g_destroy_locks(struct e1000g *);
+static int e1000g_identify_hardware(struct e1000g *);
+static int e1000g_regs_map(struct e1000g *);
+static int e1000g_set_driver_params(struct e1000g *);
+static int e1000g_register_mac(struct e1000g *);
+static boolean_t e1000g_rx_drain(struct e1000g *);
+static boolean_t e1000g_tx_drain(struct e1000g *);
+static void e1000g_init_unicst(struct e1000g *);
 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, mac_addr_slot_t);
 
 /*
  * Local routines
  */
-static void e1000g_tx_drop(struct e1000g *Adapter);
+static void e1000g_tx_clean(struct e1000g *);
+static void e1000g_rx_clean(struct e1000g *);
 static void e1000g_link_timer(void *);
-static void e1000g_LocalTimer(void *);
+static void e1000g_local_timer(void *);
 static boolean_t e1000g_link_check(struct e1000g *);
 static boolean_t e1000g_stall_check(struct e1000g *);
 static void e1000g_smartspeed(struct e1000g *);
-static void e1000g_getparam(struct e1000g *Adapter);
-static int e1000g_getprop(struct e1000g *, char *, int, int, int);
-static void e1000g_error(dev_info_t *dip, char *fmt, char *a1,
-    char *a2, char *a3, char *a4, char *a5, char *a6);
-static void enable_timeout(struct e1000g *Adapter);
-static void disable_timeout(struct e1000g *Adapter);
-static void start_timeout(struct e1000g *Adapter);
-static void restart_timeout(struct e1000g *Adapter);
-static void stop_timeout(struct e1000g *Adapter);
-static void e1000g_force_speed_duplex(struct e1000g *Adapter);
-static void e1000g_get_max_frame_size(struct e1000g *Adapter);
-static boolean_t is_valid_mac_addr(uint8_t *mac_addr);
+static void e1000g_get_conf(struct e1000g *);
+static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
+static void enable_watchdog_timer(struct e1000g *);
+static void disable_watchdog_timer(struct e1000g *);
+static void start_watchdog_timer(struct e1000g *);
+static void restart_watchdog_timer(struct e1000g *);
+static void stop_watchdog_timer(struct e1000g *);
+static void stop_link_timer(struct e1000g *);
+static void stop_82547_timer(e1000g_tx_ring_t *);
+static void e1000g_force_speed_duplex(struct e1000g *);
+static void e1000g_get_max_frame_size(struct e1000g *);
+static boolean_t is_valid_mac_addr(uint8_t *);
 static void e1000g_unattach(dev_info_t *, struct e1000g *);
-static void e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
-static void e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
-static void e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
-static void e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
-static enum ioc_reply e1000g_pp_ioctl(struct e1000g *e1000gp,
-    struct iocblk *iocp, mblk_t *mp);
-static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *Adapter,
-    struct iocblk *iocp, mblk_t *mp);
-static boolean_t e1000g_set_loopback_mode(struct e1000g *Adapter,
-    uint32_t mode);
-static void e1000g_set_internal_loopback(struct e1000g *Adapter);
-static void e1000g_set_external_loopback_1000(struct e1000g *Adapter);
-static void e1000g_set_external_loopback_100(struct e1000g *Adapter);
-static void e1000g_set_external_loopback_10(struct e1000g *Adapter);
-static int e1000g_add_intrs(struct e1000g *Adapter);
-static int e1000g_intr_add(struct e1000g *Adapter, int intr_type);
-static int e1000g_rem_intrs(struct e1000g *Adapter);
-static int e1000g_enable_intrs(struct e1000g *Adapter);
-static int e1000g_disable_intrs(struct e1000g *Adapter);
-static boolean_t e1000g_link_up(struct e1000g *Adapter);
+#ifdef E1000G_DEBUG
+static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
+static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
+static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
+static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
+static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
+    struct iocblk *, mblk_t *);
+#endif
+static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
+    struct iocblk *, mblk_t *);
+static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
+static void e1000g_set_internal_loopback(struct e1000g *);
+static void e1000g_set_external_loopback_1000(struct e1000g *);
+static void e1000g_set_external_loopback_100(struct e1000g *);
+static void e1000g_set_external_loopback_10(struct e1000g *);
+static int e1000g_add_intrs(struct e1000g *);
+static int e1000g_intr_add(struct e1000g *, int);
+static int e1000g_rem_intrs(struct e1000g *);
+static int e1000g_enable_intrs(struct e1000g *);
+static int e1000g_disable_intrs(struct e1000g *);
+static boolean_t e1000g_link_up(struct e1000g *);
 #ifdef __sparc
-static boolean_t e1000g_find_mac_address(struct e1000g *Adapter);
+static boolean_t e1000g_find_mac_address(struct e1000g *);
 #endif
 
 static struct cb_ops cb_ws_ops = {
@@ -170,8 +170,8 @@
 	NULL,			/* devo_getinfo */
 	nulldev,		/* devo_identify */
 	nulldev,		/* devo_probe */
-	e1000gattach,		/* devo_attach */
-	e1000gdetach,		/* devo_detach */
+	e1000g_attach,		/* devo_attach */
+	e1000g_detach,		/* devo_detach */
 	nodev,			/* devo_reset */
 	&cb_ws_ops,		/* devo_cb_ops */
 	NULL,			/* devo_bus_ops */
@@ -188,10 +188,8 @@
 	MODREV_1, &modldrv, NULL
 };
 
-/*
- * DMA access attributes <Little Endian Card>
- */
-static ddi_device_acc_attr_t accattr1 = {
+/* Access attributes for register mapping */
+static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
 	DDI_DEVICE_ATTR_V0,
 	DDI_STRUCTURE_LE_ACC,
 	DDI_STRICTORDER_ACC,
@@ -265,23 +263,7 @@
  */
 
 /*
- * **********************************************************************
- * Name:      _init							*
- *									*
- * Description:								*
- *     Initializes a loadable module. It is  called  before		*
- *     any other routine in a loadable module.				*
- *     All global locks are intialised here and it returns the retun 	*
- *     value from mod_install()						*
- *     This is mandotary function for the driver			*
- * Parameter Passed:							*
- *     None								*
- * Return Value:							*
- *     0 on success							*
- * Functions called							*
- *     mod_install()	     (system call)				*
- *									*
- * **********************************************************************
+ * _init - module initialization
  */
 int
 _init(void)
@@ -301,23 +283,7 @@
 }
 
 /*
- * **********************************************************************
- *  Name:      _fini							*
- *									*
- *  Description:							*
- *     Prepares a loadable module  for  unloading.   It  is		*
- *     called  when  the  system  wants to unload a module.		*
- *     This is mandotary function for the driver			*
- *  Parameter Passed:							*
- *     None								*
- *  Return Value:							*
- *     0 on success							*
- *  Functions called							*
- *     mod_remove()	      (system call)				*
- *									*
- *									*
- *									*
- * **********************************************************************
+ * _fini - module finalization
  */
 int
 _fini(void)
@@ -360,21 +326,7 @@
 }
 
 /*
- * **********************************************************************
- * Name:      _info							*
- *									*
- * Description:								*
- *     Returns  information  about  a   loadable   module.		*
- *     This is mandotary function for the driver			*
- * Parameter Passed:							*
- *     module info structure						*
- * Return Value:							*
- *     0 on success							*
- * Functions called							*
- *     mod_info()		(system call)				*
- *									*
- *									*
- * **********************************************************************
+ * _info - module information
  */
 int
 _info(struct modinfo *modinfop)
@@ -383,53 +335,32 @@
 }
 
 /*
- * Interface exists: make available by filling in network interface
- * record.  System will initialize the interface when it is ready
- * to accept packets.
- */
-
-/*
- * **********************************************************************
- * Name:      e1000gattach						*
- *									*
- * Description:								*
- *     This function is the device-specific  initialization		*
- *     entry point.  This entry point is required and must be writ-	*
- *     ten.  The DDI_ATTACH command must be provided in the  attach	*
- *     entry point. When attach() is called with cmd set to DDI_ATTACH,	*
- *     all normal kernel services (such as  kmem_alloc(9F))  are	*
- *     available  for  use by the driver. Device interrupts are not	*
- *     blocked when attaching a device to the system.			*
- *									*
- *     The attach() function will be called once for each  instance	*
- *     of  the  device  on  the  system with cmd set to DDI_ATTACH.	*
- *     Until attach() succeeds, the only driver entry points  which	*
- *     may  be called are open(9E) and getinfo(9E).			*
- *									*
- *									*
- *									*
- * Parameter Passed:							*
- *									*
- * Return Value:							*
- *									*
- * Functions called							*
- *									*
- *									*
- * **********************************************************************
+ * e1000g_attach - driver attach
+ *
+ * This function is the device-specific initialization entry
+ * point. This entry point is required and must be written.
+ * The DDI_ATTACH command must be provided in the attach entry
+ * point. When attach() is called with cmd set to DDI_ATTACH,
+ * all normal kernel services (such as kmem_alloc(9F)) are
+ * available for use by the driver.
+ *
+ * The attach() function will be called once for each instance
+ * of  the  device  on  the  system with cmd set to DDI_ATTACH.
+ * Until attach() succeeds, the only driver entry points which
+ * may be called are open(9E) and getinfo(9E).
  */
 static int
-e1000gattach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
+e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
 {
 	struct e1000g *Adapter;
 	struct e1000_hw *hw;
-	ddi_acc_handle_t handle;
-	off_t mem_size;
+	struct e1000g_osdep *osdep;
 	int instance;
 
 	switch (cmd) {
 	default:
 		e1000g_log(NULL, CE_WARN,
-		    "Unsupported command send to e1000gattach... ");
+		    "Unsupported command send to e1000g_attach... ");
 		return (DDI_FAILURE);
 
 	case DDI_RESUME:
@@ -451,10 +382,15 @@
 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
 
 	Adapter->dip = devinfo;
-	Adapter->AdapterInstance = instance;
+	Adapter->instance = instance;
 	Adapter->tx_ring->adapter = Adapter;
 	Adapter->rx_ring->adapter = Adapter;
 
+	hw = &Adapter->shared;
+	osdep = &Adapter->osdep;
+	hw->back = osdep;
+	osdep->adapter = Adapter;
+
 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
 
 	if (e1000g_force_detach) {
@@ -476,55 +412,31 @@
 		rw_exit(&e1000g_rx_detach_lock);
 	}
 
-	hw = &Adapter->Shared;
+	/*
+	 * PCI Configure
+	 */
+	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
+		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
+		goto attach_fail;
+	}
+	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
+
+	/*
+	 * Setup hardware
+	 */
+	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
+		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
+		goto attach_fail;
+	}
 
 	/*
 	 * Map in the device registers.
-	 *
-	 * first get the size of device register to be mapped. The
-	 * second parameter is the register we are interested. I our
-	 * wiseman 0 is for config registers and 1 is for memory mapped
-	 * registers Mem size should have memory mapped region size
 	 */
-	ddi_dev_regsize(devinfo, 1, /* register of interest */
-	    (off_t *)&mem_size);
-
-	if ((ddi_regs_map_setup(devinfo, 1, /* register of interest */
-	    (caddr_t *)&hw->hw_addr,
-	    0, mem_size, &accattr1, &Adapter->E1000_handle))
-	    != DDI_SUCCESS) {
-		e1000g_log(Adapter, CE_WARN, "ddi_regs_map_setup failed");
+	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
+		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
 		goto attach_fail;
 	}
-	Adapter->attach_progress |= ATTACH_PROGRESS_REGSMAPPED;
-
-	Adapter->osdep.E1000_handle = Adapter->E1000_handle;
-	hw->back = &Adapter->osdep;
-
-	/*
-	 * PCI Configure
-	 */
-	if (pci_config_setup(devinfo, &handle) != DDI_SUCCESS) {
-		e1000g_log(Adapter, CE_WARN,
-		    "PCI configuration could not be read.");
-		goto attach_fail;
-	}
-
-	Adapter->handle = handle;
-	Adapter->osdep.handle = handle;
-
-	hw->vendor_id =
-	    pci_config_get16(handle, PCI_CONF_VENID);
-	hw->device_id =
-	    pci_config_get16(handle, PCI_CONF_DEVID);
-	hw->revision_id =
-	    pci_config_get8(handle, PCI_CONF_REVID);
-	hw->subsystem_id =
-	    pci_config_get16(handle, PCI_CONF_SUBSYSID);
-	hw->subsystem_vendor_id =
-	    pci_config_get16(handle, PCI_CONF_SUBVENID);
-
-	Adapter->attach_progress |= ATTACH_PROGRESS_PCICONFIG;
+	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
 
 	/*
 	 * Initialize driver parameters
@@ -532,7 +444,7 @@
 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
 		goto attach_fail;
 	}
-	Adapter->attach_progress |= ATTACH_PROGRESS_PROP;
+	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
 
 	/*
 	 * Initialize interrupts
@@ -541,8 +453,7 @@
 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
 		goto attach_fail;
 	}
-	Adapter->tx_softint_pri = DDI_INTR_SOFTPRI_MAX;
-	Adapter->attach_progress |= ATTACH_PROGRESS_INTRADDED;
+	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
 
 	/*
 	 * Initialize mutex's for this device.
@@ -553,33 +464,25 @@
 	e1000g_init_locks(Adapter);
 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
 
+	Adapter->tx_softint_pri = DDI_INTR_SOFTPRI_MAX;
 	if (ddi_intr_add_softint(devinfo,
 	    &Adapter->tx_softint_handle, Adapter->tx_softint_pri,
-	    e1000g_tx_freemsg, (caddr_t)Adapter) != DDI_SUCCESS) {
+	    e1000g_tx_softint_worker, (caddr_t)Adapter) != DDI_SUCCESS) {
 		e1000g_log(Adapter, CE_WARN, "Add soft intr failed");
 		goto attach_fail;
 	}
-	Adapter->attach_progress |= ATTACH_PROGRESS_SOFTINTR;
+	Adapter->attach_progress |= ATTACH_PROGRESS_SOFT_INTR;
 
 	/*
 	 * Initialize Driver Counters
 	 */
-	if (InitStatsCounters(Adapter) != DDI_SUCCESS) {
+	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
 		goto attach_fail;
 	}
 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
 
 	/*
-	 * Allocate dma resources for descriptors and buffers
-	 */
-	if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
-		e1000g_log(Adapter, CE_WARN, "Alloc dma resources failed");
-		goto attach_fail;
-	}
-	Adapter->attach_progress |= ATTACH_PROGRESS_ALLOC;
-
-	/*
 	 * Initialize chip hardware and software structures
 	 */
 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
@@ -592,7 +495,7 @@
 	 * Initialize NDD parameters
 	 */
 	if (e1000g_nd_init(Adapter) != DDI_SUCCESS) {
-		e1000g_log(Adapter, CE_WARN, "Init NDD failed");
+		e1000g_log(Adapter, CE_WARN, "Init ndd failed");
 		goto attach_fail;
 	}
 	Adapter->attach_progress |= ATTACH_PROGRESS_NDD;
@@ -604,7 +507,7 @@
 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
 		goto attach_fail;
 	}
-	Adapter->attach_progress |= ATTACH_PROGRESS_MACREGISTERED;
+	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
 
 	/*
 	 * Now that mutex locks are initialized, and the chip is also
@@ -614,7 +517,7 @@
 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
 		goto attach_fail;
 	}
-	Adapter->attach_progress |= ATTACH_PROGRESS_INTRENABLED;
+	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
 
 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
 
@@ -628,84 +531,157 @@
 static int
 e1000g_register_mac(struct e1000g *Adapter)
 {
-	struct e1000_hw *hw = &Adapter->Shared;
+	struct e1000_hw *hw = &Adapter->shared;
 	mac_register_t *mac;
 	int err;
 
 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
 		return (DDI_FAILURE);
+
 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
 	mac->m_driver = Adapter;
 	mac->m_dip = Adapter->dip;
-	mac->m_src_addr = hw->mac_addr;
+	mac->m_src_addr = hw->mac.addr;
 	mac->m_callbacks = &e1000g_m_callbacks;
 	mac->m_min_sdu = 0;
 	mac->m_max_sdu =
-	    (hw->max_frame_size > FRAME_SIZE_UPTO_8K) ?
-	    hw->max_frame_size - 256 :
-	    (hw->max_frame_size != ETHERMAX) ?
-	    hw->max_frame_size - 24 : ETHERMTU;
+	    (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K) ?
+	    hw->mac.max_frame_size - 256 :
+	    (hw->mac.max_frame_size != ETHERMAX) ?
+	    hw->mac.max_frame_size - 24 : ETHERMTU;
+
 	err = mac_register(mac, &Adapter->mh);
 	mac_free(mac);
+
 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
 }
 
 static int
+e1000g_identify_hardware(struct e1000g *Adapter)
+{
+	struct e1000_hw *hw = &Adapter->shared;
+	struct e1000g_osdep *osdep = &Adapter->osdep;
+
+	/* Get the device id */
+	hw->vendor_id =
+	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
+	hw->device_id =
+	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
+	hw->revision_id =
+	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
+	hw->subsystem_device_id =
+	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
+	hw->subsystem_vendor_id =
+	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
+
+	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
+		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
+		    "MAC type could not be set properly.");
+		return (DDI_FAILURE);
+	}
+
+	return (DDI_SUCCESS);
+}
+
+static int
+e1000g_regs_map(struct e1000g *Adapter)
+{
+	dev_info_t *devinfo = Adapter->dip;
+	struct e1000_hw *hw = &Adapter->shared;
+	struct e1000g_osdep *osdep = &Adapter->osdep;
+	off_t mem_size;
+
+	/*
+	 * first get the size of device register to be mapped. The
+	 * second parameter is the register we are interested. I our
+	 * wiseman 0 is for config registers and 1 is for memory mapped
+	 * registers Mem size should have memory mapped region size
+	 */
+	if (ddi_dev_regsize(devinfo, 1, &mem_size) != DDI_SUCCESS) {
+		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
+		    "ddi_dev_regsize for registers failed");
+		return (DDI_FAILURE);
+	}
+
+	if ((ddi_regs_map_setup(devinfo, 1, /* register of interest */
+	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
+	    &osdep->reg_handle)) != DDI_SUCCESS) {
+		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
+		    "ddi_regs_map_setup for registers failed");
+		goto regs_map_fail;
+	}
+
+	/* ICH needs to map flash memory */
+	if (hw->mac.type == e1000_ich8lan || hw->mac.type == e1000_ich9lan) {
+		/* get flash size */
+		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
+		    &mem_size) != DDI_SUCCESS) {
+			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
+			    "ddi_dev_regsize for ICH flash failed");
+			goto regs_map_fail;
+		}
+
+		/* map flash in */
+		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
+		    (caddr_t *)&hw->flash_address, 0,
+		    mem_size, &e1000g_regs_acc_attr,
+		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
+			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
+			    "ddi_regs_map_setup for ICH flash failed");
+			goto regs_map_fail;
+		}
+	}
+
+	return (DDI_SUCCESS);
+
+regs_map_fail:
+	if (osdep->reg_handle != NULL)
+		ddi_regs_map_free(&osdep->reg_handle);
+
+	return (DDI_FAILURE);
+}
+
+static int
 e1000g_set_driver_params(struct e1000g *Adapter)
 {
-	dev_info_t *devinfo;
-	ddi_acc_handle_t handle;
 	struct e1000_hw *hw;
-	uint32_t mem_bar, io_bar;
+	e1000g_tx_ring_t *tx_ring;
+	uint32_t mem_bar, io_bar, bar64;
 #ifdef __sparc
+	dev_info_t *devinfo = Adapter->dip;
 	ulong_t iommu_pagesize;
 #endif
 
-	devinfo = Adapter->dip;
-	handle = Adapter->handle;
-	hw = &Adapter->Shared;
-
-	/* Set Mac Type */
-	if (e1000_set_mac_type(hw) != 0) {
-		e1000g_log(Adapter, CE_WARN,
-		    "Could not identify hardware");
+	hw = &Adapter->shared;
+
+	/* Set MAC type and initialize hardware functions */
+	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
+		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
+		    "Could not setup hardware functions");
 		return (DDI_FAILURE);
 	}
 
-	/* ich8 needs to map flash memory */
-	if (hw->mac_type == e1000_ich8lan) {
-		/* get flash size */
-		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
-		    &Adapter->osdep.ich_flash_size) != DDI_SUCCESS) {
-			e1000g_log(Adapter, CE_WARN,
-			    "ddi_dev_regsize for ich8 flash failed");
-			return (DDI_FAILURE);
-		}
-
-		/* map flash in */
-		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
-		    &Adapter->osdep.ich_flash_base, 0,
-		    Adapter->osdep.ich_flash_size,
-		    &accattr1,
-		    &Adapter->osdep.ich_flash_handle) != DDI_SUCCESS) {
-			e1000g_log(Adapter, CE_WARN,
-			    "ddi_regs_map_setup for for ich8 flash failed");
-			return (DDI_FAILURE);
-		}
+	/* Get bus information */
+	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
+		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
+		    "Could not get bus information");
+		return (DDI_FAILURE);
 	}
 
 	/* get mem_base addr */
-	mem_bar = pci_config_get32(handle, PCI_CONF_BASE0);
-	Adapter->bar64 = mem_bar & PCI_BASE_TYPE_ALL;
+	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
+	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
 
 	/* get io_base addr */
-	if (hw->mac_type >= e1000_82544) {
-		if (Adapter->bar64) {
+	if (hw->mac.type >= e1000_82544) {
+		if (bar64) {
 			/* IO BAR is different for 64 bit BAR mode */
-			io_bar = pci_config_get32(handle, PCI_CONF_BASE4);
+			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
+			    PCI_CONF_BASE4);
 		} else {
 			/* normal 32-bit BAR mode */
-			io_bar = pci_config_get32(handle, PCI_CONF_BASE2);
+			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
+			    PCI_CONF_BASE2);
 		}
 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
 	} else {
@@ -713,27 +689,25 @@
 		hw->io_base = 0x0;
 	}
 
-	e1000_read_pci_cfg(hw,
-	    PCI_COMMAND_REGISTER, &(hw->pci_cmd_word));
-
-	/* Set the wait_autoneg_complete flag to B_FALSE */
-	hw->wait_autoneg_complete = B_FALSE;
+	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
+
+	hw->mac.autoneg_failed = B_TRUE;
+
+	/* Set the wait_for_link flag to B_FALSE */
+	hw->phy.wait_for_link = B_FALSE;
 
 	/* Adaptive IFS related changes */
-	hw->adaptive_ifs = B_TRUE;
-
-	/* set phy init script revision */
-	if ((hw->mac_type == e1000_82547) ||
-	    (hw->mac_type == e1000_82541) ||
-	    (hw->mac_type == e1000_82547_rev_2) ||
-	    (hw->mac_type == e1000_82541_rev_2))
-		hw->phy_init_script = 1;
-
-	/* Enable the TTL workaround for TnT: DCR 49 */
-	hw->ttl_wa_activation = 1;
-
-	if (hw->mac_type == e1000_82571)
-		hw->laa_is_present = B_TRUE;
+	hw->mac.adaptive_ifs = B_TRUE;
+
+	/* Enable phy init script for IGP phy of 82541/82547 */
+	if ((hw->mac.type == e1000_82547) ||
+	    (hw->mac.type == e1000_82541) ||
+	    (hw->mac.type == e1000_82547_rev_2) ||
+	    (hw->mac.type == e1000_82541_rev_2))
+		e1000_init_script_state_82541(hw, B_TRUE);
+
+	/* Enable the TTL workaround for 82541/82547 */
+	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
 
 #ifdef __sparc
 	Adapter->strip_crc = B_TRUE;
@@ -742,14 +716,16 @@
 #endif
 
 	/* Get conf file properties */
-	e1000g_getparam(Adapter);
-
-	hw->forced_speed_duplex = e1000_100_full;
-	hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	e1000g_get_conf(Adapter);
+
+	/* Get speed/duplex settings in conf file */
+	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
+	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 	e1000g_force_speed_duplex(Adapter);
 
+	/* Get Jumbo Frames settings in conf file */
 	e1000g_get_max_frame_size(Adapter);
-	hw->min_frame_size =
+	hw->mac.min_frame_size =
 	    MINIMUM_ETHERNET_PACKET_SIZE + CRC_LENGTH;
 
 #ifdef __sparc
@@ -765,37 +741,38 @@
 				Adapter->sys_page_sz = iommu_pagesize;
 		}
 	}
-	Adapter->dvma_page_num = hw->max_frame_size /
+	Adapter->dvma_page_num = hw->mac.max_frame_size /
 	    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
 #endif
 
 	/* Set Rx/Tx buffer size */
-	switch (hw->max_frame_size) {
+	switch (hw->mac.max_frame_size) {
 	case ETHERMAX:
-		Adapter->RxBufferSize = E1000_RX_BUFFER_SIZE_2K;
-		Adapter->TxBufferSize = E1000_TX_BUFFER_SIZE_2K;
+		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
+		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
 		break;
 	case FRAME_SIZE_UPTO_4K:
-		Adapter->RxBufferSize = E1000_RX_BUFFER_SIZE_4K;
-		Adapter->TxBufferSize = E1000_TX_BUFFER_SIZE_4K;
+		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
+		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
 		break;
 	case FRAME_SIZE_UPTO_8K:
-		Adapter->RxBufferSize = E1000_RX_BUFFER_SIZE_8K;
-		Adapter->TxBufferSize = E1000_TX_BUFFER_SIZE_8K;
+		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
+		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
 		break;
-	case FRAME_SIZE_UPTO_10K:
+	case FRAME_SIZE_UPTO_9K:
 	case FRAME_SIZE_UPTO_16K:
-		Adapter->RxBufferSize = E1000_RX_BUFFER_SIZE_16K;
-		Adapter->TxBufferSize = E1000_TX_BUFFER_SIZE_16K;
+		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
+		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
 		break;
 	default:
-		Adapter->RxBufferSize = E1000_RX_BUFFER_SIZE_2K;
-		Adapter->TxBufferSize = E1000_TX_BUFFER_SIZE_2K;
+		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
+		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
 		break;
 	}
-	Adapter->RxBufferSize += E1000G_IPALIGNPRESERVEROOM;
-
+	Adapter->rx_buffer_size += E1000G_IPALIGNPRESERVEROOM;
+
+#ifndef NO_82542_SUPPORT
 	/*
 	 * For Wiseman adapters we have an requirement of having receive
 	 * buffers aligned at 256 byte boundary. Since Livengood does not
@@ -807,73 +784,60 @@
 	 * aligned...so all wiseman boards to have 256 byte aligned
 	 * buffers
 	 */
-	if (hw->mac_type < e1000_82543)
-		Adapter->RcvBufferAlignment = RECEIVE_BUFFER_ALIGN_SIZE;
-	else
-		/*
-		 * For livengood, there is no such Rcv buf alignment
-		 * requirement
-		 */
-		Adapter->RcvBufferAlignment = 1;
-
-	/* DmaFairness */
-	if (hw->mac_type <= e1000_82543)
-		hw->dma_fairness = DEFAULTRXPCIPRIORITYVAL;
+	if (hw->mac.type < e1000_82543)
+		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
 	else
-		hw->dma_fairness = 0;
-
-	/* MasterLatencyTimer */
-	Adapter->MasterLatencyTimer = DEFAULTMASTERLATENCYTIMERVAL;
-
-	/* MWIEnable */
-	Adapter->MWIEnable = DEFAULTMWIENABLEVAL;
-
-	/* profile jumbo traffic */
-	Adapter->ProfileJumboTraffic = DEFAULTPROFILEJUMBOTRAFFIC;
-
-	e1000_set_media_type(hw);
+		Adapter->rx_buf_align = 1;
+#endif
+
+	/* Master Latency Timer */
+	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
+
 	/* copper options */
 	if (hw->media_type == e1000_media_type_copper) {
-		hw->mdix = 0;	/* AUTO_ALL_MODES */
-		hw->disable_polarity_correction = B_FALSE;
-		hw->master_slave = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
+		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
+		hw->phy.disable_polarity_correction = B_FALSE;
+		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
 	}
 
+	/* The initial link state should be "unknown" */
 	Adapter->link_state = LINK_STATE_UNKNOWN;
 
+	/* Initialize tx parameters */
+	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
+	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
+
+	tx_ring = Adapter->tx_ring;
+	tx_ring->recycle_low_water = DEFAULT_TX_RECYCLE_LOW_WATER;
+	tx_ring->recycle_num = DEFAULT_TX_RECYCLE_NUM;
+	tx_ring->frags_limit =
+	    (hw->mac.max_frame_size / Adapter->tx_bcopy_thresh) + 2;
+	if (tx_ring->frags_limit > (MAX_TX_DESC_PER_PACKET >> 1))
+		tx_ring->frags_limit = (MAX_TX_DESC_PER_PACKET >> 1);
+
+	/* Initialize rx parameters */
+	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
+
 	return (DDI_SUCCESS);
 }
 
 /*
- * **********************************************************************
- * Name:      e1000gdettach						*
- *									*
- * Description:								*
- *    The detach() function is the complement of the attach routine.	*
- *    If cmd is set to DDI_DETACH, detach() is used to remove  the	*
- *    state  associated  with  a  given  instance of a device node	*
- *    prior to the removal of that instance from the system.		*
- *									*
- *    The detach() function will be called once for each  instance	*
- *    of the device for which there has been a successful attach()	*
- *    once there are no longer  any  opens  on  the  device.		*
- *									*
- *    Interrupts routine are disabled, All memory allocated by this	*
- *    driver are freed.							*
- *									*
- * Parameter Passed:							*
- *    devinfo structure, cmd						*
- *									*
- * Return Value:							*
- *    DDI_SUCCESS on success						*
- *									*
- * Functions called							*
- *									*
- *									*
- * **********************************************************************
+ * e1000g_detach - driver detach
+ *
+ * The detach() function is the complement of the attach routine.
+ * If cmd is set to DDI_DETACH, detach() is used to remove  the
+ * state  associated  with  a  given  instance of a device node
+ * prior to the removal of that instance from the system.
+ *
+ * The detach() function will be called once for each  instance
+ * of the device for which there has been a successful attach()
+ * once there are no longer  any  opens  on  the  device.
+ *
+ * Interrupts routine are disabled, All memory allocated by this
+ * driver are freed.
  */
 static int
-e1000gdetach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
+e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
 {
 	struct e1000g *Adapter;
 
@@ -892,28 +856,20 @@
 	if (Adapter == NULL)
 		return (DDI_FAILURE);
 
+	if (mac_unregister(Adapter->mh) != 0) {
+		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
+		return (DDI_FAILURE);
+	}
+	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
+
 	if (Adapter->started)
-		e1000g_stop(Adapter);
+		e1000g_stop(Adapter, B_TRUE);
 
 	if (!e1000g_rx_drain(Adapter)) {
 		if (!e1000g_force_detach)
 			return (DDI_FAILURE);
 	}
 
-	if (e1000g_disable_intrs(Adapter) != DDI_SUCCESS) {
-		e1000g_log(Adapter, CE_WARN,
-		    "Disable DDI interrupts failed");
-		return (DDI_FAILURE);
-	}
-	Adapter->attach_progress &= ~ATTACH_PROGRESS_INTRENABLED;
-
-	if (mac_unregister(Adapter->mh) != 0) {
-		e1000g_log(Adapter, CE_WARN,
-		    "Unregister MAC failed");
-		return (DDI_FAILURE);
-	}
-	Adapter->attach_progress &= ~ATTACH_PROGRESS_MACREGISTERED;
-
 	e1000g_unattach(devinfo, Adapter);
 
 	return (DDI_SUCCESS);
@@ -922,11 +878,11 @@
 static void
 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
 {
-	if (Adapter->attach_progress & ATTACH_PROGRESS_INTRENABLED) {
+	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
 		(void) e1000g_disable_intrs(Adapter);
 	}
 
-	if (Adapter->attach_progress & ATTACH_PROGRESS_MACREGISTERED) {
+	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
 		(void) mac_unregister(Adapter->mh);
 	}
 
@@ -934,15 +890,15 @@
 		e1000g_nd_cleanup(Adapter);
 	}
 
-	if (Adapter->attach_progress & ATTACH_PROGRESS_INTRADDED) {
+	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
 		(void) e1000g_rem_intrs(Adapter);
 	}
 
-	if (Adapter->attach_progress & ATTACH_PROGRESS_SOFTINTR) {
+	if (Adapter->attach_progress & ATTACH_PROGRESS_SOFT_INTR) {
 		(void) ddi_intr_remove_softint(Adapter->tx_softint_handle);
 	}
 
-	if (Adapter->attach_progress & ATTACH_PROGRESS_PROP) {
+	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
 		(void) ddi_prop_remove_all(devinfo);
 	}
 
@@ -951,36 +907,28 @@
 	}
 
 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
-		timeout_id_t tid = 0;
-
-		/* Disable the link timer */
-		mutex_enter(&Adapter->e1000g_linklock);
-		tid = Adapter->link_tid;
-		Adapter->link_tid = 0;
-		mutex_exit(&Adapter->e1000g_linklock);
-
-		if (tid != 0)
-			(void) untimeout(tid);
-
-		e1000_reset_hw(&Adapter->Shared);
+		stop_link_timer(Adapter);
+		e1000_reset_hw(&Adapter->shared);
 	}
 
-	if (Adapter->attach_progress & ATTACH_PROGRESS_REGSMAPPED) {
-		ddi_regs_map_free(&Adapter->E1000_handle);
+	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
+		if (Adapter->osdep.reg_handle != NULL)
+			ddi_regs_map_free(&Adapter->osdep.reg_handle);
+		if (Adapter->osdep.ich_flash_handle != NULL)
+			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
 	}
 
-	if (Adapter->attach_progress & ATTACH_PROGRESS_PCICONFIG) {
-		pci_config_teardown(&Adapter->handle);
-	}
-
-	if (Adapter->attach_progress & ATTACH_PROGRESS_ALLOC) {
-		e1000g_release_dma_resources(Adapter);
+	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
+		if (Adapter->osdep.cfg_handle != NULL)
+			pci_config_teardown(&Adapter->osdep.cfg_handle);
 	}
 
 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
 		e1000g_destroy_locks(Adapter);
 	}
 
+	e1000_remove_device(&Adapter->shared);
+
 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
 
 	/*
@@ -998,16 +946,11 @@
 
 	rw_init(&Adapter->chip_lock, NULL,
 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
-	mutex_init(&Adapter->e1000g_linklock, NULL,
-	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
-	mutex_init(&Adapter->e1000g_timeout_lock, NULL,
+	mutex_init(&Adapter->link_lock, NULL,
 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
-	mutex_init(&Adapter->TbiCntrMutex, NULL,
+	mutex_init(&Adapter->watchdog_lock, NULL,
 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
 
-	mutex_init(&Adapter->tx_msg_chain->lock, NULL,
-	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->tx_softint_pri));
-
 	tx_ring = Adapter->tx_ring;
 
 	mutex_init(&tx_ring->tx_lock, NULL,
@@ -1016,6 +959,8 @@
 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
 	mutex_init(&tx_ring->freelist_lock, NULL,
 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
+	mutex_init(&tx_ring->mblks_lock, NULL,
+	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
 
 	rx_ring = Adapter->rx_ring;
 
@@ -1035,15 +980,14 @@
 	mutex_destroy(&tx_ring->tx_lock);
 	mutex_destroy(&tx_ring->usedlist_lock);
 	mutex_destroy(&tx_ring->freelist_lock);
+	mutex_destroy(&tx_ring->mblks_lock);
 
 	rx_ring = Adapter->rx_ring;
 	mutex_destroy(&rx_ring->rx_lock);
 	mutex_destroy(&rx_ring->freelist_lock);
 
-	mutex_destroy(&Adapter->tx_msg_chain->lock);
-	mutex_destroy(&Adapter->e1000g_linklock);
-	mutex_destroy(&Adapter->TbiCntrMutex);
-	mutex_destroy(&Adapter->e1000g_timeout_lock);
+	mutex_destroy(&Adapter->link_lock);
+	mutex_destroy(&Adapter->watchdog_lock);
 	rw_destroy(&Adapter->chip_lock);
 }
 
@@ -1056,7 +1000,7 @@
 	if (Adapter == NULL)
 		return (DDI_FAILURE);
 
-	if (e1000g_start(Adapter))
+	if (e1000g_start(Adapter, B_TRUE))
 		return (DDI_FAILURE);
 
 	return (DDI_SUCCESS);
@@ -1071,7 +1015,7 @@
 	if (Adapter == NULL)
 		return (DDI_FAILURE);
 
-	e1000g_stop(Adapter);
+	e1000g_stop(Adapter, B_TRUE);
 
 	return (DDI_SUCCESS);
 }
@@ -1080,35 +1024,30 @@
 e1000g_init(struct e1000g *Adapter)
 {
 	uint32_t pba;
-	uint32_t ctrl;
+	uint32_t high_water;
 	struct e1000_hw *hw;
 	clock_t link_timeout;
 
-	hw = &Adapter->Shared;
+	hw = &Adapter->shared;
 
 	rw_enter(&Adapter->chip_lock, RW_WRITER);
 
-	/* Preserve manageability features */
-	e1000_check_phy_reset_block(hw);
-
 	/*
 	 * reset to put the hardware in a known state
 	 * before we try to do anything with the eeprom
 	 */
 	(void) e1000_reset_hw(hw);
 
-	(void) e1000_init_eeprom_params(hw);
-
-	if (e1000_validate_eeprom_checksum(hw) < 0) {
+	if (e1000_validate_nvm_checksum(hw) < 0) {
 		/*
 		 * Some PCI-E parts fail the first check due to
 		 * the link being in sleep state.  Call it again,
 		 * if it fails a second time its a real issue.
 		 */
-		if (e1000_validate_eeprom_checksum(hw) < 0) {
+		if (e1000_validate_nvm_checksum(hw) < 0) {
 			e1000g_log(Adapter, CE_WARN,
-			    "Invalid EEPROM checksum. Please contact "
-			    "the vendor to update the EEPROM.");
+			    "Invalid NVM checksum. Please contact "
+			    "the vendor to update the NVM.");
 			goto init_fail;
 		}
 	}
@@ -1133,48 +1072,51 @@
 #endif
 
 	/* check for valid mac address */
-	if (!is_valid_mac_addr(hw->mac_addr)) {
+	if (!is_valid_mac_addr(hw->mac.addr)) {
 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
 		goto init_fail;
 	}
 
-	e1000_get_bus_info(hw);
+	/* Set LAA state for 82571 chipset */
+	e1000_set_laa_state_82571(hw, B_TRUE);
 
 	/* Master Latency Timer implementation */
-	if (Adapter->MasterLatencyTimer) {
-		pci_config_put8(Adapter->handle, PCI_CONF_LATENCY_TIMER,
-		    Adapter->MasterLatencyTimer);
+	if (Adapter->master_latency_timer) {
+		pci_config_put8(Adapter->osdep.cfg_handle,
+		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
 	}
 
-	if (hw->mac_type < e1000_82547) {
+	if (hw->mac.type < e1000_82547) {
 		/*
 		 * Total FIFO is 64K
 		 */
-		if (hw->max_frame_size > FRAME_SIZE_UPTO_8K)
+		if (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K)
 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
 		else
 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
-	} else if (hw->mac_type >= e1000_82571 &&
-	    hw->mac_type <= e1000_82572) {
+	} else if (hw->mac.type >= e1000_82571 &&
+	    hw->mac.type <= e1000_82572) {
 		/*
 		 * Total FIFO is 48K
 		 */
-		if (hw->max_frame_size > FRAME_SIZE_UPTO_8K)
+		if (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K)
 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
 		else
 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
-	} else if (hw->mac_type == e1000_ich8lan) {
+	} else if (hw->mac.type == e1000_ich8lan) {
 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
+	} else if (hw->mac.type == e1000_ich9lan) {
+		pba = E1000_PBA_12K;
 	} else {
 		/*
 		 * Total FIFO is 40K
 		 */
-		if (hw->max_frame_size > FRAME_SIZE_UPTO_8K)
+		if (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K)
 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
 		else
 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
 	}
-	E1000_WRITE_REG(hw, PBA, pba);
+	E1000_WRITE_REG(hw, E1000_PBA, pba);
 
 	/*
 	 * These parameters set thresholds for the adapter's generation(Tx)
@@ -1184,15 +1126,26 @@
 	 * High-water mark is set down from the top of the rx fifo (not
 	 * sensitive to max_frame_size) and low-water is set just below
 	 * high-water mark.
+	 * The high water mark must be low enough to fit one full frame above
+	 * it in the rx FIFO.  Should be the lower of:
+	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
+	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
+	 * Rx FIFO size minus one full frame.
 	 */
-	hw->fc_high_water =
-	    ((pba & E1000_PBA_MASK) << E1000_PBA_SHIFT) -
-	    E1000_FC_HIGH_DIFF;
-	hw->fc_low_water =
-	    ((pba & E1000_PBA_MASK) << E1000_PBA_SHIFT) -
-	    E1000_FC_LOW_DIFF;
-	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
-	hw->fc_send_xon = B_TRUE;
+	high_water = min(((pba << 10) * 9 / 10),
+	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_ich9lan) ?
+	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
+	    ((pba << 10) - hw->mac.max_frame_size)));
+
+	hw->mac.fc_high_water = high_water & 0xFFF8;
+	hw->mac.fc_low_water = hw->mac.fc_high_water - 8;
+
+	if (hw->mac.type == e1000_80003es2lan)
+		hw->mac.fc_pause_time = 0xFFFF;
+	else
+		hw->mac.fc_pause_time = E1000_FC_PAUSE_TIME;
+	hw->mac.fc_send_xon = B_TRUE;
+	hw->mac.fc = hw->mac.original_fc;
 
 	/*
 	 * Reset the adapter hardware the second time.
@@ -1200,15 +1153,11 @@
 	(void) e1000_reset_hw(hw);
 
 	/* disable wakeup control by default */
-	if (hw->mac_type >= e1000_82544)
-		E1000_WRITE_REG(hw, WUC, 0);
+	if (hw->mac.type >= e1000_82544)
+		E1000_WRITE_REG(hw, E1000_WUC, 0);
 
 	/* MWI setup */
-	if (Adapter->MWIEnable) {
-		hw->pci_cmd_word |= CMD_MEM_WRT_INVALIDATE;
-		e1000_pci_set_mwi(hw);
-	} else
-		e1000_pci_clear_mwi(hw);
+	e1000_pci_set_mwi(hw);
 
 	/*
 	 * Configure/Initialize hardware
@@ -1227,24 +1176,11 @@
 	e1000g_init_unicst(Adapter);
 
 	/*
-	 * Setup and initialize the transmit structures.
-	 */
-	SetupTransmitStructures(Adapter);
-	DelayInMilliseconds(5);
-
-	/*
 	 * Setup and initialize the mctable structures.  After this routine
 	 * completes  Multicast table will be set
 	 */
-	SetupMulticastTable(Adapter);
-	DelayInMilliseconds(5);
-
-	/*
-	 * Setup and initialize the receive structures.  After this routine
-	 * completes we can receive packets off of the wire.
-	 */
-	SetupReceiveStructures(Adapter);
-	DelayInMilliseconds(5);
+	e1000g_setup_multicast(Adapter);
+	msec_delay(5);
 
 	/*
 	 * Implement Adaptive IFS
@@ -1252,26 +1188,26 @@
 	e1000_reset_adaptive(hw);
 
 	/* Setup Interrupt Throttling Register */
-	E1000_WRITE_REG(hw, ITR, Adapter->intr_throttling_rate);
+	E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
 
 	/* Start the timer for link setup */
-	if (hw->autoneg)
-		link_timeout = PHY_AUTO_NEG_TIME * drv_usectohz(100000);
+	if (hw->mac.autoneg)
+		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
 	else
-		link_timeout = PHY_FORCE_TIME * drv_usectohz(100000);
-
-	mutex_enter(&Adapter->e1000g_linklock);
-	if (hw->wait_autoneg_complete) {
+		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
+
+	mutex_enter(&Adapter->link_lock);
+	if (hw->phy.wait_for_link) {
 		Adapter->link_complete = B_TRUE;
 	} else {
 		Adapter->link_complete = B_FALSE;
 		Adapter->link_tid = timeout(e1000g_link_timer,
 		    (void *)Adapter, link_timeout);
 	}
-	mutex_exit(&Adapter->e1000g_linklock);
+	mutex_exit(&Adapter->link_lock);
 
 	/* Enable PCI-Ex master */
-	if (hw->bus_type == e1000_bus_type_pci_express) {
+	if (hw->bus.type == e1000_bus_type_pci_express) {
 		e1000_enable_pciex_master(hw);
 	}
 
@@ -1295,17 +1231,17 @@
 	struct e1000_hw *hw;
 	boolean_t link_up;
 
-	hw = &Adapter->Shared;
+	hw = &Adapter->shared;
 
 	/* Ensure this is set to get accurate copper link status */
-	hw->get_link_status = B_TRUE;
+	hw->mac.get_link_status = B_TRUE;
 
 	e1000_check_for_link(hw);
 
-	if ((E1000_READ_REG(hw, STATUS) & E1000_STATUS_LU) ||
-	    ((!hw->get_link_status) && (hw->mac_type == e1000_82543)) ||
+	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
+	    ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) ||
 	    ((hw->media_type == e1000_media_type_internal_serdes) &&
-	    (!hw->serdes_link_down))) {
+	    (hw->mac.serdes_has_link))) {
 		link_up = B_TRUE;
 	} else {
 		link_up = B_FALSE;
@@ -1346,6 +1282,7 @@
 		status = e1000g_nd_ioctl(e1000gp, q, mp, iocp);
 		break;
 
+#ifdef E1000G_DEBUG
 	case E1000G_IOC_REG_PEEK:
 	case E1000G_IOC_REG_POKE:
 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
@@ -1357,6 +1294,7 @@
 		else
 			status = IOC_INVAL;
 		break;
+#endif
 	default:
 		status = IOC_INVAL;
 		break;
@@ -1412,7 +1350,7 @@
 	 */
 	if (Adapter->intr_adaptive) {
 		Adapter->intr_throttling_rate = count << 5;
-		E1000_WRITE_REG(&Adapter->Shared, ITR,
+		E1000_WRITE_REG(&Adapter->shared, E1000_ITR,
 		    Adapter->intr_throttling_rate);
 	}
 }
@@ -1437,33 +1375,54 @@
 {
 	struct e1000g *Adapter = (struct e1000g *)arg;
 
-	return (e1000g_start(Adapter));
+	return (e1000g_start(Adapter, B_TRUE));
 }
 
 static int
-e1000g_start(struct e1000g *Adapter)
+e1000g_start(struct e1000g *Adapter, boolean_t global)
 {
+	if (global) {
+		/* Allocate dma resources for descriptors and buffers */
+		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
+			e1000g_log(Adapter, CE_WARN,
+			    "Alloc DMA resources failed");
+			return (ENOTACTIVE);
+		}
+		Adapter->rx_buffer_setup = B_FALSE;
+	}
+
 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
 			e1000g_log(Adapter, CE_WARN,
 			    "Adapter initialization failed");
+			if (global)
+				e1000g_release_dma_resources(Adapter);
 			return (ENOTACTIVE);
 		}
 	}
 
-	enable_timeout(Adapter);
-
 	rw_enter(&Adapter->chip_lock, RW_WRITER);
 
-	e1000g_EnableInterrupt(Adapter);
+	/* Setup and initialize the transmit structures */
+	e1000g_tx_setup(Adapter);
+	msec_delay(5);
+
+	/* Setup and initialize the receive structures */
+	e1000g_rx_setup(Adapter);
+	msec_delay(5);
+
+	e1000g_mask_interrupt(Adapter);
 	if (Adapter->tx_intr_enable)
-		e1000g_EnableTxInterrupt(Adapter);
+		e1000g_mask_tx_interrupt(Adapter);
 
 	Adapter->started = B_TRUE;
 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
 
 	rw_exit(&Adapter->chip_lock);
 
+	/* Enable and start the watchdog timer */
+	enable_watchdog_timer(Adapter);
+
 	return (0);
 }
 
@@ -1472,18 +1431,12 @@
 {
 	struct e1000g *Adapter = (struct e1000g *)arg;
 
-	e1000g_stop(Adapter);
+	e1000g_stop(Adapter, B_TRUE);
 }
 
 static void
-e1000g_stop(struct e1000g *Adapter)
+e1000g_stop(struct e1000g *Adapter, boolean_t global)
 {
-	timeout_id_t tid;
-	e1000g_tx_ring_t *tx_ring;
-	boolean_t link_changed;
-
-	tx_ring = Adapter->tx_ring;
-
 	/* Set stop flags */
 	rw_enter(&Adapter->chip_lock, RW_WRITER);
 
@@ -1495,55 +1448,47 @@
 	/* Drain tx sessions */
 	(void) e1000g_tx_drain(Adapter);
 
-	/* Disable timers */
-	disable_timeout(Adapter);
-
-	/* Disable the tx timer for 82547 chipset */
-	mutex_enter(&tx_ring->tx_lock);
-	tx_ring->timer_enable_82547 = B_FALSE;
-	tid = tx_ring->timer_id_82547;
-	tx_ring->timer_id_82547 = 0;
-	mutex_exit(&tx_ring->tx_lock);
-
-	if (tid != 0)
-		(void) untimeout(tid);
-
-	/* Disable the link timer */
-	mutex_enter(&Adapter->e1000g_linklock);
-	tid = Adapter->link_tid;
-	Adapter->link_tid = 0;
-	mutex_exit(&Adapter->e1000g_linklock);
-
-	if (tid != 0)
-		(void) untimeout(tid);
+	/* Disable and stop all the timers */
+	disable_watchdog_timer(Adapter);
+	stop_link_timer(Adapter);
+	stop_82547_timer(Adapter->tx_ring);
 
 	/* Stop the chip and release pending resources */
 	rw_enter(&Adapter->chip_lock, RW_WRITER);
 
-	e1000g_DisableAllInterrupts(Adapter);
-
-	e1000_reset_hw(&Adapter->Shared);
+	e1000g_clear_all_interrupts(Adapter);
+	e1000_reset_hw(&Adapter->shared);
 
 	/* Release resources still held by the TX descriptors */
-	e1000g_tx_drop(Adapter);
+	e1000g_tx_clean(Adapter);
 
 	/* Clean the pending rx jumbo packet fragment */
-	if (Adapter->rx_mblk != NULL) {
-		freemsg(Adapter->rx_mblk);
-		Adapter->rx_mblk = NULL;
-		Adapter->rx_mblk_tail = NULL;
-		Adapter->rx_packet_len = 0;
-	}
+	e1000g_rx_clean(Adapter);
 
 	rw_exit(&Adapter->chip_lock);
+
+	if (global)
+		e1000g_release_dma_resources(Adapter);
 }
 
 static void
-e1000g_tx_drop(struct e1000g *Adapter)
+e1000g_rx_clean(struct e1000g *Adapter)
+{
+	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
+
+	if (rx_ring->rx_mblk != NULL) {
+		freemsg(rx_ring->rx_mblk);
+		rx_ring->rx_mblk = NULL;
+		rx_ring->rx_mblk_tail = NULL;
+		rx_ring->rx_mblk_len = 0;
+	}
+}
+
+static void
+e1000g_tx_clean(struct e1000g *Adapter)
 {
 	e1000g_tx_ring_t *tx_ring;
-	e1000g_msg_chain_t *msg_chain;
-	PTX_SW_PACKET packet;
+	p_tx_sw_packet_t packet;
 	mblk_t *mp;
 	mblk_t *nmp;
 	uint32_t packet_count;
@@ -1558,7 +1503,7 @@
 	mp = NULL;
 	nmp = NULL;
 	packet_count = 0;
-	packet = (PTX_SW_PACKET) QUEUE_GET_HEAD(&tx_ring->used_list);
+	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
 	while (packet != NULL) {
 		if (packet->mp != NULL) {
 			/* Assemble the message chain */
@@ -1573,24 +1518,23 @@
 			packet->mp = NULL;
 		}
 
-		FreeTxSwPacket(packet);
+		e1000g_free_tx_swpkt(packet);
 		packet_count++;
 
-		packet = (PTX_SW_PACKET)
+		packet = (p_tx_sw_packet_t)
 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
 	}
 
 	if (mp != NULL) {
-		msg_chain = Adapter->tx_msg_chain;
-		mutex_enter(&msg_chain->lock);
-		if (msg_chain->head == NULL) {
-			msg_chain->head = mp;
-			msg_chain->tail = nmp;
+		mutex_enter(&tx_ring->mblks_lock);
+		if (tx_ring->mblks.head == NULL) {
+			tx_ring->mblks.head = mp;
+			tx_ring->mblks.tail = nmp;
 		} else {
-			msg_chain->tail->b_next = mp;
-			msg_chain->tail = nmp;
+			tx_ring->mblks.tail->b_next = mp;
+			tx_ring->mblks.tail = nmp;
 		}
-		mutex_exit(&msg_chain->lock);
+		mutex_exit(&tx_ring->mblks_lock);
 	}
 
 	ddi_intr_trigger_softint(Adapter->tx_softint_handle, NULL);
@@ -1604,8 +1548,8 @@
 		tx_ring->tbd_oldest = tx_ring->tbd_first;
 
 		/* Setup our HW Tx Head & Tail descriptor pointers */
-		E1000_WRITE_REG(&Adapter->Shared, TDH, 0);
-		E1000_WRITE_REG(&Adapter->Shared, TDT, 0);
+		E1000_WRITE_REG(&Adapter->shared, E1000_TDH, 0);
+		E1000_WRITE_REG(&Adapter->shared, E1000_TDT, 0);
 	}
 }
 
@@ -1619,7 +1563,7 @@
 	tx_ring = Adapter->tx_ring;
 
 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
-	for (i = 0; i < WSDRAINTIME; i++) {
+	for (i = 0; i < TX_DRAIN_TIME; i++) {
 		mutex_enter(&tx_ring->usedlist_lock);
 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
 		mutex_exit(&tx_ring->usedlist_lock);
@@ -1636,11 +1580,31 @@
 static boolean_t
 e1000g_rx_drain(struct e1000g *Adapter)
 {
+	e1000g_rx_ring_t *rx_ring;
+	p_rx_sw_packet_t packet;
 	boolean_t done;
 
-	mutex_enter(&Adapter->rx_ring->freelist_lock);
-	done = (Adapter->rx_avail_freepkt == Adapter->NumRxFreeList);
-	mutex_exit(&Adapter->rx_ring->freelist_lock);
+	rx_ring = Adapter->rx_ring;
+	done = B_TRUE;
+
+	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
+
+	while (rx_ring->pending_list != NULL) {
+		packet = rx_ring->pending_list;
+		rx_ring->pending_list =
+		    rx_ring->pending_list->next;
+
+		if (packet->flag == E1000G_RX_SW_STOP) {
+			packet->flag = E1000G_RX_SW_DETACH;
+			done = B_FALSE;
+		} else {
+			ASSERT(packet->flag == E1000G_RX_SW_FREE);
+			ASSERT(packet->mp == NULL);
+			e1000g_free_rx_sw_packet(packet);
+		}
+	}
+
+	rw_exit(&e1000g_rx_detach_lock);
 
 	return (done);
 }
@@ -1648,9 +1612,9 @@
 boolean_t
 e1000g_reset(struct e1000g *Adapter)
 {
-	e1000g_stop(Adapter);
-
-	if (e1000g_start(Adapter)) {
+	e1000g_stop(Adapter, B_FALSE);
+
+	if (e1000g_start(Adapter, B_FALSE)) {
 		e1000g_log(Adapter, CE_WARN, "Reset failed");
 		return (B_FALSE);
 	}
@@ -1659,39 +1623,28 @@
 }
 
 /*
- * **********************************************************************
- * Name:	e1000g_intr_pciexpress					*
- *									*
- * Description:								*
- *	This interrupt service routine is for PCI-Express adapters.	*
- *	The ICR contents is valid only when the E1000_ICR_INT_ASSERTED	*
- *	bit is set.							*
- *									*
- * Parameter Passed:							*
- *									*
- * Return Value:							*
- *									*
- * Functions called:							*
- *	e1000g_intr_work						*
- *									*
- * **********************************************************************
+ * e1000g_intr_pciexpress - ISR for PCI Express chipsets
+ *
+ * This interrupt service routine is for PCI-Express adapters.
+ * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
+ * bit is set.
  */
 static uint_t
 e1000g_intr_pciexpress(caddr_t arg)
 {
 	struct e1000g *Adapter;
-	uint32_t ICRContents;
+	uint32_t icr;
 
 	Adapter = (struct e1000g *)arg;
-	ICRContents = E1000_READ_REG(&Adapter->Shared, ICR);
-
-	if (ICRContents & E1000_ICR_INT_ASSERTED) {
+	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
+
+	if (icr & E1000_ICR_INT_ASSERTED) {
 		/*
 		 * E1000_ICR_INT_ASSERTED bit was set:
 		 * Read(Clear) the ICR, claim this interrupt,
 		 * look for work to do.
 		 */
-		e1000g_intr_work(Adapter, ICRContents);
+		e1000g_intr_work(Adapter, icr);
 		return (DDI_INTR_CLAIMED);
 	} else {
 		/*
@@ -1703,39 +1656,28 @@
 }
 
 /*
- * **********************************************************************
- * Name:	e1000g_intr						*
- *									*
- * Description:								*
- *	This interrupt service routine is for PCI/PCI-X adapters.	*
- *	We check the ICR contents no matter the E1000_ICR_INT_ASSERTED	*
- *	bit is set or not.						*
- *									*
- * Parameter Passed:							*
- *									*
- * Return Value:							*
- *									*
- * Functions called:							*
- *	e1000g_intr_work						*
- *									*
- * **********************************************************************
+ * e1000g_intr - ISR for PCI/PCI-X chipsets
+ *
+ * This interrupt service routine is for PCI/PCI-X adapters.
+ * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
+ * bit is set or not.
  */
 static uint_t
 e1000g_intr(caddr_t arg)
 {
 	struct e1000g *Adapter;
-	uint32_t ICRContents;
+	uint32_t icr;
 
 	Adapter = (struct e1000g *)arg;
-	ICRContents = E1000_READ_REG(&Adapter->Shared, ICR);
-
-	if (ICRContents) {
+	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
+
+	if (icr) {
 		/*
 		 * Any bit was set in ICR:
 		 * Read(Clear) the ICR, claim this interrupt,
 		 * look for work to do.
 		 */
-		e1000g_intr_work(Adapter, ICRContents);
+		e1000g_intr_work(Adapter, icr);
 		return (DDI_INTR_CLAIMED);
 	} else {
 		/*
@@ -1747,50 +1689,38 @@
 }
 
 /*
- * **********************************************************************
- * Name:	e1000g_intr_work					*
- *									*
- * Description:								*
- *	Called from interrupt service routines.				*
- *	Read(clear) the ICR contents and call appropriate interrupt	*
- *	processing routines.						*
- *									*
- * Parameter Passed:							*
- *									*
- * Return Value:							*
- *									*
- * Functions called:							*
- *	e1000g_receive							*
- *	e1000g_link_check						*
- *	e1000g_recycle							*
- *									*
- * **********************************************************************
+ * e1000g_intr_work - actual processing of ISR
+ *
+ * Read(clear) the ICR contents and call appropriate interrupt
+ * processing routines.
  */
 static void
-e1000g_intr_work(struct e1000g *Adapter, uint32_t ICRContents)
+e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
 {
-	if (ICRContents & E1000_ICR_RXT0) {
+	rw_enter(&Adapter->chip_lock, RW_READER);
+	/*
+	 * Here we need to check the "started" flag within the chip_lock to
+	 * ensure the receive routine will not execute when the adapter is
+	 * being reset.
+	 */
+	if (!Adapter->started) {
+		rw_exit(&Adapter->chip_lock);
+		return;
+	}
+
+	if (icr & E1000_ICR_RXT0) {
 		mblk_t *mp;
 
-		rw_enter(&Adapter->chip_lock, RW_READER);
-		/*
-		 * Here we need to check the "started" flag to ensure the
-		 * receive routine will not execute when the adapter is
-		 * stopped or being reset.
-		 */
-		if (Adapter->started) {
-			mutex_enter(&Adapter->rx_ring->rx_lock);
-			mp = e1000g_receive(Adapter);
-			mutex_exit(&Adapter->rx_ring->rx_lock);
-
-			rw_exit(&Adapter->chip_lock);
-
-			if (mp != NULL)
-				mac_rx(Adapter->mh, Adapter->mrh, mp);
-		} else {
-			rw_exit(&Adapter->chip_lock);
-		}
-	}
+		mutex_enter(&Adapter->rx_ring->rx_lock);
+		mp = e1000g_receive(Adapter);
+		mutex_exit(&Adapter->rx_ring->rx_lock);
+
+		rw_exit(&Adapter->chip_lock);
+
+		if (mp != NULL)
+			mac_rx(Adapter->mh, Adapter->mrh, mp);
+	} else
+		rw_exit(&Adapter->chip_lock);
 
 	/*
 	 * The Receive Sequence errors RXSEQ and the link status change LSC
@@ -1798,29 +1728,20 @@
 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
 	 * are an indication that cable is not connected.
 	 */
-	if ((ICRContents & E1000_ICR_RXSEQ) ||
-	    (ICRContents & E1000_ICR_LSC) ||
-	    (ICRContents & E1000_ICR_GPI_EN1)) {
+	if ((icr & E1000_ICR_RXSEQ) ||
+	    (icr & E1000_ICR_LSC) ||
+	    (icr & E1000_ICR_GPI_EN1)) {
 		boolean_t link_changed;
 		timeout_id_t tid = 0;
 
-		/*
-		 * Encountered RX Sequence Error!!! Link maybe forced and
-		 * the cable may have just been disconnected so we will
-		 * read the LOS to see.
-		 */
-		if (ICRContents & E1000_ICR_RXSEQ)
-			Adapter->rx_seq_intr++;
-
-		stop_timeout(Adapter);
-
-		mutex_enter(&Adapter->e1000g_linklock);
+		stop_watchdog_timer(Adapter);
+
+		mutex_enter(&Adapter->link_lock);
 		/* e1000g_link_check takes care of link status change */
 		link_changed = e1000g_link_check(Adapter);
 		/*
 		 * If the link timer has not timed out, we'll not notify
-		 * the upper layer with any link state until the link
-		 * is up.
+		 * the upper layer with any link state until the link is up.
 		 */
 		if (link_changed && !Adapter->link_complete) {
 			if (Adapter->link_state == LINK_STATE_UP) {
@@ -1831,7 +1752,7 @@
 				link_changed = B_FALSE;
 			}
 		}
-		mutex_exit(&Adapter->e1000g_linklock);
+		mutex_exit(&Adapter->link_lock);
 
 		if (link_changed) {
 			if (tid != 0)
@@ -1842,29 +1763,31 @@
 			 * down event. Reset the adapter to recover it.
 			 */
 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
-			    (Adapter->Shared.mac_type == e1000_80003es2lan))
+			    (Adapter->shared.mac.type == e1000_80003es2lan))
 				(void) e1000g_reset(Adapter);
 
 			mac_link_update(Adapter->mh, Adapter->link_state);
 		}
 
-		start_timeout(Adapter);
+		start_watchdog_timer(Adapter);
 	}
 
-	if (ICRContents & E1000G_ICR_TX_INTR) {
+	if (icr & E1000G_ICR_TX_INTR) {
+		e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
+
 		if (!Adapter->tx_intr_enable)
-			e1000g_DisableTxInterrupt(Adapter);
+			e1000g_clear_tx_interrupt(Adapter);
 		/* Schedule the re-transmit */
-		if (Adapter->resched_needed) {
-			Adapter->tx_reschedule++;
-			Adapter->resched_needed = B_FALSE;
+		if (tx_ring->resched_needed) {
+			E1000G_STAT(tx_ring->stat_reschedule);
+			tx_ring->resched_needed = B_FALSE;
 			mac_tx_update(Adapter->mh);
 		}
 		if (Adapter->tx_intr_enable) {
 			/* Recycle the tx descriptors */
 			rw_enter(&Adapter->chip_lock, RW_READER);
-			Adapter->tx_recycle_intr++;
-			e1000g_recycle(Adapter->tx_ring);
+			E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
+			e1000g_recycle(tx_ring);
 			rw_exit(&Adapter->chip_lock);
 			/* Free the recycled messages */
 			ddi_intr_trigger_softint(Adapter->tx_softint_handle,
@@ -1879,23 +1802,25 @@
 	struct e1000_hw *hw;
 	int slot;
 
-	hw = &Adapter->Shared;
+	hw = &Adapter->shared;
 
 	if (Adapter->init_count == 0) {
 		/* Initialize the multiple unicast addresses */
 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
 
-		if ((hw->mac_type == e1000_82571) && hw->laa_is_present)
+		if ((hw->mac.type == e1000_82571) &&
+		    (e1000_get_laa_state_82571(hw) == B_TRUE))
 			Adapter->unicst_total--;
 
 		Adapter->unicst_avail = Adapter->unicst_total - 1;
 
 		/* Store the default mac address */
-		e1000_rar_set(hw, hw->mac_addr, 0);
-		if ((hw->mac_type == e1000_82571) && hw->laa_is_present)
-			e1000_rar_set(hw, hw->mac_addr, LAST_RAR_ENTRY);
-
-		bcopy(hw->mac_addr, Adapter->unicst_addr[0].mac.addr,
+		e1000_rar_set(hw, hw->mac.addr, 0);
+		if ((hw->mac.type == e1000_82571) &&
+		    (e1000_get_laa_state_82571(hw) == B_TRUE))
+			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
+
+		bcopy(hw->mac.addr, Adapter->unicst_addr[0].mac.addr,
 		    ETHERADDRL);
 		Adapter->unicst_addr[0].mac.set = 1;
 
@@ -1903,13 +1828,14 @@
 			Adapter->unicst_addr[slot].mac.set = 0;
 	} else {
 		/* Recover the default mac address */
-		bcopy(Adapter->unicst_addr[0].mac.addr, hw->mac_addr,
+		bcopy(Adapter->unicst_addr[0].mac.addr, hw->mac.addr,
 		    ETHERADDRL);
 
 		/* Store the default mac address */
-		e1000_rar_set(hw, hw->mac_addr, 0);
-		if ((hw->mac_type == e1000_82571) && hw->laa_is_present)
-			e1000_rar_set(hw, hw->mac_addr, LAST_RAR_ENTRY);
+		e1000_rar_set(hw, hw->mac.addr, 0);
+		if ((hw->mac.type == e1000_82571) &&
+		    (e1000_get_laa_state_82571(hw) == B_TRUE))
+			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
 
 		/* Re-configure the RAR registers */
 		for (slot = 1; slot < Adapter->unicst_total; slot++)
@@ -1926,7 +1852,7 @@
 	Adapter = (struct e1000g *)arg;
 
 	/* Store the default MAC address */
-	bcopy(mac_addr, Adapter->Shared.mac_addr, ETHERADDRL);
+	bcopy(mac_addr, Adapter->shared.mac.addr, ETHERADDRL);
 
 	/* Set MAC address in address slot 0, which is the default address */
 	return (e1000g_unicst_set(Adapter, mac_addr, 0));
@@ -1938,18 +1864,11 @@
 {
 	struct e1000_hw *hw;
 
-	hw = &Adapter->Shared;
-
-	/*
-	 * Error if the address specified is a multicast or broadcast
-	 * address.
-	 */
-	if (((mac_addr[0] & 01) == 1) ||
-	    (bcmp(mac_addr, &etherbroadcastaddr, ETHERADDRL) == 0))
-		return (EINVAL);
+	hw = &Adapter->shared;
 
 	rw_enter(&Adapter->chip_lock, RW_WRITER);
 
+#ifndef NO_82542_SUPPORT
 	/*
 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
 	 * that requires the receiver to be in reset when any of the
@@ -1959,33 +1878,39 @@
 	 * initialize the RARs, we check the rev of the Wiseman controller
 	 * and work around any necessary HW errata.
 	 */
-	if (hw->mac_type == e1000_82542_rev2_0) {
+	if ((hw->mac.type == e1000_82542) &&
+	    (hw->revision_id == E1000_REVISION_2)) {
 		e1000_pci_clear_mwi(hw);
-		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
-		DelayInMilliseconds(5);
+		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
+		msec_delay(5);
 	}
+#endif
 
 	bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr, ETHERADDRL);
 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
 
 	if (slot == 0) {
-		if ((hw->mac_type == e1000_82571) && hw->laa_is_present)
-			e1000_rar_set(hw, hw->mac_addr, LAST_RAR_ENTRY);
+		if ((hw->mac.type == e1000_82571) &&
+		    (e1000_get_laa_state_82571(hw) == B_TRUE))
+			e1000_rar_set(hw, (uint8_t *)mac_addr, LAST_RAR_ENTRY);
 	}
 
+#ifndef NO_82542_SUPPORT
 	/*
 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
 	 * put the receive in reset, and disabled MWI, to work around some
 	 * HW errata.  Now we should take the receiver out of reset, and
 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
 	 */
-	if (hw->mac_type == e1000_82542_rev2_0) {
-		E1000_WRITE_REG(hw, RCTL, 0);
-		DelayInMilliseconds(1);
-		if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+	if ((hw->mac.type == e1000_82542) &&
+	    (hw->revision_id == E1000_REVISION_2)) {
+		E1000_WRITE_REG(hw, E1000_RCTL, 0);
+		msec_delay(1);
+		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
 			e1000_pci_set_mwi(hw);
-		SetupReceiveStructures(Adapter);
+		e1000g_rx_setup(Adapter);
 	}
+#endif
 
 	rw_exit(&Adapter->chip_lock);
 
@@ -2152,6 +2077,7 @@
 static int
 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
 {
+	struct e1000_hw *hw = &Adapter->shared;
 	unsigned i;
 	int res = 0;
 
@@ -2174,14 +2100,17 @@
 	/*
 	 * Update the MC table in the hardware
 	 */
-	e1000g_DisableInterrupt(Adapter);
-
-	SetupMulticastTable(Adapter);
-
-	if (Adapter->Shared.mac_type == e1000_82542_rev2_0)
-		SetupReceiveStructures(Adapter);
-
-	e1000g_EnableInterrupt(Adapter);
+	e1000g_clear_interrupt(Adapter);
+
+	e1000g_setup_multicast(Adapter);
+
+#ifndef NO_82542_SUPPORT
+	if ((hw->mac.type == e1000_82542) &&
+	    (hw->revision_id == E1000_REVISION_2))
+		e1000g_rx_setup(Adapter);
+#endif
+
+	e1000g_mask_interrupt(Adapter);
 
 done:
 	rw_exit(&Adapter->chip_lock);
@@ -2191,6 +2120,7 @@
 static int
 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
 {
+	struct e1000_hw *hw = &Adapter->shared;
 	unsigned i;
 
 	rw_enter(&Adapter->chip_lock, RW_WRITER);
@@ -2210,20 +2140,128 @@
 	/*
 	 * Update the MC table in the hardware
 	 */
-	e1000g_DisableInterrupt(Adapter);
-
-	SetupMulticastTable(Adapter);
-
-	if (Adapter->Shared.mac_type == e1000_82542_rev2_0)
-		SetupReceiveStructures(Adapter);
-
-	e1000g_EnableInterrupt(Adapter);
+	e1000g_clear_interrupt(Adapter);
+
+	e1000g_setup_multicast(Adapter);
+
+#ifndef NO_82542_SUPPORT
+	if ((hw->mac.type == e1000_82542) &&
+	    (hw->revision_id == E1000_REVISION_2))
+		e1000g_rx_setup(Adapter);
+#endif
+
+	e1000g_mask_interrupt(Adapter);
 
 done:
 	rw_exit(&Adapter->chip_lock);
 	return (0);
 }
 
+/*
+ * e1000g_setup_multicast - setup multicast data structures
+ *
+ * This routine initializes all of the multicast related structures.
+ */
+void
+e1000g_setup_multicast(struct e1000g *Adapter)
+{
+	uint8_t *mc_addr_list;
+	uint32_t mc_addr_count;
+	uint32_t rctl;
+	struct e1000_hw *hw;
+
+	hw = &Adapter->shared;
+
+	/*
+	 * The e1000g has the ability to do perfect filtering of 16
+	 * addresses. The driver uses one of the e1000g's 16 receive
+	 * address registers for its node/network/mac/individual address.
+	 * So, we have room for up to 15 multicast addresses in the CAM,
+	 * additional MC addresses are handled by the MTA (Multicast Table
+	 * Array)
+	 */
+
+	rctl = E1000_READ_REG(hw, E1000_RCTL);
+
+	mc_addr_list = (uint8_t *)Adapter->mcast_table;
+
+	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
+		E1000G_DEBUGLOG_1(Adapter, CE_WARN,
+		    "Adapter requested more than %d MC Addresses.\n",
+		    MAX_NUM_MULTICAST_ADDRESSES);
+		mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES;
+	} else {
+		/*
+		 * Set the number of MC addresses that we are being
+		 * requested to use
+		 */
+		mc_addr_count = Adapter->mcast_count;
+	}
+#ifndef NO_82542_SUPPORT
+	/*
+	 * The Wiseman 2.0 silicon has an errata by which the receiver will
+	 * hang  while writing to the receive address registers if the receiver
+	 * is not in reset before writing to the registers. Updating the RAR
+	 * is done during the setting up of the multicast table, hence the
+	 * receiver has to be put in reset before updating the multicast table
+	 * and then taken out of reset at the end
+	 */
+	/*
+	 * if WMI was enabled then dis able it before issueing the global
+	 * reset to the hardware.
+	 */
+	/*
+	 * Only required for WISEMAN_2_0
+	 */
+	if ((hw->mac.type == e1000_82542) &&
+	    (hw->revision_id == E1000_REVISION_2)) {
+		e1000_pci_clear_mwi(hw);
+		/*
+		 * The e1000g must be in reset before changing any RA
+		 * registers. Reset receive unit.  The chip will remain in
+		 * the reset state until software explicitly restarts it.
+		 */
+		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
+		/* Allow receiver time to go in to reset */
+		msec_delay(5);
+	}
+#endif
+
+	e1000_mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
+	    Adapter->unicst_total, hw->mac.rar_entry_count);
+
+#ifndef NO_82542_SUPPORT
+	/*
+	 * Only for Wiseman_2_0
+	 * If MWI was enabled then re-enable it after issueing (as we
+	 * disabled it up there) the receive reset command.
+	 * Wainwright does not have a receive reset command and only thing
+	 * close to it is global reset which will require tx setup also
+	 */
+	if ((hw->mac.type == e1000_82542) &&
+	    (hw->revision_id == E1000_REVISION_2)) {
+		/*
+		 * if WMI was enabled then reenable it after issueing the
+		 * global or receive reset to the hardware.
+		 */
+
+		/*
+		 * Take receiver out of reset
+		 * clear E1000_RCTL_RST bit (and all others)
+		 */
+		E1000_WRITE_REG(hw, E1000_RCTL, 0);
+		msec_delay(5);
+		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
+#endif
+
+	/*
+	 * Restore original value
+	 */
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
 int
 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
 {
@@ -2237,19 +2275,19 @@
 e1000g_m_promisc(void *arg, boolean_t on)
 {
 	struct e1000g *Adapter = (struct e1000g *)arg;
-	ULONG RctlRegValue;
+	uint32_t rctl;
 
 	rw_enter(&Adapter->chip_lock, RW_WRITER);
 
-	RctlRegValue = E1000_READ_REG(&Adapter->Shared, RCTL);
+	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
 
 	if (on)
-		RctlRegValue |=
+		rctl |=
 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
 	else
-		RctlRegValue &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
-
-	E1000_WRITE_REG(&Adapter->Shared, RCTL, RctlRegValue);
+		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
+
+	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
 
 	Adapter->e1000g_promisc = on;
 
@@ -2262,23 +2300,16 @@
 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
 {
 	struct e1000g *Adapter = (struct e1000g *)arg;
+	struct e1000_hw *hw = &Adapter->shared;
 
 	switch (cap) {
 	case MAC_CAPAB_HCKSUM: {
 		uint32_t *txflags = cap_data;
-
-		/*
-		 * In Jumbo mode, enabling hardware checksum will cause
-		 * port hang.
-		 */
-		if (Adapter->Shared.max_frame_size > ETHERMAX)
-			return (B_FALSE);
-
 		/*
 		 * Checksum on/off selection via global parameters.
 		 *
 		 * If the chip is flagged as not capable of (correctly)
-		 * handling FULL checksumming, we don't enable it on either
+		 * handling checksumming, we don't enable it on either
 		 * Rx or Tx side.  Otherwise, we take this chip's settings
 		 * from the patchable global defaults.
 		 *
@@ -2287,15 +2318,13 @@
 		 * packets anyway, even if we haven't said we can deliver
 		 * them.
 		 */
-		switch (Adapter->Shared.mac_type) {
-		/*
-		 * Switch on hardware checksum offload of
-		 * chip 82540, 82545, 82546
-		 */
+		switch (hw->mac.type) {
 		case e1000_82540:
-		case e1000_82544:	/* pci8086,1008 */
+		case e1000_82544:
 		case e1000_82545:
-		case e1000_82545_rev_3:	/* pci8086,1026 */
+		case e1000_82545_rev_3:
+		case e1000_82546:
+		case e1000_82546_rev_3:
 		case e1000_82571:
 		case e1000_82572:
 		case e1000_82573:
@@ -2303,29 +2332,16 @@
 			*txflags = HCKSUM_IPHDRCKSUM | HCKSUM_INET_PARTIAL;
 			break;
 
-		case e1000_82546:	/* 82546EB. devID: 1010, 101d */
-		case e1000_82546_rev_3:	/* 82546GB. devID: 1079, 107a */
-#if !defined(__sparc) && !defined(__amd64)
-			/* Workaround for Galaxy on 32bit */
-			return (B_FALSE);
-#else
-			*txflags = HCKSUM_IPHDRCKSUM | HCKSUM_INET_PARTIAL;
-			break;
-#endif
-
 		/*
-		 * We don't have the following PRO 1000 chip types at
-		 * hand and haven't tested their hardware checksum
-		 * offload capability.  We had better switch them off.
-		 *	e1000_undefined = 0,
-		 *	e1000_82542_rev2_0,
-		 *	e1000_82542_rev2_1,
+		 * For the following Intel PRO/1000 chipsets, we have not
+		 * tested the hardware checksum offload capability, so we
+		 * disable the capability for them.
+		 *	e1000_82542,
 		 *	e1000_82543,
 		 *	e1000_82541,
 		 *	e1000_82541_rev_2,
 		 *	e1000_82547,
 		 *	e1000_82547_rev_2,
-		 *	e1000_num_macs
 		 */
 		default:
 			return (B_FALSE);
@@ -2368,26 +2384,23 @@
 }
 
 /*
- * **********************************************************************
- * Name:	 e1000g_getparam					*
- *									*
- * Description: This routine gets user-configured values out of the	*
- *	      configuration file e1000g.conf.				*
- * For each configurable value, there is a minimum, a maximum, and a	*
- * default.								*
- * If user does not configure a value, use the default.			*
- * If user configures below the minimum, use the minumum.		*
- * If user configures above the maximum, use the maxumum.		*
- *									*
- * Arguments:								*
- *      Adapter - A pointer to our adapter structure			*
- *									*
- * Returns:     None							*
- * **********************************************************************
+ * e1000g_get_conf - get configurations set in e1000g.conf
+ *
+ * This routine gets user-configured values out of the configuration
+ * file e1000g.conf.
+ *
+ * For each configurable value, there is a minimum, a maximum, and a
+ * default.
+ * If user does not configure a value, use the default.
+ * If user configures below the minimum, use the minumum.
+ * If user configures above the maximum, use the maxumum.
  */
 static void
-e1000g_getparam(struct e1000g *Adapter)
+e1000g_get_conf(struct e1000g *Adapter)
 {
+	struct e1000_hw *hw = &Adapter->shared;
+	boolean_t tbi_compatibility = B_FALSE;
+
 	/*
 	 * get each configurable property from e1000g.conf
 	 */
@@ -2395,67 +2408,59 @@
 	/*
 	 * NumTxDescriptors
 	 */
-	Adapter->NumTxDescriptors =
-	    e1000g_getprop(Adapter, "NumTxDescriptors",
-	    MINNUMTXDESCRIPTOR, MAXNUMTXDESCRIPTOR,
-	    DEFAULTNUMTXDESCRIPTOR);
+	Adapter->tx_desc_num =
+	    e1000g_get_prop(Adapter, "NumTxDescriptors",
+	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
+	    DEFAULT_NUM_TX_DESCRIPTOR);
 
 	/*
 	 * NumRxDescriptors
 	 */
-	Adapter->NumRxDescriptors =
-	    e1000g_getprop(Adapter, "NumRxDescriptors",
-	    MINNUMRXDESCRIPTOR, MAXNUMRXDESCRIPTOR,
-	    DEFAULTNUMRXDESCRIPTOR);
+	Adapter->rx_desc_num =
+	    e1000g_get_prop(Adapter, "NumRxDescriptors",
+	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
+	    DEFAULT_NUM_RX_DESCRIPTOR);
 
 	/*
 	 * NumRxFreeList
 	 */
-	Adapter->NumRxFreeList =
-	    e1000g_getprop(Adapter, "NumRxFreeList",
-	    MINNUMRXFREELIST, MAXNUMRXFREELIST,
-	    DEFAULTNUMRXFREELIST);
+	Adapter->rx_freelist_num =
+	    e1000g_get_prop(Adapter, "NumRxFreeList",
+	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
+	    DEFAULT_NUM_RX_FREELIST);
 
 	/*
 	 * NumTxPacketList
 	 */
-	Adapter->NumTxSwPacket =
-	    e1000g_getprop(Adapter, "NumTxPacketList",
-	    MINNUMTXSWPACKET, MAXNUMTXSWPACKET,
-	    DEFAULTNUMTXSWPACKET);
+	Adapter->tx_freelist_num =
+	    e1000g_get_prop(Adapter, "NumTxPacketList",
+	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
+	    DEFAULT_NUM_TX_FREELIST);
 
 	/*
 	 * FlowControl
 	 */
-	Adapter->Shared.fc_send_xon = B_TRUE;
-	Adapter->Shared.fc =
-	    e1000g_getprop(Adapter, "FlowControl",
-	    E1000_FC_NONE, 4, DEFAULTFLOWCONTROLVAL);
+	hw->mac.fc_send_xon = B_TRUE;
+	hw->mac.fc =
+	    e1000g_get_prop(Adapter, "FlowControl",
+	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
 	/* 4 is the setting that says "let the eeprom decide" */
-	if (Adapter->Shared.fc == 4)
-		Adapter->Shared.fc = E1000_FC_DEFAULT;
+	if (hw->mac.fc == 4)
+		hw->mac.fc = e1000_fc_default;
 
 	/*
-	 * MaxNumReceivePackets
+	 * Max Num Receive Packets on Interrupt
 	 */
-	Adapter->MaxNumReceivePackets =
-	    e1000g_getprop(Adapter, "MaxNumReceivePackets",
-	    MINNUMRCVPKTONINTR, MAXNUMRCVPKTONINTR,
-	    DEFAULTMAXNUMRCVPKTONINTR);
-
-	/*
-	 * TxInterruptDelay
-	 */
-	Adapter->TxInterruptDelay =
-	    e1000g_getprop(Adapter, "TxInterruptDelay",
-	    MINTXINTERRUPTDELAYVAL, MAXTXINTERRUPTDELAYVAL,
-	    DEFAULTTXINTERRUPTDELAYVAL);
+	Adapter->rx_limit_onintr =
+	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
+	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
+	    DEFAULT_RX_LIMIT_ON_INTR);
 
 	/*
 	 * PHY master slave setting
 	 */
-	Adapter->Shared.master_slave =
-	    e1000g_getprop(Adapter, "SetMasterSlave",
+	hw->phy.ms_type =
+	    e1000g_get_prop(Adapter, "SetMasterSlave",
 	    e1000_ms_hw_default, e1000_ms_auto,
 	    e1000_ms_hw_default);
 
@@ -2463,49 +2468,49 @@
 	 * Parameter which controls TBI mode workaround, which is only
 	 * needed on certain switches such as Cisco 6500/Foundry
 	 */
-	Adapter->Shared.tbi_compatibility_en =
-	    e1000g_getprop(Adapter, "TbiCompatibilityEnable",
-	    0, 1, DEFAULTTBICOMPATIBILITYENABLE);
+	tbi_compatibility =
+	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
+	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
+	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
 
 	/*
 	 * MSI Enable
 	 */
 	Adapter->msi_enabled =
-	    e1000g_getprop(Adapter, "MSIEnable",
-	    0, 1, DEFAULTMSIENABLE);
+	    e1000g_get_prop(Adapter, "MSIEnable",
+	    0, 1, DEFAULT_MSI_ENABLE);
 
 	/*
 	 * Interrupt Throttling Rate
 	 */
 	Adapter->intr_throttling_rate =
-	    e1000g_getprop(Adapter, "intr_throttling_rate",
-	    MININTERRUPTTHROTTLINGVAL, MAXINTERRUPTTHROTTLINGVAL,
-	    DEFAULTINTERRUPTTHROTTLINGVAL);
+	    e1000g_get_prop(Adapter, "intr_throttling_rate",
+	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
+	    DEFAULT_INTR_THROTTLING);
 
 	/*
 	 * Adaptive Interrupt Blanking Enable/Disable
 	 * It is enabled by default
 	 */
 	Adapter->intr_adaptive =
-	    (e1000g_getprop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
+	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
 	    B_TRUE : B_FALSE;
 }
 
 /*
- * **********************************************************************
- * Name:	 e1000g_getprop						*
- *									*
- * Description: get a user-configure property value out of the		*
- *   configuration file e1000g.conf.					*
- *   Caller provides name of the property, a default value, a		*
- *   minimum value, and a maximum value.				*
- *									*
- * Returns: configured value of the property, with default, minimum and	*
- *   maximum properly applied.						*
- * **********************************************************************
+ * e1000g_get_prop - routine to read properties
+ *
+ * Get a user-configure property value out of the configuration
+ * file e1000g.conf.
+ *
+ * Caller provides name of the property, a default value, a minimum
+ * value, and a maximum value.
+ *
+ * Return configured value of the property, with default, minimum and
+ * maximum properly applied.
  */
 static int
-e1000g_getprop(struct e1000g *Adapter,	/* point to per-adapter structure */
+e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
     char *propname,		/* name of the property */
     int minval,			/* minimum acceptable value */
     int maxval,			/* maximim acceptable value */
@@ -2521,12 +2526,12 @@
 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
 		/* got some properties, test if we got enough */
-		if (Adapter->AdapterInstance < nprops) {
-			propval = props[Adapter->AdapterInstance];
+		if (Adapter->instance < nprops) {
+			propval = props[Adapter->instance];
 		} else {
 			/* not enough properties configured */
 			propval = defval;
-			e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
+			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
 			    "Not Enough %s values found in e1000g.conf"
 			    " - set to %d\n",
 			    propname, propval);
@@ -2544,14 +2549,14 @@
 	 */
 	if (propval > maxval) {
 		propval = maxval;
-		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
 		    "Too High %s value in e1000g.conf - set to %d\n",
 		    propname, propval);
 	}
 
 	if (propval < minval) {
 		propval = minval;
-		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
 		    "Too Low %s value in e1000g.conf - set to %d\n",
 		    propname, propval);
 	}
@@ -2567,7 +2572,7 @@
 	struct e1000_hw *hw;
 	uint32_t reg_tarc;
 
-	hw = &Adapter->Shared;
+	hw = &Adapter->shared;
 
 	if (e1000g_link_up(Adapter)) {
 		/*
@@ -2582,14 +2587,14 @@
 
 			Adapter->tx_link_down_timeout = 0;
 
-			if ((hw->mac_type == e1000_82571) ||
-			    (hw->mac_type == e1000_82572)) {
-				reg_tarc = E1000_READ_REG(hw, TARC0);
+			if ((hw->mac.type == e1000_82571) ||
+			    (hw->mac.type == e1000_82572)) {
+				reg_tarc = E1000_READ_REG(hw, E1000_TARC0);
 				if (speed == SPEED_1000)
 					reg_tarc |= (1 << 21);
 				else
 					reg_tarc &= ~(1 << 21);
-				E1000_WRITE_REG(hw, TARC0, reg_tarc);
+				E1000_WRITE_REG(hw, E1000_TARC0, reg_tarc);
 			}
 		}
 		Adapter->smartspeed = 0;
@@ -2605,7 +2610,7 @@
 			 * driver loses link disable auto master/slave
 			 * resolution.
 			 */
-			if (hw->phy_type == e1000_phy_igp) {
+			if (hw->phy.type == e1000_phy_igp) {
 				e1000_read_phy_reg(hw,
 				    PHY_1000T_CTRL, &phydata);
 				phydata |= CR_1000T_MS_ENABLE;
@@ -2623,7 +2628,7 @@
 			} else if (Adapter->tx_link_down_timeout ==
 			    MAX_TX_LINK_DOWN_TIMEOUT) {
 				rw_enter(&Adapter->chip_lock, RW_WRITER);
-				e1000g_tx_drop(Adapter);
+				e1000g_tx_clean(Adapter);
 				rw_exit(&Adapter->chip_lock);
 				Adapter->tx_link_down_timeout++;
 			}
@@ -2634,31 +2639,29 @@
 }
 
 static void
-e1000g_LocalTimer(void *ws)
+e1000g_local_timer(void *ws)
 {
 	struct e1000g *Adapter = (struct e1000g *)ws;
 	struct e1000_hw *hw;
 	e1000g_ether_addr_t ether_addr;
 	boolean_t link_changed;
 
-	hw = &Adapter->Shared;
-
-	(void) e1000g_tx_freemsg((caddr_t)Adapter, NULL);
+	hw = &Adapter->shared;
+
+	(void) e1000g_tx_freemsg(Adapter->tx_ring);
 
 	if (e1000g_stall_check(Adapter)) {
-		e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
 		    "Tx stall detected. Activate automatic recovery.\n");
-		Adapter->StallWatchdog = 0;
-		Adapter->tx_recycle_fail = 0;
 		Adapter->reset_count++;
 		(void) e1000g_reset(Adapter);
 	}
 
 	link_changed = B_FALSE;
-	mutex_enter(&Adapter->e1000g_linklock);
+	mutex_enter(&Adapter->link_lock);
 	if (Adapter->link_complete)
 		link_changed = e1000g_link_check(Adapter);
-	mutex_exit(&Adapter->e1000g_linklock);
+	mutex_exit(&Adapter->link_lock);
 
 	if (link_changed) {
 		/*
@@ -2666,7 +2669,7 @@
 		 * down event. Reset the adapter to recover it.
 		 */
 		if ((Adapter->link_state == LINK_STATE_DOWN) &&
-		    (hw->mac_type == e1000_80003es2lan))
+		    (hw->mac.type == e1000_80003es2lan))
 			(void) e1000g_reset(Adapter);
 
 		mac_link_update(Adapter->mh, Adapter->link_state);
@@ -2677,27 +2680,28 @@
 	 * be overwritten when there is a reset on the other port.
 	 * Detect this circumstance and correct it.
 	 */
-	if ((hw->mac_type == e1000_82571) && hw->laa_is_present) {
-		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, RA, 0);
-		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, RA, 1);
+	if ((hw->mac.type == e1000_82571) &&
+	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
+		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
+		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
 
 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
 
-		if ((ether_addr.mac.addr[5] != hw->mac_addr[0]) ||
-		    (ether_addr.mac.addr[4] != hw->mac_addr[1]) ||
-		    (ether_addr.mac.addr[3] != hw->mac_addr[2]) ||
-		    (ether_addr.mac.addr[2] != hw->mac_addr[3]) ||
-		    (ether_addr.mac.addr[1] != hw->mac_addr[4]) ||
-		    (ether_addr.mac.addr[0] != hw->mac_addr[5])) {
-			e1000_rar_set(hw, hw->mac_addr, 0);
+		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
+		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
+		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
+		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
+		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
+		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
+			e1000_rar_set(hw, hw->mac.addr, 0);
 		}
 	}
 
 	/*
-	 * RP: ttl_workaround : DCR 49
+	 * Long TTL workaround for 82541/82547
 	 */
-	e1000_igp_ttl_workaround(hw);
+	e1000_igp_ttl_workaround_82547(hw);
 
 	/*
 	 * Check for Adaptive IFS settings If there are lots of collisions
@@ -2712,9 +2716,9 @@
 	/*
 	 * Set Timer Interrupts
 	 */
-	E1000_WRITE_REG(hw, ICS, E1000_IMS_RXT0);
-
-	restart_timeout(Adapter);
+	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
+
+	restart_watchdog_timer(Adapter);
 }
 
 /*
@@ -2730,37 +2734,29 @@
 {
 	struct e1000g *Adapter = (struct e1000g *)arg;
 
-	mutex_enter(&Adapter->e1000g_linklock);
+	mutex_enter(&Adapter->link_lock);
 	Adapter->link_complete = B_TRUE;
 	Adapter->link_tid = 0;
-	mutex_exit(&Adapter->e1000g_linklock);
+	mutex_exit(&Adapter->link_lock);
 }
 
 /*
- * **********************************************************************
- * Name:      e1000g_force_speed_duplex					*
- *									*
- * Description:								*
- *   This function forces speed and duplex for 10/100 Mbps speeds	*
- *   and also for 1000 Mbps speeds, it advertises half or full duplex	*
- *									*
- * Parameter Passed:							*
- *   struct e1000g* (information of adpater)				*
- *									*
- * Return Value:							*
- *									*
- * Functions called:							*
- * **********************************************************************
+ * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
+ *
+ * This function read the forced speed and duplex for 10/100 Mbps speeds
+ * and also for 1000 Mbps speeds from the e1000g.conf file
  */
 static void
 e1000g_force_speed_duplex(struct e1000g *Adapter)
 {
 	int forced;
+	struct e1000_mac_info *mac = &Adapter->shared.mac;
+	struct e1000_phy_info *phy = &Adapter->shared.phy;
 
 	/*
 	 * get value out of config file
 	 */
-	forced = e1000g_getprop(Adapter, "ForceSpeedDuplex",
+	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
 
 	switch (forced) {
@@ -2768,29 +2764,29 @@
 		/*
 		 * Disable Auto Negotiation
 		 */
-		Adapter->Shared.autoneg = B_FALSE;
-		Adapter->Shared.forced_speed_duplex = e1000_10_half;
+		mac->autoneg = B_FALSE;
+		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 		break;
 	case GDIAG_10_FULL:
 		/*
 		 * Disable Auto Negotiation
 		 */
-		Adapter->Shared.autoneg = B_FALSE;
-		Adapter->Shared.forced_speed_duplex = e1000_10_full;
+		mac->autoneg = B_FALSE;
+		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 		break;
 	case GDIAG_100_HALF:
 		/*
 		 * Disable Auto Negotiation
 		 */
-		Adapter->Shared.autoneg = B_FALSE;
-		Adapter->Shared.forced_speed_duplex = e1000_100_half;
+		mac->autoneg = B_FALSE;
+		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 		break;
 	case GDIAG_100_FULL:
 		/*
 		 * Disable Auto Negotiation
 		 */
-		Adapter->Shared.autoneg = B_FALSE;
-		Adapter->Shared.forced_speed_duplex = e1000_100_full;
+		mac->autoneg = B_FALSE;
+		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 		break;
 	case GDIAG_1000_FULL:
 		/*
@@ -2800,13 +2796,13 @@
 		 * 1000Mbps.  This is different from 10/100 operation, where
 		 * we are allowed to link without any negotiation.
 		 */
-		Adapter->Shared.autoneg = B_TRUE;
-		Adapter->Shared.autoneg_advertised = ADVERTISE_1000_FULL;
+		mac->autoneg = B_TRUE;
+		phy->autoneg_advertised = ADVERTISE_1000_FULL;
 		break;
 	default:	/* obey the setting of AutoNegAdvertised */
-		Adapter->Shared.autoneg = B_TRUE;
-		Adapter->Shared.autoneg_advertised =
-		    (uint16_t)e1000g_getprop(Adapter, "AutoNegAdvertised",
+		mac->autoneg = B_TRUE;
+		phy->autoneg_advertised =
+		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
 		break;
@@ -2814,224 +2810,210 @@
 }
 
 /*
- * **********************************************************************
- * Name:      e1000g_get_max_frame_size					*
- *									*
- * Description:								*
- *   This function reads MaxFrameSize from e1000g.conf and sets it for	*
- *   adapter.								*
- *									*
- * Parameter Passed:							*
- *   struct e1000g* (information of adpater)				*
- *									*
- * Return Value:							*
- *									*
- * Functions called:							*
- * **********************************************************************
+ * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
+ *
+ * This function reads MaxFrameSize from e1000g.conf
  */
 static void
 e1000g_get_max_frame_size(struct e1000g *Adapter)
 {
 	int max_frame;
+	struct e1000_mac_info *mac = &Adapter->shared.mac;
+	struct e1000_phy_info *phy = &Adapter->shared.phy;
 
 	/*
 	 * get value out of config file
 	 */
-	max_frame = e1000g_getprop(Adapter, "MaxFrameSize", 0, 3, 0);
+	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
 
 	switch (max_frame) {
 	case 0:
-		Adapter->Shared.max_frame_size = ETHERMAX;
+		mac->max_frame_size = ETHERMAX;
 		break;
 	case 1:
-		Adapter->Shared.max_frame_size = FRAME_SIZE_UPTO_4K;
+		mac->max_frame_size = FRAME_SIZE_UPTO_4K;
 		break;
 	case 2:
-		Adapter->Shared.max_frame_size = FRAME_SIZE_UPTO_8K;
+		mac->max_frame_size = FRAME_SIZE_UPTO_8K;
 		break;
 	case 3:
-		if (Adapter->Shared.mac_type < e1000_82571)
-			Adapter->Shared.max_frame_size = FRAME_SIZE_UPTO_16K;
+		if (mac->type < e1000_82571)
+			mac->max_frame_size = FRAME_SIZE_UPTO_16K;
 		else
-			Adapter->Shared.max_frame_size = FRAME_SIZE_UPTO_10K;
+			mac->max_frame_size = FRAME_SIZE_UPTO_9K;
 		break;
 	default:
-		Adapter->Shared.max_frame_size = ETHERMAX;
+		mac->max_frame_size = ETHERMAX;
 		break;
 	}	/* switch */
 
 	/* ich8 does not do jumbo frames */
-	if (Adapter->Shared.mac_type == e1000_ich8lan) {
-		Adapter->Shared.max_frame_size = ETHERMAX;
+	if (mac->type == e1000_ich8lan) {
+		mac->max_frame_size = ETHERMAX;
+	}
+
+	/* ich9 does not do jumbo frames on one phy type */
+	if ((mac->type == e1000_ich9lan) &&
+	    (phy->type == e1000_phy_ife)) {
+		mac->max_frame_size = ETHERMAX;
 	}
 }
 
 static void
-arm_timer(struct e1000g *Adapter)
+arm_watchdog_timer(struct e1000g *Adapter)
 {
-	Adapter->WatchDogTimer_id =
-	    timeout(e1000g_LocalTimer,
+	Adapter->watchdog_tid =
+	    timeout(e1000g_local_timer,
 	    (void *)Adapter, 1 * drv_usectohz(1000000));
 }
+#pragma inline(arm_watchdog_timer)
+
+static void
+enable_watchdog_timer(struct e1000g *Adapter)
+{
+	mutex_enter(&Adapter->watchdog_lock);
+
+	if (!Adapter->watchdog_timer_enabled) {
+		Adapter->watchdog_timer_enabled = B_TRUE;
+		Adapter->watchdog_timer_started = B_TRUE;
+		arm_watchdog_timer(Adapter);
+	}
+
+	mutex_exit(&Adapter->watchdog_lock);
+}
 
 static void
-enable_timeout(struct e1000g *Adapter)
-{
-	mutex_enter(&Adapter->e1000g_timeout_lock);
-
-	if (!Adapter->timeout_enabled) {
-		Adapter->timeout_enabled = B_TRUE;
-		Adapter->timeout_started = B_TRUE;
-
-		arm_timer(Adapter);
-	}
-
-	mutex_exit(&Adapter->e1000g_timeout_lock);
-}
-
-static void
-disable_timeout(struct e1000g *Adapter)
+disable_watchdog_timer(struct e1000g *Adapter)
 {
 	timeout_id_t tid;
 
-	mutex_enter(&Adapter->e1000g_timeout_lock);
-
-	Adapter->timeout_enabled = B_FALSE;
-	Adapter->timeout_started = B_FALSE;
-
-	tid = Adapter->WatchDogTimer_id;
-	Adapter->WatchDogTimer_id = 0;
-
-	mutex_exit(&Adapter->e1000g_timeout_lock);
+	mutex_enter(&Adapter->watchdog_lock);
+
+	Adapter->watchdog_timer_enabled = B_FALSE;
+	Adapter->watchdog_timer_started = B_FALSE;
+	tid = Adapter->watchdog_tid;
+	Adapter->watchdog_tid = 0;
+
+	mutex_exit(&Adapter->watchdog_lock);
 
 	if (tid != 0)
 		(void) untimeout(tid);
 }
 
 static void
-start_timeout(struct e1000g *Adapter)
+start_watchdog_timer(struct e1000g *Adapter)
 {
-	mutex_enter(&Adapter->e1000g_timeout_lock);
-
-	if (Adapter->timeout_enabled) {
-		if (!Adapter->timeout_started) {
-			Adapter->timeout_started = B_TRUE;
-			arm_timer(Adapter);
+	mutex_enter(&Adapter->watchdog_lock);
+
+	if (Adapter->watchdog_timer_enabled) {
+		if (!Adapter->watchdog_timer_started) {
+			Adapter->watchdog_timer_started = B_TRUE;
+			arm_watchdog_timer(Adapter);
 		}
 	}
 
-	mutex_exit(&Adapter->e1000g_timeout_lock);
+	mutex_exit(&Adapter->watchdog_lock);
+}
+
+static void
+restart_watchdog_timer(struct e1000g *Adapter)
+{
+	mutex_enter(&Adapter->watchdog_lock);
+
+	if (Adapter->watchdog_timer_started)
+		arm_watchdog_timer(Adapter);
+
+	mutex_exit(&Adapter->watchdog_lock);
 }
 
 static void
-restart_timeout(struct e1000g *Adapter)
+stop_watchdog_timer(struct e1000g *Adapter)
 {
-	mutex_enter(&Adapter->e1000g_timeout_lock);
-
-	if (Adapter->timeout_started)
-		arm_timer(Adapter);
-
-	mutex_exit(&Adapter->e1000g_timeout_lock);
+	timeout_id_t tid;
+
+	mutex_enter(&Adapter->watchdog_lock);
+
+	Adapter->watchdog_timer_started = B_FALSE;
+	tid = Adapter->watchdog_tid;
+	Adapter->watchdog_tid = 0;
+
+	mutex_exit(&Adapter->watchdog_lock);
+
+	if (tid != 0)
+		(void) untimeout(tid);
 }
 
 static void
-stop_timeout(struct e1000g *Adapter)
+stop_link_timer(struct e1000g *Adapter)
 {
 	timeout_id_t tid;
 
-	mutex_enter(&Adapter->e1000g_timeout_lock);
-
-	Adapter->timeout_started = B_FALSE;
-
-	tid = Adapter->WatchDogTimer_id;
-	Adapter->WatchDogTimer_id = 0;
-
-	mutex_exit(&Adapter->e1000g_timeout_lock);
+	/* Disable the link timer */
+	mutex_enter(&Adapter->link_lock);
+
+	tid = Adapter->link_tid;
+	Adapter->link_tid = 0;
+
+	mutex_exit(&Adapter->link_lock);
+
+	if (tid != 0)
+		(void) untimeout(tid);
+}
+
+static void
+stop_82547_timer(e1000g_tx_ring_t *tx_ring)
+{
+	timeout_id_t tid;
+
+	/* Disable the tx timer for 82547 chipset */
+	mutex_enter(&tx_ring->tx_lock);
+
+	tx_ring->timer_enable_82547 = B_FALSE;
+	tid = tx_ring->timer_id_82547;
+	tx_ring->timer_id_82547 = 0;
+
+	mutex_exit(&tx_ring->tx_lock);
 
 	if (tid != 0)
 		(void) untimeout(tid);
 }
 
 void
-e1000g_DisableInterrupt(struct e1000g *Adapter)
+e1000g_clear_interrupt(struct e1000g *Adapter)
 {
-	E1000_WRITE_REG(&Adapter->Shared, IMC,
-	    0xffffffff & ~E1000_IMC_RXSEQ);
+	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
+	    0xffffffff & ~E1000_IMS_RXSEQ);
 }
 
 void
-e1000g_EnableInterrupt(struct e1000g *Adapter)
+e1000g_mask_interrupt(struct e1000g *Adapter)
 {
-	E1000_WRITE_REG(&Adapter->Shared, IMS,
+	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW & ~E1000_IMS_TXQE);
 }
 
 void
-e1000g_DisableAllInterrupts(struct e1000g *Adapter)
-{
-	E1000_WRITE_REG(&Adapter->Shared, IMC, 0xffffffff)
-}
-
-void
-e1000g_EnableTxInterrupt(struct e1000g *Adapter)
-{
-	E1000_WRITE_REG(&Adapter->Shared, IMS, E1000G_IMS_TX_INTR);
-}
-
-void
-e1000g_DisableTxInterrupt(struct e1000g *Adapter)
+e1000g_clear_all_interrupts(struct e1000g *Adapter)
 {
-	E1000_WRITE_REG(&Adapter->Shared, IMC, E1000G_IMC_TX_INTR);
-}
-
-void
-e1000_pci_set_mwi(struct e1000_hw *hw)
-{
-	uint16_t val = hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE;
-	e1000_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &val);
-}
-
-void
-e1000_pci_clear_mwi(struct e1000_hw *hw)
-{
-	uint16_t val = hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE;
-	e1000_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &val);
+	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
 }
 
 void
-e1000_write_pci_cfg(struct e1000_hw *adapter,
-    uint32_t reg, uint16_t *value)
+e1000g_mask_tx_interrupt(struct e1000g *Adapter)
 {
-	pci_config_put16(((struct e1000g_osdep *)(adapter->back))->handle,
-	    reg, *value);
+	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000G_IMS_TX_INTR);
 }
 
 void
-e1000_read_pci_cfg(struct e1000_hw *adapter,
-    uint32_t reg, uint16_t *value)
+e1000g_clear_tx_interrupt(struct e1000g *Adapter)
 {
-	*value =
-	    pci_config_get16(((struct e1000g_osdep *)(adapter->back))->
-	    handle, reg);
+	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000G_IMS_TX_INTR);
 }
 
-#ifndef __sparc
-void
-e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
-{
-	outl(port, value);
-}
-
-uint32_t
-e1000_io_read(struct e1000_hw *hw, unsigned long port)
-{
-	return (inl(port));
-}
-#endif
-
 static void
-e1000g_smartspeed(struct e1000g *adapter)
+e1000g_smartspeed(struct e1000g *Adapter)
 {
+	struct e1000_hw *hw = &Adapter->shared;
 	uint16_t phy_status;
 	uint16_t phy_ctrl;
 
@@ -3039,27 +3021,25 @@
 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
 	 * advertising 1000Full, we don't even use the workaround
 	 */
-	if ((adapter->Shared.phy_type != e1000_phy_igp) ||
-	    !adapter->Shared.autoneg ||
-	    !(adapter->Shared.autoneg_advertised & ADVERTISE_1000_FULL))
+	if ((hw->phy.type != e1000_phy_igp) ||
+	    !hw->mac.autoneg ||
+	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
 		return;
 
 	/*
 	 * True if this is the first call of this function or after every
 	 * 30 seconds of not having link
 	 */
-	if (adapter->smartspeed == 0) {
+	if (Adapter->smartspeed == 0) {
 		/*
 		 * If Master/Slave config fault is asserted twice, we
 		 * assume back-to-back
 		 */
-		e1000_read_phy_reg(&adapter->Shared, PHY_1000T_STATUS,
-		    &phy_status);
+		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
 			return;
 
-		e1000_read_phy_reg(&adapter->Shared, PHY_1000T_STATUS,
-		    &phy_status);
+		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
 			return;
 		/*
@@ -3067,8 +3047,7 @@
 		 * insists! there's a fault in the master/slave
 		 * relationship that was "negotiated"
 		 */
-		e1000_read_phy_reg(&adapter->Shared, PHY_1000T_CTRL,
-		    &phy_ctrl);
+		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
 		/*
 		 * Is the phy configured for manual configuration of
 		 * master/slave?
@@ -3079,22 +3058,21 @@
 			 * auto configuration) of master/slave
 			 */
 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
-			e1000_write_phy_reg(&adapter->Shared,
+			e1000_write_phy_reg(hw,
 			    PHY_1000T_CTRL, phy_ctrl);
 			/*
 			 * Effectively starting the clock
 			 */
-			adapter->smartspeed++;
+			Adapter->smartspeed++;
 			/*
 			 * Restart autonegotiation
 			 */
-			if (!e1000_phy_setup_autoneg(&adapter->Shared) &&
-			    !e1000_read_phy_reg(&adapter->Shared, PHY_CTRL,
-			    &phy_ctrl)) {
+			if (!e1000_phy_setup_autoneg(hw) &&
+			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
 				    MII_CR_RESTART_AUTO_NEG);
-				e1000_write_phy_reg(&adapter->Shared,
-				    PHY_CTRL, phy_ctrl);
+				e1000_write_phy_reg(hw,
+				    PHY_CONTROL, phy_ctrl);
 			}
 		}
 		return;
@@ -3103,7 +3081,7 @@
 		 * you should reset the smartspeed counter once you obtain
 		 * link
 		 */
-	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
+	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
 		/*
 		 * Yes.  Remember, we did at the start determine that
 		 * there's a master/slave configuration fault, so we're
@@ -3115,22 +3093,18 @@
 		/*
 		 * If still no link, perhaps using 2/3 pair cable
 		 */
-		e1000_read_phy_reg(&adapter->Shared, PHY_1000T_CTRL,
-		    &phy_ctrl);
+		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
 		phy_ctrl |= CR_1000T_MS_ENABLE;
-		e1000_write_phy_reg(&adapter->Shared, PHY_1000T_CTRL,
-		    phy_ctrl);
+		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
 		/*
 		 * Restart autoneg with phy enabled for manual
 		 * configuration of master/slave
 		 */
-		if (!e1000_phy_setup_autoneg(&adapter->Shared) &&
-		    !e1000_read_phy_reg(&adapter->Shared, PHY_CTRL,
-		    &phy_ctrl)) {
+		if (!e1000_phy_setup_autoneg(hw) &&
+		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
 			phy_ctrl |=
 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
-			e1000_write_phy_reg(&adapter->Shared, PHY_CTRL,
-			    phy_ctrl);
+			e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
 		}
 		/*
 		 * Hopefully, there are no more faults and we've obtained
@@ -3141,8 +3115,8 @@
 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
 	 * seconds)
 	 */
-	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
-		adapter->smartspeed = 0;
+	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
+		Adapter->smartspeed = 0;
 }
 
 static boolean_t
@@ -3160,47 +3134,41 @@
 }
 
 /*
- * **********************************************************************
- * Name:								*
- *	e1000g_stall_check						*
- *									*
- * Description:								*
- *	This function checks if the adapter is stalled. (In transmit)	*
- *									*
- *	It is called each time the timeout is invoked.			*
- *	If the transmit descriptor reclaim continuously fails,		*
- *	the watchdog value will increment by 1. If the watchdog		*
- *	value exceeds the threshold, the adapter is assumed to		*
- *	have stalled and need to be reset.				*
- *									*
- * Arguments:								*
- *	Adapter - A pointer to our context sensitive "Adapter"		*
- *	structure.							*
- *									*
- * Returns:								*
- *	B_TRUE - The dapter is assumed to have stalled.			*
- *	B_FALSE								*
- *									*
- * **********************************************************************
+ * e1000g_stall_check - check for tx stall
+ *
+ * This function checks if the adapter is stalled (in transmit).
+ *
+ * It is called each time the watchdog timeout is invoked.
+ * If the transmit descriptor reclaim continuously fails,
+ * the watchdog value will increment by 1. If the watchdog
+ * value exceeds the threshold, the adapter is assumed to
+ * have stalled and need to be reset.
  */
 static boolean_t
 e1000g_stall_check(struct e1000g *Adapter)
 {
+	e1000g_tx_ring_t *tx_ring;
+
+	tx_ring = Adapter->tx_ring;
+
 	if (Adapter->link_state != LINK_STATE_UP)
 		return (B_FALSE);
 
-	if (Adapter->tx_recycle_fail > 0)
-		Adapter->StallWatchdog++;
+	if (tx_ring->recycle_fail > 0)
+		tx_ring->stall_watchdog++;
 	else
-		Adapter->StallWatchdog = 0;
-
-	if (Adapter->StallWatchdog < E1000G_STALL_WATCHDOG_COUNT)
+		tx_ring->stall_watchdog = 0;
+
+	if (tx_ring->stall_watchdog < E1000G_STALL_WATCHDOG_COUNT)
 		return (B_FALSE);
 
+	tx_ring->stall_watchdog = 0;
+	tx_ring->recycle_fail = 0;
+
 	return (B_TRUE);
 }
 
-
+#ifdef E1000G_DEBUG
 static enum ioc_reply
 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
 {
@@ -3221,7 +3189,7 @@
 		break;
 
 	deault:
-		e1000g_DEBUGLOG_1(e1000gp, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
 		    iocp->ioc_cmd);
 		return (IOC_INVAL);
@@ -3243,7 +3211,7 @@
 	switch (ppd->pp_acc_space) {
 
 	default:
-		e1000g_DEBUGLOG_1(e1000gp, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
 		    ppd->pp_acc_space);
 		return (IOC_INVAL);
@@ -3295,10 +3263,9 @@
 	ddi_acc_handle_t handle;
 	uint32_t *regaddr;
 
-	handle =
-	    ((struct e1000g_osdep *)(&e1000gp->Shared)->back)->E1000_handle;
+	handle = e1000gp->osdep.reg_handle;
 	regaddr =
-	    (uint32_t *)((&e1000gp->Shared)->hw_addr + ppd->pp_acc_offset);
+	    (uint32_t *)(e1000gp->shared.hw_addr + ppd->pp_acc_offset);
 
 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
 }
@@ -3310,10 +3277,9 @@
 	uint32_t *regaddr;
 	uint32_t value;
 
-	handle =
-	    ((struct e1000g_osdep *)(&e1000gp->Shared)->back)->E1000_handle;
+	handle = e1000gp->osdep.reg_handle;
 	regaddr =
-	    (uint32_t *)((&e1000gp->Shared)->hw_addr + ppd->pp_acc_offset);
+	    (uint32_t *)(e1000gp->shared.hw_addr + ppd->pp_acc_offset);
 	value = (uint32_t)ppd->pp_acc_data;
 
 	ddi_put32(handle, regaddr, value);
@@ -3345,7 +3311,7 @@
 		break;
 	}
 
-	e1000g_DEBUGLOG_4(e1000gp, e1000g_INFO_LEVEL,
+	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
 	    (void *)e1000gp, (void *)ppd, value, vaddr);
 
@@ -3361,7 +3327,7 @@
 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
 	value = ppd->pp_acc_data;
 
-	e1000g_DEBUGLOG_4(e1000gp, e1000g_INFO_LEVEL,
+	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
 	    (void *)e1000gp, (void *)ppd, value, vaddr);
 
@@ -3383,6 +3349,7 @@
 		break;
 	}
 }
+#endif
 
 /*
  * Loopback Support
@@ -3410,7 +3377,7 @@
 	uint16_t phy_status;
 	uint16_t phy_ext_status;
 
-	hw = &Adapter->Shared;
+	hw = &Adapter->shared;
 
 	if (mp->b_cont == NULL)
 		return (IOC_INVAL);
@@ -3433,7 +3400,7 @@
 		    (hw->media_type == e1000_media_type_fiber) ||
 		    (hw->media_type == e1000_media_type_internal_serdes)) {
 			value += sizeof (lb_phy);
-			switch (hw->mac_type) {
+			switch (hw->mac.type) {
 			case e1000_82571:
 			case e1000_82572:
 				value += sizeof (lb_external1000);
@@ -3460,7 +3427,7 @@
 		    (hw->media_type == e1000_media_type_fiber) ||
 		    (hw->media_type == e1000_media_type_internal_serdes)) {
 			value += sizeof (lb_phy);
-			switch (hw->mac_type) {
+			switch (hw->mac.type) {
 			case e1000_82571:
 			case e1000_82572:
 				value += sizeof (lb_external1000);
@@ -3485,7 +3452,7 @@
 		    (hw->media_type == e1000_media_type_fiber) ||
 		    (hw->media_type == e1000_media_type_internal_serdes)) {
 			lbpp[value++] = lb_phy;
-			switch (hw->mac_type) {
+			switch (hw->mac.type) {
 			case e1000_82571:
 			case e1000_82572:
 				lbpp[value++] = lb_external1000;
@@ -3537,7 +3504,7 @@
 	if (mode == Adapter->loopback_mode)
 		return (B_TRUE);
 
-	hw = &Adapter->Shared;
+	hw = &Adapter->shared;
 	times = 0;
 
 again:
@@ -3549,9 +3516,9 @@
 		/* Get original speed and duplex settings */
 		e1000g_force_speed_duplex(Adapter);
 		/* Reset the chip */
-		hw->wait_autoneg_complete = B_TRUE;
+		hw->phy.wait_for_link = B_TRUE;
 		(void) e1000g_reset(Adapter);
-		hw->wait_autoneg_complete = B_FALSE;
+		hw->phy.wait_for_link = B_FALSE;
 		break;
 
 	case E1000G_LB_EXTERNAL_1000:
@@ -3579,15 +3546,15 @@
 	case E1000G_LB_EXTERNAL_10:
 	case E1000G_LB_INTERNAL_PHY:
 		/* Wait for link up */
-		for (i = (PHY_FORCE_TIME * 2); i > 0; i--)
+		for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
 			msec_delay(100);
 
 		if (!e1000g_link_up(Adapter)) {
-			e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
+			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
 			    "Failed to get the link up");
 			if (times < 2) {
 				/* Reset the link */
-				e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
+				E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
 				    "Reset the link ...");
 				(void) e1000g_reset(Adapter);
 				goto again;
@@ -3615,16 +3582,16 @@
 	uint32_t status;
 	uint16_t phy_ctrl;
 
-	hw = &Adapter->Shared;
+	hw = &Adapter->shared;
 
 	/* Disable Smart Power Down */
 	phy_spd_state(hw, B_FALSE);
 
-	e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl);
+	e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
 
-	switch (hw->mac_type) {
+	switch (hw->mac.type) {
 	case e1000_82540:
 	case e1000_82545:
 	case e1000_82545_rev_3:
@@ -3634,28 +3601,28 @@
 		/* Auto-MDI/MDIX off */
 		e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
 		/* Reset PHY to update Auto-MDI/MDIX */
-		e1000_write_phy_reg(hw, PHY_CTRL,
+		e1000_write_phy_reg(hw, PHY_CONTROL,
 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
 		/* Reset PHY to auto-neg off and force 1000 */
-		e1000_write_phy_reg(hw, PHY_CTRL,
+		e1000_write_phy_reg(hw, PHY_CONTROL,
 		    phy_ctrl | MII_CR_RESET);
 		break;
 	}
 
 	/* Set loopback */
-	e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl | MII_CR_LOOPBACK);
+	e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
 
 	msec_delay(250);
 
 	/* Now set up the MAC to the same speed/duplex as the PHY. */
-	ctrl = E1000_READ_REG(hw, CTRL);
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
 
-	switch (hw->mac_type) {
+	switch (hw->mac.type) {
 	case e1000_82540:
 	case e1000_82545:
 	case e1000_82545_rev_3:
@@ -3666,9 +3633,9 @@
 		 * so that the status is updated on link
 		 */
 		if (hw->media_type == e1000_media_type_internal_serdes) {
-			E1000_WRITE_REG(hw, CTRL, ctrl);
+			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 			msec_delay(100);
-			ctrl = E1000_READ_REG(hw, CTRL);
+			ctrl = E1000_READ_REG(hw, E1000_CTRL);
 		}
 
 		if (hw->media_type == e1000_media_type_copper) {
@@ -3676,7 +3643,7 @@
 			ctrl |= E1000_CTRL_ILOS;
 		} else {
 			/* Set ILOS on fiber nic if half duplex is detected */
-			status = E1000_READ_REG(hw, STATUS);
+			status = E1000_READ_REG(hw, E1000_STATUS);
 			if ((status & E1000_STATUS_FD) == 0)
 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
 		}
@@ -3686,7 +3653,7 @@
 	case e1000_82572:
 		if (hw->media_type != e1000_media_type_copper) {
 			/* Set ILOS on fiber nic if half duplex is detected */
-			status = E1000_READ_REG(hw, STATUS);
+			status = E1000_READ_REG(hw, E1000_STATUS);
 			if ((status & E1000_STATUS_FD) == 0)
 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
 		}
@@ -3697,13 +3664,13 @@
 		break;
 	}
 
-	E1000_WRITE_REG(hw, CTRL, ctrl);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 
 	/*
 	 * Disable PHY receiver for 82540/545/546 and 82573 Family.
 	 * For background, see comments above e1000g_set_internal_loopback().
 	 */
-	switch (hw->mac_type) {
+	switch (hw->mac.type) {
 	case e1000_82540:
 	case e1000_82545:
 	case e1000_82545_rev_3:
@@ -3728,7 +3695,7 @@
 	uint32_t status;
 	uint32_t txcw;
 
-	hw = &Adapter->Shared;
+	hw = &Adapter->shared;
 
 	/* Disable Smart Power Down */
 	phy_spd_state(hw, B_FALSE);
@@ -3736,27 +3703,27 @@
 	switch (hw->media_type) {
 	case e1000_media_type_copper:
 		/* Force link up (Must be done before the PHY writes) */
-		ctrl = E1000_READ_REG(hw, CTRL);
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
 		ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
-		E1000_WRITE_REG(hw, CTRL, ctrl);
-
-		rctl = E1000_READ_REG(hw, RCTL);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+		rctl = E1000_READ_REG(hw, E1000_RCTL);
 		rctl |= (E1000_RCTL_EN |
 		    E1000_RCTL_SBP |
 		    E1000_RCTL_UPE |
 		    E1000_RCTL_MPE |
 		    E1000_RCTL_LPE |
 		    E1000_RCTL_BAM);		/* 0x803E */
-		E1000_WRITE_REG(hw, RCTL, rctl);
-
-		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+		E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
 		ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
 		    E1000_CTRL_EXT_SDP6_DATA |
 		    E1000_CTRL_EXT_SDP7_DATA |
 		    E1000_CTRL_EXT_SDP4_DIR |
 		    E1000_CTRL_EXT_SDP6_DIR |
 		    E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
-		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
 
 		/*
 		 * This sequence tunes the PHY's SDP and no customer
@@ -3782,24 +3749,24 @@
 		break;
 	case e1000_media_type_fiber:
 	case e1000_media_type_internal_serdes:
-		status = E1000_READ_REG(hw, STATUS);
+		status = E1000_READ_REG(hw, E1000_STATUS);
 		if (((status & E1000_STATUS_LU) == 0) ||
 		    (hw->media_type == e1000_media_type_internal_serdes)) {
-			ctrl = E1000_READ_REG(hw, CTRL);
+			ctrl = E1000_READ_REG(hw, E1000_CTRL);
 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
-			E1000_WRITE_REG(hw, CTRL, ctrl);
+			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 		}
 
 		/* Disable autoneg by setting bit 31 of TXCW to zero */
-		txcw = E1000_READ_REG(hw, TXCW);
+		txcw = E1000_READ_REG(hw, E1000_TXCW);
 		txcw &= ~((uint32_t)1 << 31);
-		E1000_WRITE_REG(hw, TXCW, txcw);
+		E1000_WRITE_REG(hw, E1000_TXCW, txcw);
 
 		/*
 		 * Write 0x410 to Serdes Control register
 		 * to enable Serdes analog loopback
 		 */
-		E1000_WRITE_REG(hw, SCTL, 0x0410);
+		E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
 		msec_delay(10);
 		break;
 	default:
@@ -3814,7 +3781,7 @@
 	uint32_t ctrl;
 	uint16_t phy_ctrl;
 
-	hw = &Adapter->Shared;
+	hw = &Adapter->shared;
 
 	/* Disable Smart Power Down */
 	phy_spd_state(hw, B_FALSE);
@@ -3823,17 +3790,17 @@
 	    MII_CR_SPEED_100);
 
 	/* Force 100/FD, reset PHY */
-	e1000_write_phy_reg(hw, PHY_CTRL,
+	e1000_write_phy_reg(hw, PHY_CONTROL,
 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
 	msec_delay(10);
 
 	/* Force 100/FD */
-	e1000_write_phy_reg(hw, PHY_CTRL,
+	e1000_write_phy_reg(hw, PHY_CONTROL,
 	    phy_ctrl);			/* 0x2100 */
 	msec_delay(10);
 
 	/* Now setup the MAC to the same speed/duplex as the PHY. */
-	ctrl = E1000_READ_REG(hw, CTRL);
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
@@ -3841,7 +3808,7 @@
 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
 
-	E1000_WRITE_REG(hw, CTRL, ctrl);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 }
 
 static void
@@ -3851,7 +3818,7 @@
 	uint32_t ctrl;
 	uint16_t phy_ctrl;
 
-	hw = &Adapter->Shared;
+	hw = &Adapter->shared;
 
 	/* Disable Smart Power Down */
 	phy_spd_state(hw, B_FALSE);
@@ -3860,17 +3827,17 @@
 	    MII_CR_SPEED_10);
 
 	/* Force 10/FD, reset PHY */
-	e1000_write_phy_reg(hw, PHY_CTRL,
+	e1000_write_phy_reg(hw, PHY_CONTROL,
 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
 	msec_delay(10);
 
 	/* Force 10/FD */
-	e1000_write_phy_reg(hw, PHY_CTRL,
+	e1000_write_phy_reg(hw, PHY_CONTROL,
 	    phy_ctrl);			/* 0x0100 */
 	msec_delay(10);
 
 	/* Now setup the MAC to the same speed/duplex as the PHY. */
-	ctrl = E1000_READ_REG(hw, CTRL);
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
@@ -3878,13 +3845,14 @@
 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
 
-	E1000_WRITE_REG(hw, CTRL, ctrl);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 }
 
 #ifdef __sparc
 static boolean_t
 e1000g_find_mac_address(struct e1000g *Adapter)
 {
+	struct e1000_hw *hw = &Adapter->shared;
 	uchar_t *bytes;
 	struct ether_addr sysaddr;
 	uint_t nelts;
@@ -3905,7 +3873,7 @@
 	if (err == DDI_PROP_SUCCESS) {
 		if (nelts == ETHERADDRL) {
 			while (nelts--)
-				Adapter->Shared.mac_addr[nelts] = bytes[nelts];
+				hw->mac.addr[nelts] = bytes[nelts];
 			found = B_TRUE;
 		}
 		ddi_prop_free(bytes);
@@ -3919,8 +3887,7 @@
 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
 			if (localetheraddr(NULL, &sysaddr) != 0) {
-				bcopy(&sysaddr, Adapter->Shared.mac_addr,
-				    ETHERADDRL);
+				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
 				found = B_TRUE;
 			}
 		}
@@ -3938,14 +3905,14 @@
 	if (err == DDI_PROP_SUCCESS) {
 		if (nelts == ETHERADDRL) {
 			while (nelts--)
-				Adapter->Shared.mac_addr[nelts] = bytes[nelts];
+				hw->mac.addr[nelts] = bytes[nelts];
 			found = B_TRUE;
 		}
 		ddi_prop_free(bytes);
 	}
 
 	if (found) {
-		bcopy(Adapter->Shared.mac_addr, Adapter->Shared.perm_mac_addr,
+		bcopy(hw->mac.addr, hw->mac.perm_addr,
 		    ETHERADDRL);
 	}
 
@@ -3966,7 +3933,7 @@
 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
 
 	if (rc != DDI_SUCCESS) {
-		e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 		    "Get supported interrupt types failed: %d\n", rc);
 		return (DDI_FAILURE);
 	}
@@ -3978,14 +3945,14 @@
 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
 	 * PCI/PCI-X NICs.
 	 */
-	if (Adapter->Shared.mac_type < e1000_82571)
+	if (Adapter->shared.mac.type < e1000_82571)
 		Adapter->msi_enabled = B_FALSE;
 
 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enabled) {
 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
 
 		if (rc != DDI_SUCCESS) {
-			e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
+			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
 			    "Add MSI failed, trying Legacy interrupts\n");
 		} else {
 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
@@ -3997,7 +3964,7 @@
 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
 
 		if (rc != DDI_SUCCESS) {
-			e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
+			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
 			    "Add Legacy interrupts failed\n");
 			return (DDI_FAILURE);
 		}
@@ -4006,7 +3973,7 @@
 	}
 
 	if (Adapter->intr_type == 0) {
-		e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
 		    "No interrupts registered\n");
 		return (DDI_FAILURE);
 	}
@@ -4031,7 +3998,7 @@
 	/* get number of interrupts */
 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
 	if ((rc != DDI_SUCCESS) || (count == 0)) {
-		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
 		    "Get interrupt number failed. Return: %d, count: %d\n",
 		    rc, count);
 		return (DDI_FAILURE);
@@ -4040,14 +4007,14 @@
 	/* get number of available interrupts */
 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
-		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
 		    "Get interrupt available number failed. "
 		    "Return: %d, available: %d\n", rc, avail);
 		return (DDI_FAILURE);
 	}
 
 	if (avail < count) {
-		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
 		    "Interrupts count: %d, available: %d\n",
 		    count, avail);
 	}
@@ -4064,7 +4031,7 @@
 	    count, &actual, flag);
 
 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
-		e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 		    "Allocate interrupts failed: %d\n", rc);
 
 		kmem_free(Adapter->htable, Adapter->intr_size);
@@ -4072,7 +4039,7 @@
 	}
 
 	if (actual < count) {
-		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
 		    "Interrupts requested: %d, received: %d\n",
 		    count, actual);
 	}
@@ -4083,7 +4050,7 @@
 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
 
 	if (rc != DDI_SUCCESS) {
-		e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 		    "Get interrupt priority failed: %d\n", rc);
 
 		/* Free already allocated intr */
@@ -4100,7 +4067,7 @@
 	 * to avoid interrupt stealing when sharing interrupt with other
 	 * devices.
 	 */
-	if (Adapter->Shared.mac_type < e1000_82571)
+	if (Adapter->shared.mac.type < e1000_82571)
 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
 	else
 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
@@ -4111,7 +4078,7 @@
 		    intr_handler, (caddr_t)Adapter, NULL);
 
 		if (rc != DDI_SUCCESS) {
-			e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
+			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 			    "Add interrupt handler failed: %d\n", rc);
 
 			/* Remove already added handler */
@@ -4131,7 +4098,7 @@
 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
 
 	if (rc != DDI_SUCCESS) {
-		e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 		    "Get interrupt cap failed: %d\n", rc);
 
 		/* Free already allocated intr */
@@ -4156,14 +4123,14 @@
 	for (x = 0; x < Adapter->intr_cnt; x++) {
 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
 		if (rc != DDI_SUCCESS) {
-			e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
+			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 			    "Remove intr handler failed: %d\n", rc);
 			return (DDI_FAILURE);
 		}
 
 		rc = ddi_intr_free(Adapter->htable[x]);
 		if (rc != DDI_SUCCESS) {
-			e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
+			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 			    "Free intr failed: %d\n", rc);
 			return (DDI_FAILURE);
 		}
@@ -4186,7 +4153,7 @@
 		rc = ddi_intr_block_enable(Adapter->htable,
 		    Adapter->intr_cnt);
 		if (rc != DDI_SUCCESS) {
-			e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
+			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 			    "Enable block intr failed: %d\n", rc);
 			return (DDI_FAILURE);
 		}
@@ -4195,7 +4162,7 @@
 		for (x = 0; x < Adapter->intr_cnt; x++) {
 			rc = ddi_intr_enable(Adapter->htable[x]);
 			if (rc != DDI_SUCCESS) {
-				e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
+				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 				    "Enable intr failed: %d\n", rc);
 				return (DDI_FAILURE);
 			}
@@ -4216,7 +4183,7 @@
 		rc = ddi_intr_block_disable(Adapter->htable,
 		    Adapter->intr_cnt);
 		if (rc != DDI_SUCCESS) {
-			e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
+			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 			    "Disable block intr failed: %d\n", rc);
 			return (DDI_FAILURE);
 		}
@@ -4224,7 +4191,7 @@
 		for (x = 0; x < Adapter->intr_cnt; x++) {
 			rc = ddi_intr_disable(Adapter->htable[x]);
 			if (rc != DDI_SUCCESS) {
-				e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
+				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 				    "Disable intr failed: %d\n", rc);
 				return (DDI_FAILURE);
 			}
@@ -4233,79 +4200,3 @@
 
 	return (DDI_SUCCESS);
 }
-
-/*
- * phy_spd_state - set smart-power-down (SPD) state
- *
- * This only acts on the 82541/47 family and the 82571/72 family.
- * For any others, return without doing anything.
- */
-void
-phy_spd_state(struct e1000_hw *hw, boolean_t enable)
-{
-	int32_t offset;		/* offset to register */
-	uint16_t spd_bit;	/* bit to be set */
-	uint16_t reg;		/* register contents */
-
-	switch (hw->mac_type) {
-	case e1000_82541:
-	case e1000_82547:
-	case e1000_82541_rev_2:
-	case e1000_82547_rev_2:
-		offset = IGP01E1000_GMII_FIFO;
-		spd_bit = IGP01E1000_GMII_SPD;
-		break;
-	case e1000_82571:
-	case e1000_82572:
-		offset = IGP02E1000_PHY_POWER_MGMT;
-		spd_bit = IGP02E1000_PM_SPD;
-		break;
-	default:
-		return;		/* no action */
-	}
-
-	e1000_read_phy_reg(hw, offset, &reg);
-
-	if (enable)
-		reg |= spd_bit;		/* enable: set the spd bit */
-	else
-		reg &= ~spd_bit;	/* disable: clear the spd bit */
-
-	e1000_write_phy_reg(hw, offset, reg);
-}
-
-/*
- * The real intent of this routine is to return the value from pci-e
- * config space at offset reg into the capability space.
- * ICH devices are "PCI Express"-ish.  They have a configuration space,
- * but do not contain PCI Express Capability registers, so this returns
- * the equivalent of "not supported"
- */
-int32_t
-e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
-{
-	*value = pci_config_get16(((struct e1000g_osdep *)hw->back)->handle,
-	    PCI_EX_CONF_CAP + reg);
-
-	return (0);
-}
-
-/*
- * Enables PCI-Express master access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - none.
- */
-void
-e1000_enable_pciex_master(struct e1000_hw *hw)
-{
-	uint32_t ctrl;
-
-	if (hw->bus_type != e1000_bus_type_pci_express)
-		return;
-
-	ctrl = E1000_READ_REG(hw, CTRL);
-	ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
-	E1000_WRITE_REG(hw, CTRL, ctrl);
-}
--- a/usr/src/uts/common/io/e1000g/e1000g_ndd.c	Mon Aug 20 23:01:08 2007 -0700
+++ b/usr/src/uts/common/io/e1000g/e1000g_ndd.c	Tue Aug 21 00:30:10 2007 -0700
@@ -109,55 +109,44 @@
 { PARAM_LINK_DUPLEX,	    0, 2, 0,	NULL,	"-link_duplex"		},
 { PARAM_LINK_AUTONEG,	    0, 1, 0,	NULL,	"-link_autoneg"		},
 
-/* Max Frame Size */
-{ PARAM_MAX_FRAME_SIZE,	    ETHERMAX, FRAME_SIZE_UPTO_16K, ETHERMAX,
-					NULL,	"-max_frame_size"	},
-/* Loopback mode */
-{ PARAM_LOOP_MODE,	    0, 4, 0,	NULL,	"-loopback_mode"	},
-/* Interrupt Type */
-{ PARAM_INTR_TYPE,	    0, 4, 0,	NULL,	"-interrupt_type"	},
-
 /* Tx Bcopy Threshold */
-{ PARAM_TX_BCOPY_THRESHOLD, MINTXBCOPYTHRESHOLD,
-			    MAXTXBCOPYTHRESHOLD,
-			    DEFAULTTXBCOPYTHRESHOLD,
+{ PARAM_TX_BCOPY_THRESHOLD, MIN_TX_BCOPY_THRESHOLD,
+			    MAX_TX_BCOPY_THRESHOLD,
+			    DEFAULT_TX_BCOPY_THRESHOLD,
 					NULL,	"+tx_bcopy_threshold"	},
-/* Tx Bcopy Fragments Limit */
-{ PARAM_TX_FRAGS_LIMIT,	    MINTXFRAGSLIMIT,
-			    MAXTXFRAGSLIMIT,
-			    DEFAULTTXFRAGSLIMIT,
-					NULL,	"-tx_bcopy_frags_limit"	},
-/* Tx Recycle Low-Water */
-{ PARAM_TX_RECYCLE_LOW_WATER, MINTXRECYCLELOWWATER,
-			    MAXTXRECYCLELOWWATER,
-			    DEFAULTTXRECYCLELOWWATER,
-					NULL,	"+tx_recycle_low_water"	},
-/* Tx Recycle Number */
-{ PARAM_TX_RECYCLE_NUM,	    MINTXRECYCLENUM,
-			    MAXTXRECYCLENUM,
-			    DEFAULTTXRECYCLENUM,
-					NULL,	"+tx_recycle_num"	},
 /* Tx Interrupt Enable */
-{ PARAM_TX_INTR_ENABLE,	    0, 1, 1,	NULL,	"+tx_interrupt_enable"	},
+{ PARAM_TX_INTR_ENABLE,	    0, 1, DEFAULT_TX_INTR_ENABLE,
+					NULL,	"+tx_interrupt_enable"	},
+/* Tx Interrupt Delay */
+{ PARAM_TX_TIDV,	    MIN_TX_INTR_DELAY,
+			    MAX_TX_INTR_DELAY,
+			    DEFAULT_TX_INTR_DELAY,
+					NULL,	"+tx_intr_delay"	},
 /* Tx Interrupt Delay */
-{ PARAM_TX_INTR_DELAY,	    MINTXINTERRUPTDELAYVAL,
-			    MAXTXINTERRUPTDELAYVAL,
-			    DEFAULTTXINTERRUPTDELAYVAL,
-					NULL,	"+tx_interrupt_delay"	},
+{ PARAM_TX_TADV,	    MIN_TX_INTR_ABS_DELAY,
+			    MAX_TX_INTR_ABS_DELAY,
+			    DEFAULT_TX_INTR_ABS_DELAY,
+					NULL,	"+tx_intr_abs_delay"	},
 /* Rx Bcopy Threshold */
-{ PARAM_RX_BCOPY_THRESHOLD, MINRXBCOPYTHRESHOLD,
-			    MAXRXBCOPYTHRESHOLD,
-			    DEFAULTRXBCOPYTHRESHOLD,
+{ PARAM_RX_BCOPY_THRESHOLD, MIN_RX_BCOPY_THRESHOLD,
+			    MAX_RX_BCOPY_THRESHOLD,
+			    DEFAULT_RX_BCOPY_THRESHOLD,
 					NULL,	"+rx_bcopy_threshold"	},
 /* Rx Max Receive Packets Per Interrupt */
-{ PARAM_RX_PKT_ON_INTR,	    MINNUMRCVPKTONINTR,
-			    MAXNUMRCVPKTONINTR,
-			    DEFAULTMAXNUMRCVPKTONINTR,
+{ PARAM_RX_PKT_ON_INTR,	    MIN_RX_LIMIT_ON_INTR,
+			    MAX_RX_LIMIT_ON_INTR,
+			    DEFAULT_RX_LIMIT_ON_INTR,
 					NULL,	"+max_num_rcv_packets"	},
 /* Receive Delay Timer Register */
-{ PARAM_RX_RDTR,	    0, 65535, 0, NULL,	"+rx_intr_delay"	},
+{ PARAM_RX_RDTR,	    MIN_RX_INTR_DELAY,
+			    MAX_RX_INTR_DELAY,
+			    DEFAULT_RX_INTR_DELAY,
+					NULL,	"+rx_intr_delay"	},
 /* Receive Interrupt Absolute Delay Register */
-{ PARAM_RX_RADV,	    0, 65535, 0, NULL,	"+rx_intr_abs_delay"	},
+{ PARAM_RX_RADV,	    MIN_RX_INTR_ABS_DELAY,
+			    MAX_RX_INTR_ABS_DELAY,
+			    DEFAULT_RX_INTR_ABS_DELAY,
+					NULL,	"+rx_intr_abs_delay"	},
 
 /* Terminator */
 { PARAM_COUNT,		    0, 0, 0,	NULL,	NULL			}
@@ -224,7 +213,7 @@
 		nm = &ndp->ndp_name[0];
 		setfn = e1000g_nd_set;
 
-		if (Adapter->Shared.media_type != e1000_media_type_copper) {
+		if (Adapter->shared.media_type != e1000_media_type_copper) {
 			switch (*nm) {
 			default:
 				break;
@@ -268,9 +257,9 @@
 	return (DDI_SUCCESS);
 
 nd_fail:
-	e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
-		"e1000g_nd_param_load: FAILED at index %d [info %d]",
-		tmplp-nd_template, tmplp->ndp_info);
+	E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
+	    "e1000g_nd_param_load: FAILED at index %d [info %d]",
+	    tmplp-nd_template, tmplp->ndp_info);
 	nd_free(nddpp);
 	return (DDI_FAILURE);
 }
@@ -279,183 +268,156 @@
 e1000g_nd_get_param_val(nd_param_t *ndp)
 {
 	struct e1000g *Adapter;
+	struct e1000_hw *hw;
 	uint16_t phy_reg;
 
 	Adapter = ndp->ndp_instance;
 	ASSERT(Adapter);
+	hw = &Adapter->shared;
 
 	switch (ndp->ndp_info) {
 	/* Hardware Capabilities */
 	case PARAM_AUTONEG_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_STATUS,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
 		ndp->ndp_val = (phy_reg & MII_SR_AUTONEG_CAPS) ? 1 : 0;
 		break;
 	case PARAM_PAUSE_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_AR_PAUSE) ? 1 : 0;
 		break;
 	case PARAM_ASYM_PAUSE_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_AR_ASM_DIR) ? 1 : 0;
 		break;
 	case PARAM_1000FDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_EXT_STATUS,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_reg);
 		ndp->ndp_val = ((phy_reg & IEEE_ESR_1000T_FD_CAPS) ||
 		    (phy_reg & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
 		break;
 	case PARAM_1000HDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_EXT_STATUS,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_reg);
 		ndp->ndp_val = ((phy_reg & IEEE_ESR_1000T_HD_CAPS) ||
 		    (phy_reg & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
 		break;
 	case PARAM_100T4_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_STATUS,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
 		ndp->ndp_val = (phy_reg & MII_SR_100T4_CAPS) ? 1 : 0;
 		break;
 	case PARAM_100FDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_STATUS,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
 		ndp->ndp_val = ((phy_reg & MII_SR_100X_FD_CAPS) ||
 		    (phy_reg & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
 		break;
 	case PARAM_100HDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_STATUS,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
 		ndp->ndp_val = ((phy_reg & MII_SR_100X_HD_CAPS) ||
 		    (phy_reg & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
 		break;
 	case PARAM_10FDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_STATUS,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
 		ndp->ndp_val = (phy_reg & MII_SR_10T_FD_CAPS) ? 1 : 0;
 		break;
 	case PARAM_10HDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_STATUS,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
 		ndp->ndp_val = (phy_reg & MII_SR_10T_HD_CAPS) ? 1 : 0;
 		break;
 
 	/* Auto-Negotiation Advertisement Capabilities */
 	case PARAM_ADV_AUTONEG_CAP:
-		ndp->ndp_val = Adapter->Shared.autoneg;
+		ndp->ndp_val = hw->mac.autoneg;
 		break;
 	case PARAM_ADV_PAUSE_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_AR_PAUSE) ? 1 : 0;
 		break;
 	case PARAM_ADV_ASYM_PAUSE_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_AR_ASM_DIR) ? 1 : 0;
 		break;
 	case PARAM_ADV_1000FDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_1000T_CTRL,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_reg);
 		ndp->ndp_val = (phy_reg & CR_1000T_FD_CAPS) ? 1 : 0;
 		break;
 	case PARAM_ADV_1000HDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_1000T_CTRL,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_reg);
 		ndp->ndp_val = (phy_reg & CR_1000T_HD_CAPS) ? 1 : 0;
 		break;
 	case PARAM_ADV_100T4_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_AR_100T4_CAPS) ? 1 : 0;
 		break;
 	case PARAM_ADV_100FDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
 		break;
 	case PARAM_ADV_100HDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
 		break;
 	case PARAM_ADV_10FDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
 		break;
 	case PARAM_ADV_10HDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
 		break;
 
 	/* Link-Partner's Advertisement Capabilities */
 	case PARAM_LP_AUTONEG_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_EXP,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
 		break;
 	case PARAM_LP_PAUSE_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_LP_ABILITY,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_LPAR_PAUSE) ? 1 : 0;
 		break;
 	case PARAM_LP_ASYM_PAUSE_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_LP_ABILITY,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_LPAR_ASM_DIR) ? 1 : 0;
 		break;
 	case PARAM_LP_1000FDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_1000T_STATUS,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_reg);
 		ndp->ndp_val = (phy_reg & SR_1000T_LP_FD_CAPS) ? 1 : 0;
 		break;
 	case PARAM_LP_1000HDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_1000T_STATUS,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_reg);
 		ndp->ndp_val = (phy_reg & SR_1000T_LP_HD_CAPS) ? 1 : 0;
 		break;
 	case PARAM_LP_100T4_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_LP_ABILITY,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
 		break;
 	case PARAM_LP_100FDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_LP_ABILITY,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
 		break;
 	case PARAM_LP_100HDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_LP_ABILITY,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
 		break;
 	case PARAM_LP_10FDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_LP_ABILITY,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
 		break;
 	case PARAM_LP_10HDX_CAP:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_LP_ABILITY,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
 		ndp->ndp_val = (phy_reg & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
 		break;
 
 	/* Force Speed and Duplex Parameter */
 	case PARAM_FORCE_SPEED_DUPLEX:
-		switch (Adapter->Shared.forced_speed_duplex) {
-		case e1000_10_half:
+		switch (hw->mac.forced_speed_duplex) {
+		case ADVERTISE_10_HALF:
 			ndp->ndp_val = GDIAG_10_HALF;
 			break;
-		case e1000_10_full:
+		case ADVERTISE_10_FULL:
 			ndp->ndp_val = GDIAG_10_FULL;
 			break;
-		case e1000_100_half:
+		case ADVERTISE_100_HALF:
 			ndp->ndp_val = GDIAG_100_HALF;
 			break;
-		case e1000_100_full:
+		case ADVERTISE_100_FULL:
 			ndp->ndp_val = GDIAG_100_FULL;
 			break;
 		}
@@ -471,12 +433,12 @@
 		ndp->ndp_val = Adapter->link_duplex;
 		break;
 	case PARAM_LINK_AUTONEG:
-		ndp->ndp_val = Adapter->Shared.autoneg;
+		ndp->ndp_val = hw->mac.autoneg;
 		break;
 
 	/* Driver Properties */
 	case PARAM_MAX_FRAME_SIZE:
-		ndp->ndp_val = Adapter->Shared.max_frame_size;
+		ndp->ndp_val = hw->mac.max_frame_size;
 		break;
 	case PARAM_LOOP_MODE:
 		ndp->ndp_val = Adapter->loopback_mode;
@@ -489,32 +451,26 @@
 	case PARAM_TX_BCOPY_THRESHOLD:
 		ndp->ndp_val = Adapter->tx_bcopy_thresh;
 		break;
-	case PARAM_TX_FRAGS_LIMIT:
-		ndp->ndp_val = Adapter->tx_frags_limit;
-		break;
-	case PARAM_TX_RECYCLE_LOW_WATER:
-		ndp->ndp_val = Adapter->tx_recycle_low_water;
-		break;
-	case PARAM_TX_RECYCLE_NUM:
-		ndp->ndp_val = Adapter->tx_recycle_num;
-		break;
 	case PARAM_TX_INTR_ENABLE:
 		ndp->ndp_val = Adapter->tx_intr_enable;
 		break;
-	case PARAM_TX_INTR_DELAY:
-		ndp->ndp_val = Adapter->TxInterruptDelay;
+	case PARAM_TX_TIDV:
+		ndp->ndp_val = Adapter->tx_intr_delay;
+		break;
+	case PARAM_TX_TADV:
+		ndp->ndp_val = Adapter->tx_intr_abs_delay;
 		break;
 	case PARAM_RX_BCOPY_THRESHOLD:
 		ndp->ndp_val = Adapter->rx_bcopy_thresh;
 		break;
 	case PARAM_RX_PKT_ON_INTR:
-		ndp->ndp_val = Adapter->MaxNumReceivePackets;
+		ndp->ndp_val = Adapter->rx_limit_onintr;
 		break;
 	case PARAM_RX_RDTR:
-		ndp->ndp_val = E1000_READ_REG(&Adapter->Shared, RDTR);
+		ndp->ndp_val = Adapter->rx_intr_delay;
 		break;
 	case PARAM_RX_RADV:
-		ndp->ndp_val = E1000_READ_REG(&Adapter->Shared, RADV);
+		ndp->ndp_val = Adapter->rx_intr_abs_delay;
 		break;
 	default:
 		break;
@@ -525,6 +481,8 @@
 e1000g_nd_set_param_val(nd_param_t *ndp, uint32_t value)
 {
 	struct e1000g *Adapter;
+	struct e1000_hw *hw;
+	e1000g_tx_ring_t *tx_ring;
 	uint16_t autoneg_advertised;
 	uint8_t forced_speed_duplex;
 	boolean_t autoneg_enable;
@@ -532,6 +490,8 @@
 
 	Adapter = ndp->ndp_instance;
 	ASSERT(Adapter);
+	hw = &Adapter->shared;
+	tx_ring = Adapter->tx_ring;
 
 	autoneg_advertised = 0;
 	forced_speed_duplex = 0;
@@ -544,53 +504,49 @@
 	case PARAM_TX_BCOPY_THRESHOLD:
 		ndp->ndp_val = value;
 		Adapter->tx_bcopy_thresh = value;
-		Adapter->tx_frags_limit = (Adapter->Shared.max_frame_size /
+		tx_ring->frags_limit = (hw->mac.max_frame_size /
 		    Adapter->tx_bcopy_thresh) + 2;
-		if (Adapter->tx_frags_limit > (MAX_TX_DESC_PER_PACKET >> 1))
-			Adapter->tx_frags_limit = (MAX_TX_DESC_PER_PACKET >> 1);
-		goto finished;
-	case PARAM_TX_RECYCLE_LOW_WATER:
-		ndp->ndp_val = value;
-		Adapter->tx_recycle_low_water = value;
-		goto finished;
-	case PARAM_TX_RECYCLE_NUM:
-		ndp->ndp_val = value;
-		Adapter->tx_recycle_num = value;
+		if (tx_ring->frags_limit > (MAX_TX_DESC_PER_PACKET >> 1))
+			tx_ring->frags_limit = (MAX_TX_DESC_PER_PACKET >> 1);
 		goto finished;
 	case PARAM_TX_INTR_ENABLE:
 		ndp->ndp_val = value;
 		Adapter->tx_intr_enable = (value == 1) ? B_TRUE : B_FALSE;
 		if (Adapter->tx_intr_enable)
-			e1000g_EnableTxInterrupt(Adapter);
+			e1000g_mask_tx_interrupt(Adapter);
 		else
-			e1000g_DisableTxInterrupt(Adapter);
+			e1000g_clear_tx_interrupt(Adapter);
 		goto finished;
-	case PARAM_TX_INTR_DELAY:
+	case PARAM_TX_TIDV:
 		ndp->ndp_val = value;
-		Adapter->TxInterruptDelay = value;
-		/*
-		 * Setup Transmit Interrupt Delay Value
-		 */
-		if (Adapter->TxInterruptDelay) {
-			E1000_WRITE_REG(&Adapter->Shared, TIDV,
-			    Adapter->TxInterruptDelay);
+		Adapter->tx_intr_delay = value;
+		/* A value of zero is not allowed for TIDV */
+		if (Adapter->tx_intr_delay) {
+			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
 		}
 		goto finished;
+	case PARAM_TX_TADV:
+		ndp->ndp_val = value;
+		Adapter->tx_intr_abs_delay = value;
+		E1000_WRITE_REG(hw, E1000_TADV, Adapter->tx_intr_abs_delay);
+		goto finished;
 	case PARAM_RX_BCOPY_THRESHOLD:
 		ndp->ndp_val = value;
 		Adapter->rx_bcopy_thresh = value;
 		goto finished;
 	case PARAM_RX_PKT_ON_INTR:
 		ndp->ndp_val = value;
-		Adapter->MaxNumReceivePackets = value;
+		Adapter->rx_limit_onintr = value;
 		goto finished;
 	case PARAM_RX_RDTR:
 		ndp->ndp_val = value;
-		E1000_WRITE_REG(&Adapter->Shared, RDTR, value);
+		Adapter->rx_intr_delay = value;
+		E1000_WRITE_REG(hw, E1000_RDTR, value);
 		goto finished;
 	case PARAM_RX_RADV:
 		ndp->ndp_val = value;
-		E1000_WRITE_REG(&Adapter->Shared, RADV, value);
+		Adapter->rx_intr_abs_delay = value;
+		E1000_WRITE_REG(hw, E1000_RADV, value);
 		goto finished;
 	default:
 		break;
@@ -617,16 +573,16 @@
 
 	switch (Adapter->param_force_speed_duplex) {
 	case GDIAG_10_HALF:
-		forced_speed_duplex = e1000_10_half;
+		forced_speed_duplex = ADVERTISE_10_HALF;
 		break;
 	case GDIAG_10_FULL:
-		forced_speed_duplex = e1000_10_full;
+		forced_speed_duplex = ADVERTISE_10_FULL;
 		break;
 	case GDIAG_100_HALF:
-		forced_speed_duplex = e1000_100_half;
+		forced_speed_duplex = ADVERTISE_100_HALF;
 		break;
 	case GDIAG_100_FULL:
-		forced_speed_duplex = e1000_100_full;
+		forced_speed_duplex = ADVERTISE_100_FULL;
 		break;
 	default:
 		ASSERT(B_FALSE);
@@ -738,16 +694,16 @@
 			link_change = B_TRUE;
 			switch (value) {
 			case GDIAG_10_HALF:
-				forced_speed_duplex = e1000_10_half;
+				forced_speed_duplex = ADVERTISE_10_HALF;
 				break;
 			case GDIAG_10_FULL:
-				forced_speed_duplex = e1000_10_full;
+				forced_speed_duplex = ADVERTISE_10_FULL;
 				break;
 			case GDIAG_100_HALF:
-				forced_speed_duplex = e1000_100_half;
+				forced_speed_duplex = ADVERTISE_100_HALF;
 				break;
 			case GDIAG_100_FULL:
-				forced_speed_duplex = e1000_100_full;
+				forced_speed_duplex = ADVERTISE_100_FULL;
 				break;
 			default:
 				ASSERT(B_FALSE);
@@ -768,20 +724,16 @@
 				goto finished;
 			}
 
-			Adapter->Shared.autoneg = B_TRUE;
-			Adapter->Shared.autoneg_advertised =
-				autoneg_advertised;
+			hw->mac.autoneg = B_TRUE;
+			hw->phy.autoneg_advertised = autoneg_advertised;
 		} else {
-			Adapter->Shared.autoneg = B_FALSE;
-			Adapter->Shared.forced_speed_duplex =
-				forced_speed_duplex;
+			hw->mac.autoneg = B_FALSE;
+			hw->mac.forced_speed_duplex = forced_speed_duplex;
 		}
 
 		ndp->ndp_val = value;
 
-		rw_exit(&Adapter->chip_lock);
-		(void) e1000g_reset(Adapter);
-		return;
+		e1000_setup_link(hw);
 	}
 
 finished:
--- a/usr/src/uts/common/io/e1000g/e1000g_rx.c	Mon Aug 20 23:01:08 2007 -0700
+++ b/usr/src/uts/common/io/e1000g/e1000g_rx.c	Tue Aug 21 00:30:10 2007 -0700
@@ -32,18 +32,11 @@
  *   e1000g_rx.c							*
  *									*
  * Abstract:								*
- *   This file contains some routines that takes care of Receive	*
- *   interrupt and also for the received packet				*
- *   it sends up to upper layer.					*
+ *   This file contains some routines that take care of Receive		*
+ *   interrupt and also for the received packets it sends up to		*
+ *   upper layer.							*
  *   It tries to do a zero copy if free buffers are available in	*
- *   the pool. Also it implements shortcut to Ipq			*
- *									*
- *									*
- *   This driver runs on the following hardware:			*
- *   - Wisemane based PCI gigabit ethernet adapters			*
- *									*
- * Environment:								*
- *   Kernel Mode -							*
+ *   the pool.								*
  *									*
  * **********************************************************************
  */
@@ -51,37 +44,25 @@
 #include "e1000g_sw.h"
 #include "e1000g_debug.h"
 
-/*
- * local prototypes
- */
-static RX_SW_PACKET *e1000g_get_buf(e1000g_rx_ring_t *rx_ring);
+static p_rx_sw_packet_t e1000g_get_buf(e1000g_rx_ring_t *rx_ring);
 #pragma	inline(e1000g_get_buf)
 
 /*
- * **********************************************************************
- * Name:      e1000g_rxfree_func					*
- *									*
- * Description:								*
- *									*
- *	This functionis called when a mp is freed by the user thru	*
- *	freeb call (Only for mp constructed through desballoc call)	*
- *	It returns back the freed buffer to the freelist		*
- *									*
- *									*
- * Parameter Passed:							*
- *									*
- * Return Value:							*
- *									*
- * Functions called:							*
- *									*
- * **********************************************************************
+ * e1000g_rxfree_func - the call-back function to reclaim rx buffer
+ *
+ * This function is called when an mp is freed by the user thru
+ * freeb call (Only for mp constructed through desballoc call)
+ * It returns back the freed buffer to the freelist
  */
 void
-e1000g_rxfree_func(RX_SW_PACKET *packet)
+e1000g_rxfree_func(p_rx_sw_packet_t packet)
 {
 	struct e1000g *Adapter;
 	e1000g_rx_ring_t *rx_ring;
 
+	rx_ring = (e1000g_rx_ring_t *)packet->rx_ring;
+	Adapter = rx_ring->adapter;
+
 	/*
 	 * Here the rx recycling processes different rx packets in different
 	 * threads, so we protect it with RW_READER to ensure it won't block
@@ -89,12 +70,35 @@
 	 */
 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
 
-	if (!(packet->flag & E1000G_RX_SW_SENDUP)) {
+	if (packet->flag == E1000G_RX_SW_FREE) {
 		rw_exit(&e1000g_rx_detach_lock);
 		return;
 	}
 
-	if (packet->flag & E1000G_RX_SW_DETACHED) {
+	if (packet->flag == E1000G_RX_SW_STOP) {
+		packet->flag = E1000G_RX_SW_FREE;
+		rw_exit(&e1000g_rx_detach_lock);
+
+		rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
+		rx_ring->pending_count--;
+		e1000g_mblks_pending--;
+
+		if (rx_ring->pending_count == 0) {
+			while (rx_ring->pending_list != NULL) {
+				packet = rx_ring->pending_list;
+				rx_ring->pending_list =
+				    rx_ring->pending_list->next;
+
+				ASSERT(packet->mp == NULL);
+				e1000g_free_rx_sw_packet(packet);
+			}
+		}
+		rw_exit(&e1000g_rx_detach_lock);
+		return;
+	}
+
+	if (packet->flag == E1000G_RX_SW_DETACH) {
+		packet->flag = E1000G_RX_SW_FREE;
 		rw_exit(&e1000g_rx_detach_lock);
 
 		ASSERT(packet->mp == NULL);
@@ -111,10 +115,7 @@
 		return;
 	}
 
-	packet->flag &= ~E1000G_RX_SW_SENDUP;
-
-	rx_ring = (e1000g_rx_ring_t *)packet->rx_ring;
-	Adapter = rx_ring->adapter;
+	packet->flag = E1000G_RX_SW_FREE;
 
 	if (packet->mp == NULL) {
 		/*
@@ -129,60 +130,40 @@
 			packet->mp->b_rptr += E1000G_IPALIGNROOM;
 			packet->mp->b_wptr += E1000G_IPALIGNROOM;
 		} else {
-			Adapter->rx_esballoc_fail++;
+			E1000G_STAT(rx_ring->stat_esballoc_fail);
 		}
 	}
 
 	mutex_enter(&rx_ring->freelist_lock);
 	QUEUE_PUSH_TAIL(&rx_ring->free_list, &packet->Link);
-	Adapter->rx_avail_freepkt++;
+	rx_ring->avail_freepkt++;
 	mutex_exit(&rx_ring->freelist_lock);
 
 	rw_exit(&e1000g_rx_detach_lock);
 }
 
 /*
- * **********************************************************************
- * Name:	SetupReceiveStructures					*
- *									*
- * Description: This routine initializes all of the receive related	*
- *	      structures.  This includes the receive descriptors, the	*
- *	      actual receive buffers, and the RX_SW_PACKET software	*
- *	      structures.						*
- *									*
- *	      NOTE -- The device must have been reset before this	*
- *		      routine is called.				*
- *									*
- * Author:      Hari Seshadri						*
- * Functions Called :      get_32bit_value;				*
- *									*
- *									*
- *									*
- * Arguments:								*
- *      Adapter - A pointer to our context sensitive "Adapter"		*
- *	structure.							*
- *									*
- * Returns:								*
- *      (none)								*
- *									*
- * Modification log:							*
- * Date      Who  Description						*
- * --------  ---  -----------------------------------------------------	*
- *									*
- * **********************************************************************
+ * e1000g_rx_setup - setup rx data structures
+ *
+ * This routine initializes all of the receive related
+ * structures. This includes the receive descriptors, the
+ * actual receive buffers, and the rx_sw_packet software
+ * structures.
  */
 void
-SetupReceiveStructures(struct e1000g *Adapter)
+e1000g_rx_setup(struct e1000g *Adapter)
 {
-	PRX_SW_PACKET packet;
+	struct e1000_hw *hw;
+	p_rx_sw_packet_t packet;
 	struct e1000_rx_desc *descriptor;
-	uint32_t BufferLow;
-	uint32_t BufferHigh;
+	uint32_t buf_low;
+	uint32_t buf_high;
 	uint32_t reg_val;
 	int i;
 	int size;
 	e1000g_rx_ring_t *rx_ring;
 
+	hw = &Adapter->shared;
 	rx_ring = Adapter->rx_ring;
 
 	/*
@@ -190,9 +171,9 @@
 	 * assures any previous data or status is erased
 	 */
 	bzero(rx_ring->rbd_area,
-	    sizeof (struct e1000_rx_desc) * Adapter->NumRxDescriptors);
+	    sizeof (struct e1000_rx_desc) * Adapter->rx_desc_num);
 
-	if (Adapter->init_count == 0) {
+	if (!Adapter->rx_buffer_setup) {
 		/* Init the list of "Receive Buffer" */
 		QUEUE_INIT_LIST(&rx_ring->recv_list);
 
@@ -206,49 +187,42 @@
 		packet = rx_ring->packet_area;
 		descriptor = rx_ring->rbd_first;
 
-		for (i = 0; i < Adapter->NumRxDescriptors;
+		for (i = 0; i < Adapter->rx_desc_num;
 		    i++, packet = packet->next, descriptor++) {
-
 			ASSERT(packet != NULL);
 			ASSERT(descriptor != NULL);
-#ifdef __sparc
-			descriptor->buffer_addr =
-			    DWORD_SWAP(packet->rx_buf->dma_address);
-#else
 			descriptor->buffer_addr =
 			    packet->rx_buf->dma_address;
-#endif
-			/* Add this RX_SW_PACKET to the receive list */
+
+			/* Add this rx_sw_packet to the receive list */
 			QUEUE_PUSH_TAIL(&rx_ring->recv_list,
 			    &packet->Link);
 		}
 
-		for (i = 0; i < Adapter->NumRxFreeList;
+		for (i = 0; i < Adapter->rx_freelist_num;
 		    i++, packet = packet->next) {
 			ASSERT(packet != NULL);
-			/* Add this RX_SW_PACKET to the free list */
+			/* Add this rx_sw_packet to the free list */
 			QUEUE_PUSH_TAIL(&rx_ring->free_list,
 			    &packet->Link);
 		}
-		Adapter->rx_avail_freepkt = Adapter->NumRxFreeList;
+		rx_ring->avail_freepkt = Adapter->rx_freelist_num;
+
+		Adapter->rx_buffer_setup = B_TRUE;
 	} else {
 		/* Setup the initial pointer to the first rx descriptor */
-		packet = (PRX_SW_PACKET)
+		packet = (p_rx_sw_packet_t)
 		    QUEUE_GET_HEAD(&rx_ring->recv_list);
 		descriptor = rx_ring->rbd_first;
 
-		for (i = 0; i < Adapter->NumRxDescriptors; i++) {
+		for (i = 0; i < Adapter->rx_desc_num; i++) {
 			ASSERT(packet != NULL);
 			ASSERT(descriptor != NULL);
-#ifdef __sparc
-			descriptor->buffer_addr =
-			    DWORD_SWAP(packet->rx_buf->dma_address);
-#else
 			descriptor->buffer_addr =
 			    packet->rx_buf->dma_address;
-#endif
-			/* Get next RX_SW_PACKET */
-			packet = (PRX_SW_PACKET)
+
+			/* Get next rx_sw_packet */
+			packet = (p_rx_sw_packet_t)
 			    QUEUE_GET_NEXT(&rx_ring->recv_list, &packet->Link);
 			descriptor++;
 		}
@@ -259,24 +233,24 @@
 	 */
 	rx_ring->rbd_next = rx_ring->rbd_first;
 
-	size = Adapter->NumRxDescriptors * sizeof (struct e1000_rx_desc);
-	E1000_WRITE_REG(&Adapter->Shared, RDLEN, size);
-	size = E1000_READ_REG(&Adapter->Shared, RDLEN);
+	size = Adapter->rx_desc_num * sizeof (struct e1000_rx_desc);
+	E1000_WRITE_REG(hw, E1000_RDLEN, size);
+	size = E1000_READ_REG(hw, E1000_RDLEN);
 
 	/* To get lower order bits */
-	BufferLow = (uint32_t)rx_ring->rbd_dma_addr;
+	buf_low = (uint32_t)rx_ring->rbd_dma_addr;
 	/* To get the higher order bits */
-	BufferHigh = (uint32_t)(rx_ring->rbd_dma_addr >> 32);
+	buf_high = (uint32_t)(rx_ring->rbd_dma_addr >> 32);
 
-	E1000_WRITE_REG(&Adapter->Shared, RDBAH, BufferHigh);
-	E1000_WRITE_REG(&Adapter->Shared, RDBAL, BufferLow);
+	E1000_WRITE_REG(hw, E1000_RDBAH, buf_high);
+	E1000_WRITE_REG(hw, E1000_RDBAL, buf_low);
 
 	/*
 	 * Setup our HW Rx Head & Tail descriptor pointers
 	 */
-	E1000_WRITE_REG(&Adapter->Shared, RDT,
+	E1000_WRITE_REG(hw, E1000_RDT,
 	    (uint32_t)(rx_ring->rbd_last - rx_ring->rbd_first));
-	E1000_WRITE_REG(&Adapter->Shared, RDH, 0);
+	E1000_WRITE_REG(hw, E1000_RDH, 0);
 
 	/*
 	 * Setup the Receive Control Register (RCTL), and ENABLE the
@@ -289,14 +263,14 @@
 	reg_val = E1000_RCTL_EN |	/* Enable Receive Unit */
 	    E1000_RCTL_BAM |		/* Accept Broadcast Packets */
 	    E1000_RCTL_LPE |		/* Large Packet Enable bit */
-	    (Adapter->Shared.mc_filter_type << E1000_RCTL_MO_SHIFT) |
+	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
 	    E1000_RCTL_RDMTS_HALF |
 	    E1000_RCTL_LBM_NO;		/* Loopback Mode = none */
 
 	if (Adapter->strip_crc)
-		reg_val |= E1000_RCTL_SECRC;    /* Strip Ethernet CRC */
+		reg_val |= E1000_RCTL_SECRC;	/* Strip Ethernet CRC */
 
-	switch (Adapter->Shared.max_frame_size) {
+	switch (hw->mac.max_frame_size) {
 	case ETHERMAX:
 		reg_val |= E1000_RCTL_SZ_2048;
 		break;
@@ -306,7 +280,7 @@
 	case FRAME_SIZE_UPTO_8K:
 		reg_val |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
 		break;
-	case FRAME_SIZE_UPTO_10K:
+	case FRAME_SIZE_UPTO_9K:
 	case FRAME_SIZE_UPTO_16K:
 		reg_val |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
 		break;
@@ -315,244 +289,72 @@
 		break;
 	}
 
-	if (Adapter->Shared.tbi_compatibility_on == 1)
+	if (e1000_tbi_sbp_enabled_82543(hw))
 		reg_val |= E1000_RCTL_SBP;
 
-	E1000_WRITE_REG(&Adapter->Shared, RCTL, reg_val);
+	/*
+	 * Enable early receives on supported devices, only takes effect when
+	 * packet size is equal or larger than the specified value (in 8 byte
+	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
+	 */
+	if ((hw->mac.type == e1000_82573) || (hw->mac.type == e1000_ich9lan))
+		E1000_WRITE_REG(hw, E1000_ERT, E1000_ERT_2048);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, reg_val);
 
 	reg_val =
 	    E1000_RXCSUM_TUOFL |	/* TCP/UDP checksum offload Enable */
 	    E1000_RXCSUM_IPOFL;		/* IP checksum offload Enable */
 
-	E1000_WRITE_REG(&Adapter->Shared, RXCSUM, reg_val);
-
-	Adapter->Shared.autoneg_failed = 1;
-
-	Adapter->rx_bcopy_thresh = DEFAULTRXBCOPYTHRESHOLD;
+	E1000_WRITE_REG(hw, E1000_RXCSUM, reg_val);
 }
 
 /*
- * **********************************************************************
- * Name:	SetupMulticastTable					*
- *									*
- * Description: This routine initializes all of the multicast related	*
- *	structures.							*
- *	NOTE -- The device must have been reset before this routine	*
- *		is called.						*
- *									*
- * Author:      Hari Seshadri						*
- *									*
- * Arguments:								*
- *      Adapter - A pointer to our context sensitive "Adapter"		*
- *	structure.							*
- *									*
- * Returns:								*
- *      (none)								*
- *									*
- * Modification log:							*
- * Date      Who  Description						*
- * --------  ---  -----------------------------------------------------	*
- *									*
- * **********************************************************************
+ * e1000g_get_buf - get an rx sw packet from the free_list
  */
-void
-SetupMulticastTable(struct e1000g *Adapter)
-{
-	PUCHAR MulticastBuffer;
-	UINT32 MulticastAddressCount;
-	UINT32 TempRctlReg;
-	USHORT PciCommandWord;
-	int i;
-
-	/*
-	 * The e1000g has the ability to do perfect filtering of 16
-	 * addresses. The driver uses one of the e1000g's 16 receive
-	 * address registers for its node/network/mac/individual address.
-	 * So, we have room for up to 15 multicast addresses in the CAM,
-	 * additional MC addresses are handled by the MTA (Multicast Table
-	 * Array)
-	 */
-
-	TempRctlReg = E1000_READ_REG(&Adapter->Shared, RCTL);
-
-	MulticastBuffer = (PUCHAR) (Adapter->mcast_table);
-
-	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
-		e1000g_log(Adapter, CE_WARN,
-		    "Adapter requested more than %d MC Addresses.\n",
-		    MAX_NUM_MULTICAST_ADDRESSES);
-		MulticastAddressCount = MAX_NUM_MULTICAST_ADDRESSES;
-	} else {
-		/*
-		 * Set the number of MC addresses that we are being
-		 * requested to use
-		 */
-		MulticastAddressCount = Adapter->mcast_count;
-	}
-	/*
-	 * The Wiseman 2.0 silicon has an errata by which the receiver will
-	 * hang  while writing to the receive address registers if the receiver
-	 * is not in reset before writing to the registers. Updating the RAR
-	 * is done during the setting up of the multicast table, hence the
-	 * receiver has to be put in reset before updating the multicast table
-	 * and then taken out of reset at the end
-	 */
-	/*
-	 * if WMI was enabled then dis able it before issueing the global
-	 * reset to the hardware.
-	 */
-	/*
-	 * Only required for WISEMAN_2_0
-	 */
-	if (Adapter->Shared.mac_type == e1000_82542_rev2_0) {
-		e1000_pci_clear_mwi(&Adapter->Shared);
-		/*
-		 * The e1000g must be in reset before changing any RA
-		 * registers. Reset receive unit.  The chip will remain in
-		 * the reset state until software explicitly restarts it.
-		 */
-		E1000_WRITE_REG(&Adapter->Shared, RCTL, E1000_RCTL_RST);
-		/* Allow receiver time to go in to reset */
-		DelayInMilliseconds(5);
-	}
-
-	e1000_mc_addr_list_update(&Adapter->Shared, MulticastBuffer,
-	    MulticastAddressCount, 0, Adapter->unicst_total);
-
-	/*
-	 * Only for Wiseman_2_0
-	 * If MWI was enabled then re-enable it after issueing (as we
-	 * disabled it up there) the receive reset command.
-	 * Wainwright does not have a receive reset command and only thing
-	 * close to it is global reset which will require tx setup also
-	 */
-	if (Adapter->Shared.mac_type == e1000_82542_rev2_0) {
-		/*
-		 * if WMI was enabled then reenable it after issueing the
-		 * global or receive reset to the hardware.
-		 */
-
-		/*
-		 * Take receiver out of reset
-		 * clear E1000_RCTL_RST bit (and all others)
-		 */
-		E1000_WRITE_REG(&Adapter->Shared, RCTL, 0);
-		DelayInMilliseconds(5);
-		if (Adapter->Shared.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
-			e1000_pci_set_mwi(&Adapter->Shared);
-	}
-
-	/*
-	 * Restore original value
-	 */
-	E1000_WRITE_REG(&Adapter->Shared, RCTL, TempRctlReg);
-}
-
-/*
- * **********************************************************************
- * Name:	e1000g_get_buf						*
- *									*
- * Description: This routine gets newpkt.				*
- *									*
- * Author:      Hari Seshadri						*
- *									*
- * Arguments:								*
- *									*
- * Returns:								*
- *      RX_SW_PACKET*							*
- *									*
- * Modification log:							*
- * Date      Who  Description						*
- * --------  ---  -----------------------------------------------------	*
- *									*
- * **********************************************************************
- */
-static RX_SW_PACKET *
+static p_rx_sw_packet_t
 e1000g_get_buf(e1000g_rx_ring_t *rx_ring)
 {
 	struct e1000g *Adapter;
-	RX_SW_PACKET *packet;
+	p_rx_sw_packet_t packet;
 
 	Adapter = rx_ring->adapter;
 
 	mutex_enter(&rx_ring->freelist_lock);
-	packet = (PRX_SW_PACKET)
+	packet = (p_rx_sw_packet_t)
 	    QUEUE_POP_HEAD(&rx_ring->free_list);
 	if (packet != NULL)
-		Adapter->rx_avail_freepkt--;
+		rx_ring->avail_freepkt--;
 	mutex_exit(&rx_ring->freelist_lock);
 
 	return (packet);
 }
 
 /*
- * **********************************************************************
- * Name:	e1000g_receive						*
- *									*
- * Description: This routine will process packets spanning multiple	*
- * 		buffers							*
- *	- Called from the e1000g_intr Handles interrupt for RX side	*
- *	- Checks the interrupt cause and process it. At the time of	*
- *	  calling the interrupt cause register has been already		*
- *	  cleared.							*
- *									*
- * Author:      Vinay K Awasthi						*
- *									*
- * Date  :      Feb 9, 2000						*
- *									*
- * Arguments:								*
- *      Adapter - A pointer to our context sensitive "Adapter"		*
- *      structure.							*
- *									*
- * Returns:								*
- *      Pointer to list of mblks to pass up to GLD			*
- * Functions Called:							*
- *      (none)								*
- *									*
- * Modification log:							*
- * Date      Who  Description						*
- * --------  ---  -----------------------------------------------------	*
- *									*
- * **********************************************************************
+ * e1000g_receive - main receive routine
+ *
+ * This routine will process packets received in an interrupt
  */
 mblk_t *
 e1000g_receive(struct e1000g *Adapter)
 {
-	/*
-	 * Need :
-	 * This function addresses the need to process jumbo frames using
-	 * standard 2048 byte buffers. In solaris, getting large aligned
-	 * buffers in low memory systems is hard and often it comprises
-	 * of multiple cookies rather than just one cookie which our HW
-	 * wants. In low memory systems, it is hard to get lots of large
-	 * chunks of memory i.e. you can get 256 2k buffers but it is hard
-	 * to get 64 8k buffers. Pagesize is playing an important role here.
-	 * If system administrator is willing to tune stream and system dma
-	 * resources then we may not need this function. At the same time
-	 * we may not have this option.
-	 * This function will also make our driver do Jumbo frames on Wiseman
-	 * hardware.
-	 */
-
+	struct e1000_hw *hw;
 	mblk_t *nmp;
 	mblk_t *ret_mp;
 	mblk_t *ret_nmp;
 	struct e1000_rx_desc *current_desc;
 	struct e1000_rx_desc *last_desc;
-	PRX_SW_PACKET packet;
-	PRX_SW_PACKET newpkt;
+	p_rx_sw_packet_t packet;
+	p_rx_sw_packet_t newpkt;
 	USHORT length;
 	uint32_t pkt_count;
 	uint32_t desc_count;
-	unsigned char LastByte;
-	boolean_t AcceptFrame;
+	boolean_t accept_frame;
 	boolean_t end_of_packet;
 	boolean_t need_copy;
 	e1000g_rx_ring_t *rx_ring;
 	dma_buffer_t *rx_buf;
 	uint16_t cksumflags;
-	uint32_t sync_offset;
-	uint32_t sync_len;
 
 	ret_mp = NULL;
 	ret_nmp = NULL;
@@ -560,20 +362,19 @@
 	desc_count = 0;
 	cksumflags = 0;
 
+	hw = &Adapter->shared;
 	rx_ring = Adapter->rx_ring;
 
-	sync_offset = rx_ring->rbd_next - rx_ring->rbd_first;
-
 	/* Sync the Rx descriptor DMA buffers */
 	(void) ddi_dma_sync(rx_ring->rbd_dma_handle,
-	    0, 0, DDI_DMA_SYNC_FORCPU);
+	    0, 0, DDI_DMA_SYNC_FORKERNEL);
 
 	current_desc = rx_ring->rbd_next;
 	if (!(current_desc->status & E1000_RXD_STAT_DD)) {
 		/*
 		 * don't send anything up. just clear the RFD
 		 */
-		Adapter->rx_none++;
+		E1000G_DEBUG_STAT(rx_ring->stat_none);
 		return (ret_mp);
 	}
 
@@ -582,7 +383,7 @@
 	 * descriptor owned by the hardware that begins a packet.
 	 */
 	while ((current_desc->status & E1000_RXD_STAT_DD) &&
-	    (pkt_count < Adapter->MaxNumReceivePackets)) {
+	    (pkt_count < Adapter->rx_limit_onintr)) {
 
 		desc_count++;
 		/*
@@ -607,79 +408,67 @@
 		 * Buffer Address.
 		 */
 		packet =
-		    (PRX_SW_PACKET)QUEUE_GET_HEAD(&rx_ring->recv_list);
+		    (p_rx_sw_packet_t)QUEUE_GET_HEAD(&rx_ring->recv_list);
 		ASSERT(packet != NULL);
 
 		rx_buf = packet->rx_buf;
 
 		length = current_desc->length;
 
-		switch (packet->dma_type) {
 #ifdef __sparc
-		case USE_DVMA:
+		if (packet->dma_type == USE_DVMA)
 			dvma_sync(rx_buf->dma_handle, 0,
 			    DDI_DMA_SYNC_FORKERNEL);
-			break;
-#endif
-		case USE_DMA:
+		else
 			(void) ddi_dma_sync(rx_buf->dma_handle,
 			    E1000G_IPALIGNROOM, length,
-			    DDI_DMA_SYNC_FORCPU);
-			break;
-		default:
-			ASSERT(B_FALSE);
-			break;
+			    DDI_DMA_SYNC_FORKERNEL);
+#else
+		(void) ddi_dma_sync(rx_buf->dma_handle,
+		    E1000G_IPALIGNROOM, length,
+		    DDI_DMA_SYNC_FORKERNEL);
+#endif
+
+		accept_frame = (current_desc->errors == 0) ||
+		    ((current_desc->errors &
+		    (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) != 0);
+
+		if (hw->mac.type == e1000_82543) {
+			unsigned char last_byte;
+
+			last_byte =
+			    *((unsigned char *)rx_buf->address + length - 1);
+
+			if (TBI_ACCEPT(hw,
+			    current_desc->status, current_desc->errors,
+			    current_desc->length, last_byte)) {
+
+				e1000_tbi_adjust_stats(Adapter,
+				    length, hw->mac.addr);
+
+				length--;
+				accept_frame = B_TRUE;
+			} else if (e1000_tbi_sbp_enabled_82543(hw) &&
+			    (current_desc->errors == E1000_RXD_ERR_CE)) {
+				accept_frame = B_TRUE;
+			}
 		}
 
-		LastByte =
-		    *((unsigned char *)rx_buf->address + length - 1);
-
-		if (TBI_ACCEPT(&Adapter->Shared,
-		    current_desc->status,
-		    current_desc->errors,
-		    current_desc->length, LastByte)) {
-
-			AcceptFrame = B_TRUE;
-			mutex_enter(&Adapter->TbiCntrMutex);
-			AdjustTbiAcceptedStats(Adapter, length,
-			    Adapter->Shared.mac_addr);
-			mutex_exit(&Adapter->TbiCntrMutex);
-			length--;
-		} else {
-			AcceptFrame = B_FALSE;
-		}
 		/*
 		 * Indicate the packet to the NOS if it was good.
 		 * Normally, hardware will discard bad packets for us.
 		 * Check for the packet to be a valid Ethernet packet
 		 */
-
-		/*
-		 * There can be few packets which are less than 2k but
-		 * more than 1514 bytes length. They are really jumbo
-		 * packets, but for our driver's buffer they can still
-		 * fit in one buffer as minimum buffer size if 2K. In our
-		 * above condition, we are taking all EOP packets as
-		 * JumboPacket=False... JumboPacket=FALSE just tells us
-		 * that now we can process this packet...as we have
-		 * received complete packet.
-		 */
-
-		if (!((current_desc->errors == 0) ||
-		    (current_desc->errors &
-		    (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) ||
-		    ((Adapter->Shared.tbi_compatibility_on == 1) &&
-		    (current_desc->errors == E1000_RXD_ERR_CE)) ||
-		    AcceptFrame)) {
+		if (!accept_frame) {
 			/*
 			 * error in incoming packet, either the packet is not a
 			 * ethernet size packet, or the packet has an error. In
 			 * either case, the packet will simply be discarded.
 			 */
-			e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
+			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
 			    "Process Receive Interrupts: Error in Packet\n");
 
-			Adapter->rx_error++;
+			E1000G_STAT(rx_ring->stat_error);
 			/*
 			 * Returning here as we are done here. There is
 			 * no point in waiting for while loop to elapse
@@ -702,10 +491,10 @@
 				 * drop this fragment, do the processing of
 				 * the end of the packet.
 				 */
-				ASSERT(Adapter->rx_mblk_tail != NULL);
-				Adapter->rx_mblk_tail->b_wptr -=
+				ASSERT(rx_ring->rx_mblk_tail != NULL);
+				rx_ring->rx_mblk_tail->b_wptr -=
 				    CRC_LENGTH - length;
-				Adapter->rx_packet_len -=
+				rx_ring->rx_mblk_len -=
 				    CRC_LENGTH - length;
 
 				QUEUE_POP_HEAD(&rx_ring->recv_list);
@@ -733,7 +522,7 @@
 				packet->mp->b_rptr += E1000G_IPALIGNROOM;
 				packet->mp->b_wptr += E1000G_IPALIGNROOM;
 			} else {
-				Adapter->rx_esballoc_fail++;
+				E1000G_STAT(rx_ring->stat_esballoc_fail);
 			}
 		}
 
@@ -761,7 +550,7 @@
 				 */
 				nmp = packet->mp;
 				packet->mp = NULL;
-				packet->flag |= E1000G_RX_SW_SENDUP;
+				packet->flag == E1000G_RX_SW_SENDUP;
 
 				/*
 				 * Now replace old buffer with the new
@@ -771,16 +560,13 @@
 				 * point to this new packet.
 				 */
 				packet = newpkt;
-#ifdef __sparc
-				current_desc->buffer_addr =
-				    DWORD_SWAP(newpkt->rx_buf->dma_address);
-#else
+
 				current_desc->buffer_addr =
 				    newpkt->rx_buf->dma_address;
-#endif
+
 				need_copy = B_FALSE;
 			} else {
-				Adapter->rx_no_freepkt++;
+				E1000G_DEBUG_STAT(rx_ring->stat_no_freepkt);
 			}
 		}
 
@@ -792,8 +578,7 @@
 			 * keep the original buffer. Dont want to
 			 * do this.. Yack but no other way
 			 */
-			if ((nmp =
-			    allocb(length + E1000G_IPALIGNROOM,
+			if ((nmp = allocb(length + E1000G_IPALIGNROOM,
 			    BPRI_MED)) == NULL) {
 				/*
 				 * The system has no buffers available
@@ -801,7 +586,7 @@
 				 * the packet will have to be processed
 				 * when there're more buffers available.
 				 */
-				Adapter->rx_allocb_fail++;
+				E1000G_STAT(rx_ring->stat_allocb_fail);
 				goto rx_drop;
 			}
 			nmp->b_rptr += E1000G_IPALIGNROOM;
@@ -813,32 +598,28 @@
 			 * buffer will have to be retained for future
 			 * packet reception.
 			 */
-			bcopy(rx_buf->address,
-			    nmp->b_wptr, length);
+			bcopy(rx_buf->address, nmp->b_wptr, length);
 		}
 
 		/*
-		 * The RX_SW_PACKET MUST be popped off the
+		 * The rx_sw_packet MUST be popped off the
 		 * RxSwPacketList before either a putnext or freemsg
 		 * is done on the mp that has now been created by the
 		 * desballoc. If not, it is possible that the free
 		 * routine will get called from the interrupt context
 		 * and try to put this packet on the free list
 		 */
-		(PRX_SW_PACKET)QUEUE_POP_HEAD(&rx_ring->recv_list);
+		(p_rx_sw_packet_t)QUEUE_POP_HEAD(&rx_ring->recv_list);
 
 		ASSERT(nmp != NULL);
 		nmp->b_wptr += length;
 
-		if ((Adapter->rx_mblk == NULL) &&
-		    (GET_ETHER_TYPE((struct ether_header *)nmp->b_rptr) ==
-		    ETHERTYPE_IP)) {
+		if (rx_ring->rx_mblk == NULL) {
 			/*
 			 *  TCP/UDP checksum offload and
 			 *  IP checksum offload
 			 */
-			if (!(current_desc->status &
-			    E1000_RXD_STAT_IXSM)) {
+			if (!(current_desc->status & E1000_RXD_STAT_IXSM)) {
 				/*
 				 * Check TCP/UDP checksum
 				 */
@@ -864,20 +645,20 @@
 		 * Adapter structure, for the Rx processing can end
 		 * with a fragment that has no EOP set.
 		 */
-		if (Adapter->rx_mblk == NULL) {
+		if (rx_ring->rx_mblk == NULL) {
 			/* Get the head of the message chain */
-			Adapter->rx_mblk = nmp;
-			Adapter->rx_mblk_tail = nmp;
-			Adapter->rx_packet_len = length;
+			rx_ring->rx_mblk = nmp;
+			rx_ring->rx_mblk_tail = nmp;
+			rx_ring->rx_mblk_len = length;
 		} else {	/* Not the first packet */
 			/* Continue adding buffers */
-			Adapter->rx_mblk_tail->b_cont = nmp;
-			Adapter->rx_mblk_tail = nmp;
-			Adapter->rx_packet_len += length;
+			rx_ring->rx_mblk_tail->b_cont = nmp;
+			rx_ring->rx_mblk_tail = nmp;
+			rx_ring->rx_mblk_len += length;
 		}
-		ASSERT(Adapter->rx_mblk != NULL);
-		ASSERT(Adapter->rx_mblk_tail != NULL);
-		ASSERT(Adapter->rx_mblk_tail->b_cont == NULL);
+		ASSERT(rx_ring->rx_mblk != NULL);
+		ASSERT(rx_ring->rx_mblk_tail != NULL);
+		ASSERT(rx_ring->rx_mblk_tail->b_cont == NULL);
 
 		/*
 		 * Now this MP is ready to travel upwards but some more
@@ -899,47 +680,31 @@
 		 * Process the last fragment.
 		 */
 		if (cksumflags != 0) {
-			(void) hcksum_assoc(Adapter->rx_mblk,
+			(void) hcksum_assoc(rx_ring->rx_mblk,
 			    NULL, NULL, 0, 0, 0, 0, cksumflags, 0);
 			cksumflags = 0;
 		}
 
 		/*
-		 * Jumbo Frame Counters
-		 */
-		if (Adapter->ProfileJumboTraffic) {
-			if ((Adapter->rx_packet_len > ETHERMAX) &&
-			    (Adapter->rx_packet_len <= FRAME_SIZE_UPTO_4K))
-				Adapter->JumboRx_4K++;
-
-			if ((Adapter->rx_packet_len > FRAME_SIZE_UPTO_4K) &&
-			    (Adapter->rx_packet_len <= FRAME_SIZE_UPTO_8K))
-				Adapter->JumboRx_8K++;
-
-			if ((Adapter->rx_packet_len > FRAME_SIZE_UPTO_8K) &&
-			    (Adapter->rx_packet_len <= FRAME_SIZE_UPTO_16K))
-				Adapter->JumboRx_16K++;
-		}
-		/*
 		 * Count packets that span multi-descriptors
 		 */
-		if (Adapter->rx_mblk->b_cont != NULL)
-			Adapter->rx_multi_desc++;
+		E1000G_DEBUG_STAT_COND(rx_ring->stat_multi_desc,
+		    (rx_ring->rx_mblk->b_cont != NULL));
 
 		/*
 		 * Append to list to send upstream
 		 */
 		if (ret_mp == NULL) {
-			ret_mp = ret_nmp = Adapter->rx_mblk;
+			ret_mp = ret_nmp = rx_ring->rx_mblk;
 		} else {
-			ret_nmp->b_next = Adapter->rx_mblk;
-			ret_nmp = Adapter->rx_mblk;
+			ret_nmp->b_next = rx_ring->rx_mblk;
+			ret_nmp = rx_ring->rx_mblk;
 		}
 		ret_nmp->b_next = NULL;
 
-		Adapter->rx_mblk = NULL;
-		Adapter->rx_mblk_tail = NULL;
-		Adapter->rx_packet_len = 0;
+		rx_ring->rx_mblk = NULL;
+		rx_ring->rx_mblk_tail = NULL;
+		rx_ring->rx_mblk_len = 0;
 
 		pkt_count++;
 
@@ -965,33 +730,17 @@
 		    &packet->Link);
 	}	/* while loop */
 
-	if (pkt_count >= Adapter->MaxNumReceivePackets)
-		Adapter->rx_exceed_pkt++;
+	if (pkt_count >= Adapter->rx_limit_onintr)
+		E1000G_STAT(rx_ring->stat_exceed_pkt);
 
 	/* Sync the Rx descriptor DMA buffers */
-	sync_len = desc_count;
-	/* Check the wrap-around case */
-	if ((sync_offset + sync_len) <= Adapter->NumRxDescriptors) {
-		(void) ddi_dma_sync(rx_ring->rbd_dma_handle,
-		    sync_offset * sizeof (struct e1000_rx_desc),
-		    sync_len * sizeof (struct e1000_rx_desc),
-		    DDI_DMA_SYNC_FORDEV);
-	} else {
-		(void) ddi_dma_sync(rx_ring->rbd_dma_handle,
-		    sync_offset * sizeof (struct e1000_rx_desc),
-		    0,
-		    DDI_DMA_SYNC_FORDEV);
-		sync_len = sync_offset + sync_len - Adapter->NumRxDescriptors;
-		(void) ddi_dma_sync(rx_ring->rbd_dma_handle,
-		    0,
-		    sync_len * sizeof (struct e1000_rx_desc),
-		    DDI_DMA_SYNC_FORDEV);
-	}
+	(void) ddi_dma_sync(rx_ring->rbd_dma_handle,
+	    0, 0, DDI_DMA_SYNC_FORDEV);
 
 	/*
 	 * Advance the E1000's Receive Queue #0 "Tail Pointer".
 	 */
-	E1000_WRITE_REG(&Adapter->Shared, RDT,
+	E1000_WRITE_REG(hw, E1000_RDT,
 	    (uint32_t)(last_desc - rx_ring->rbd_first));
 
 	return (ret_mp);
@@ -1003,24 +752,8 @@
 	current_desc->status = 0;
 
 	/* Sync the Rx descriptor DMA buffers */
-	sync_len = desc_count;
-	/* Check the wrap-around case */
-	if ((sync_offset + sync_len) <= Adapter->NumRxDescriptors) {
-		(void) ddi_dma_sync(rx_ring->rbd_dma_handle,
-		    sync_offset * sizeof (struct e1000_rx_desc),
-		    sync_len * sizeof (struct e1000_rx_desc),
-		    DDI_DMA_SYNC_FORDEV);
-	} else {
-		(void) ddi_dma_sync(rx_ring->rbd_dma_handle,
-		    sync_offset * sizeof (struct e1000_rx_desc),
-		    0,
-		    DDI_DMA_SYNC_FORDEV);
-		sync_len = sync_offset + sync_len - Adapter->NumRxDescriptors;
-		(void) ddi_dma_sync(rx_ring->rbd_dma_handle,
-		    0,
-		    sync_len * sizeof (struct e1000_rx_desc),
-		    DDI_DMA_SYNC_FORDEV);
-	}
+	(void) ddi_dma_sync(rx_ring->rbd_dma_handle,
+	    0, 0, DDI_DMA_SYNC_FORDEV);
 
 	if (current_desc == rx_ring->rbd_last)
 		rx_ring->rbd_next = rx_ring->rbd_first;
@@ -1029,23 +762,23 @@
 
 	last_desc = current_desc;
 
-	(PRX_SW_PACKET)QUEUE_POP_HEAD(&rx_ring->recv_list);
+	(p_rx_sw_packet_t)QUEUE_POP_HEAD(&rx_ring->recv_list);
 
 	QUEUE_PUSH_TAIL(&rx_ring->recv_list, &packet->Link);
 	/*
 	 * Reclaim all old buffers already allocated during
 	 * Jumbo receives.....for incomplete reception
 	 */
-	if (Adapter->rx_mblk != NULL) {
-		freemsg(Adapter->rx_mblk);
-		Adapter->rx_mblk = NULL;
-		Adapter->rx_mblk_tail = NULL;
-		Adapter->rx_packet_len = 0;
+	if (rx_ring->rx_mblk != NULL) {
+		freemsg(rx_ring->rx_mblk);
+		rx_ring->rx_mblk = NULL;
+		rx_ring->rx_mblk_tail = NULL;
+		rx_ring->rx_mblk_len = 0;
 	}
 	/*
 	 * Advance the E1000's Receive Queue #0 "Tail Pointer".
 	 */
-	E1000_WRITE_REG(&Adapter->Shared, RDT,
+	E1000_WRITE_REG(hw, E1000_RDT,
 	    (uint32_t)(last_desc - rx_ring->rbd_first));
 
 	return (ret_mp);
--- a/usr/src/uts/common/io/e1000g/e1000g_stat.c	Mon Aug 20 23:01:08 2007 -0700
+++ b/usr/src/uts/common/io/e1000g/e1000g_stat.c	Tue Aug 21 00:30:10 2007 -0700
@@ -30,71 +30,50 @@
  *									*
  * Module Name:  e1000g_stat.c						*
  *									*
- * Abstract:     Functions for displaying statistics			*
+ * Abstract: Functions for processing statistics			*
  *									*
  * **********************************************************************
  */
 #include "e1000g_sw.h"
 #include "e1000g_debug.h"
 
-static int UpdateStatsCounters(kstat_t *ksp, int rw);
+static int e1000g_update_stats(kstat_t *ksp, int rw);
 
 /*
- * **********************************************************************
- *									*
- * Name:	    AdjustTbiAcceptedStats				*
- *									*
- * Description:     Adjusts statistic counters when a frame is accepted	*
- *		  under the TBI workaround. This function has been	*
- *		  adapted for Solaris from shared code.			*
- *									*
- * Author:	  Bill Campbell						*
- *									*
- * Born on Date:    4/12/2001						*
- *									*
- * Arguments:								*
- *      Adapter     - Ptr to this card's adapter data structure.	*
- *      FrameLength - Length as reported from Hardware			*
- *      MacAddress  - Pointer to MAC address field in frame.		*
- *									*
- * Returns:								*
- *      VOID								*
- *									*
- * **********************************************************************
+ * e1000_tbi_adjust_stats
+ *
+ * Adjusts statistic counters when a frame is accepted
+ * under the TBI workaround. This function has been
+ * adapted for Solaris from shared code.
  */
 void
-AdjustTbiAcceptedStats(struct e1000g *Adapter,
-    UINT32 FrameLength, PUCHAR MacAddress)
+e1000_tbi_adjust_stats(struct e1000g *Adapter,
+    uint32_t frame_len, uint8_t *mac_addr)
 {
-	UINT32 CarryBit;
-	e1000gstat *e1000g_ksp;
+	struct e1000_hw *hw = &Adapter->shared;
+	uint32_t carry_bit;
+	p_e1000g_stat_t e1000g_ksp;
 
-	e1000g_ksp = (e1000gstat *)Adapter->e1000g_ksp->ks_data;
+	e1000g_ksp = (p_e1000g_stat_t)Adapter->e1000g_ksp->ks_data;
 
-	/*
-	 * First adjust the frame length.
-	 */
-	FrameLength--;
+	/* First adjust the frame length */
+	frame_len--;
+
 	/*
 	 * We need to adjust the statistics counters, since the hardware
 	 * counters overcount this packet as a CRC error and undercount
 	 * the packet as a good packet
 	 */
-
-	/*
-	 * This packet should not be counted as a CRC error.
-	 */
+	/* This packet should not be counted as a CRC error */
 	e1000g_ksp->Crcerrs.value.ul--;
-	/*
-	 * This packet does count as a Good Packet Received.
-	 */
+	/* This packet does count as a Good Packet Received */
 	e1000g_ksp->Gprc.value.ul++;
 
 	/*
 	 * Adjust the Good Octets received counters
 	 */
-	CarryBit = 0x80000000 & e1000g_ksp->Gorl.value.ul;
-	e1000g_ksp->Gorl.value.ul += FrameLength;
+	carry_bit = 0x80000000 & e1000g_ksp->Gorl.value.ul;
+	e1000g_ksp->Gorl.value.ul += frame_len;
 	/*
 	 * If the high bit of Gorcl (the low 32 bits of the Good Octets
 	 * Received Count) was one before the addition,
@@ -103,7 +82,7 @@
 	 * This could be simplified if all environments supported
 	 * 64-bit integers.
 	 */
-	if (CarryBit && ((e1000g_ksp->Gorl.value.ul & 0x80000000) == 0)) {
+	if (carry_bit && ((e1000g_ksp->Gorl.value.ul & 0x80000000) == 0)) {
 		e1000g_ksp->Gorh.value.ul++;
 	}
 	/*
@@ -111,19 +90,20 @@
 	 * since the test for a multicast frame will test positive on
 	 * a broadcast frame.
 	 */
-	if ((MacAddress[0] == (UCHAR) 0xff) &&
-	    (MacAddress[1] == (UCHAR) 0xff)) {
+	if ((mac_addr[0] == (uint8_t)0xff) &&
+	    (mac_addr[1] == (uint8_t)0xff)) {
 		/*
 		 * Broadcast packet
 		 */
 		e1000g_ksp->Bprc.value.ul++;
-	} else if (*MacAddress & 0x01) {
+	} else if (*mac_addr & 0x01) {
 		/*
 		 * Multicast packet
 		 */
 		e1000g_ksp->Mprc.value.ul++;
 	}
-	if (FrameLength == Adapter->Shared.max_frame_size) {
+
+	if (frame_len == hw->mac.max_frame_size) {
 		/*
 		 * In this case, the hardware has overcounted the number of
 		 * oversize frames.
@@ -134,63 +114,44 @@
 
 	/*
 	 * Adjust the bin counters when the extra byte put the frame in the
-	 * wrong bin. Remember that the FrameLength was adjusted above.
+	 * wrong bin. Remember that the frame_len was adjusted above.
 	 */
-	if (FrameLength == 64) {
+	if (frame_len == 64) {
 		e1000g_ksp->Prc64.value.ul++;
 		e1000g_ksp->Prc127.value.ul--;
-	} else if (FrameLength == 127) {
+	} else if (frame_len == 127) {
 		e1000g_ksp->Prc127.value.ul++;
 		e1000g_ksp->Prc255.value.ul--;
-	} else if (FrameLength == 255) {
+	} else if (frame_len == 255) {
 		e1000g_ksp->Prc255.value.ul++;
 		e1000g_ksp->Prc511.value.ul--;
-	} else if (FrameLength == 511) {
+	} else if (frame_len == 511) {
 		e1000g_ksp->Prc511.value.ul++;
 		e1000g_ksp->Prc1023.value.ul--;
-	} else if (FrameLength == 1023) {
+	} else if (frame_len == 1023) {
 		e1000g_ksp->Prc1023.value.ul++;
 		e1000g_ksp->Prc1522.value.ul--;
-	} else if (FrameLength == 1522) {
+	} else if (frame_len == 1522) {
 		e1000g_ksp->Prc1522.value.ul++;
 	}
 }
 
 
 /*
- * **********************************************************************
- * Name:	UpdateStatsCounters					*
- *									*
- * Description: This routine will dump and reset the 1000's internal	*
- *	      Statistics counters.  The current stats dump values will	*
- *	      be sent to the kernel status area.			*
- *									*
- * Author:      Phil Cayton						*
- *									*
- * Born on Date:    7/13/98						*
- *									*
- * Arguments:								*
- *     *ksp - A kernel stat pointer					*
- *     rw   - Read/Write flag						*
- *									*
- * Returns:								*
- *      (EACCES) If an attempt is made to write stats to the hw		*
- *      (0) On successful read of statistics to kernel stats.		*
- *									*
- * File: e1000g_stat.c							*
- *									*
- * Modification log:							*
- * Date      Who  Description						*
- * --------  ---  ------------------------------------------------------*
- * Sept 10,99 Vinay New Counters for Livengood have been added.		*
- * **********************************************************************
+ * e1000g_update_stats - update driver private kstat counters
+ *
+ * This routine will dump and reset the e1000's internal
+ * statistics counters. The current stats dump values will
+ * be sent to the kernel status area.
  */
 static int
-UpdateStatsCounters(IN kstat_t *ksp, int rw)
+e1000g_update_stats(kstat_t *ksp, int rw)
 {
-	uint16_t LineSpeed, Duplex;
 	struct e1000g *Adapter;
-	e1000gstat *e1000g_ksp;
+	struct e1000_hw *hw;
+	p_e1000g_stat_t e1000g_ksp;
+	e1000g_tx_ring_t *tx_ring;
+	e1000g_rx_ring_t *rx_ring;
 	uint64_t val;
 	uint32_t low_val, high_val;
 
@@ -199,200 +160,147 @@
 
 	Adapter = (struct e1000g *)ksp->ks_private;
 	ASSERT(Adapter != NULL);
-	e1000g_ksp = (e1000gstat *)ksp->ks_data;
+	e1000g_ksp = (p_e1000g_stat_t)ksp->ks_data;
 	ASSERT(e1000g_ksp != NULL);
+	hw = &Adapter->shared;
+
+	tx_ring = Adapter->tx_ring;
+	rx_ring = Adapter->rx_ring;
+
+	rw_enter(&Adapter->chip_lock, RW_WRITER);
 
 	e1000g_ksp->link_speed.value.ul = Adapter->link_speed;
-	e1000g_ksp->rx_none.value.ul = Adapter->rx_none;
-	e1000g_ksp->rx_error.value.ul = Adapter->rx_error;
-	e1000g_ksp->rx_no_freepkt.value.ul = Adapter->rx_no_freepkt;
-	e1000g_ksp->rx_esballoc_fail.value.ul = Adapter->rx_esballoc_fail;
-	e1000g_ksp->rx_exceed_pkt.value.ul = Adapter->rx_exceed_pkt;
-	e1000g_ksp->rx_multi_desc.value.ul = Adapter->rx_multi_desc;
-	e1000g_ksp->rx_allocb_fail.value.ul = Adapter->rx_allocb_fail;
-	e1000g_ksp->rx_avail_freepkt.value.ul = Adapter->rx_avail_freepkt;
-	e1000g_ksp->rx_seq_intr.value.ul = Adapter->rx_seq_intr;
-	e1000g_ksp->tx_no_desc.value.ul = Adapter->tx_no_desc;
-	e1000g_ksp->tx_no_swpkt.value.ul = Adapter->tx_no_swpkt;
-	e1000g_ksp->tx_lack_desc.value.ul = Adapter->tx_lack_desc;
-	e1000g_ksp->tx_send_fail.value.ul = Adapter->tx_send_fail;
-	e1000g_ksp->tx_multi_cookie.value.ul = Adapter->tx_multi_cookie;
-	e1000g_ksp->tx_over_size.value.ul = Adapter->tx_over_size;
-	e1000g_ksp->tx_under_size.value.ul = Adapter->tx_under_size;
-	e1000g_ksp->tx_copy.value.ul = Adapter->tx_copy;
-	e1000g_ksp->tx_bind.value.ul = Adapter->tx_bind;
-	e1000g_ksp->tx_multi_copy.value.ul = Adapter->tx_multi_copy;
-	e1000g_ksp->tx_reschedule.value.ul = Adapter->tx_reschedule;
-	e1000g_ksp->tx_empty_frags.value.ul = Adapter->tx_empty_frags;
-	e1000g_ksp->tx_exceed_frags.value.ul = Adapter->tx_exceed_frags;
-	e1000g_ksp->tx_recycle.value.ul = Adapter->tx_recycle;
-	e1000g_ksp->tx_recycle_retry.value.ul = Adapter->tx_recycle_retry;
-	e1000g_ksp->tx_recycle_intr.value.ul = Adapter->tx_recycle_intr;
-	e1000g_ksp->tx_recycle_none.value.ul = Adapter->tx_recycle_none;
-	e1000g_ksp->StallWatchdog.value.ul = Adapter->StallWatchdog;
 	e1000g_ksp->reset_count.value.ul = Adapter->reset_count;
-	e1000g_ksp->JumboTx_4K.value.ul = Adapter->JumboTx_4K;
-	e1000g_ksp->JumboRx_4K.value.ul = Adapter->JumboRx_4K;
-	e1000g_ksp->JumboTx_8K.value.ul = Adapter->JumboTx_8K;
-	e1000g_ksp->JumboRx_8K.value.ul = Adapter->JumboRx_8K;
-	e1000g_ksp->JumboTx_16K.value.ul = Adapter->JumboTx_16K;
-	e1000g_ksp->JumboRx_16K.value.ul = Adapter->JumboRx_16K;
-	e1000g_ksp->intr_type.value.ul = Adapter->intr_type;
+
+	e1000g_ksp->rx_error.value.ul = rx_ring->stat_error;
+	e1000g_ksp->rx_esballoc_fail.value.ul = rx_ring->stat_esballoc_fail;
+	e1000g_ksp->rx_allocb_fail.value.ul = rx_ring->stat_allocb_fail;
+	e1000g_ksp->rx_exceed_pkt.value.ul = rx_ring->stat_exceed_pkt;
+
+	e1000g_ksp->tx_no_swpkt.value.ul = tx_ring->stat_no_swpkt;
+	e1000g_ksp->tx_no_desc.value.ul = tx_ring->stat_no_desc;
+	e1000g_ksp->tx_send_fail.value.ul = tx_ring->stat_send_fail;
+	e1000g_ksp->tx_reschedule.value.ul = tx_ring->stat_reschedule;
+	e1000g_ksp->tx_over_size.value.ul = tx_ring->stat_over_size;
 
-	/*
-	 * Mutex required if in TBI mode
-	 */
-	if (Adapter->Shared.tbi_compatibility_on == 1) {
-		mutex_enter(&Adapter->TbiCntrMutex);
-	}
+#ifdef E1000G_DEBUG
+	e1000g_ksp->rx_none.value.ul = rx_ring->stat_none;
+	e1000g_ksp->rx_multi_desc.value.ul = rx_ring->stat_multi_desc;
+	e1000g_ksp->rx_no_freepkt.value.ul = rx_ring->stat_no_freepkt;
+	e1000g_ksp->rx_avail_freepkt.value.ul = rx_ring->avail_freepkt;
+
+	e1000g_ksp->tx_under_size.value.ul = tx_ring->stat_under_size;
+	e1000g_ksp->tx_exceed_frags.value.ul = tx_ring->stat_exceed_frags;
+	e1000g_ksp->tx_empty_frags.value.ul = tx_ring->stat_empty_frags;
+	e1000g_ksp->tx_recycle.value.ul = tx_ring->stat_recycle;
+	e1000g_ksp->tx_recycle_intr.value.ul = tx_ring->stat_recycle_intr;
+	e1000g_ksp->tx_recycle_retry.value.ul = tx_ring->stat_recycle_retry;
+	e1000g_ksp->tx_recycle_none.value.ul = tx_ring->stat_recycle_none;
+	e1000g_ksp->tx_copy.value.ul = tx_ring->stat_copy;
+	e1000g_ksp->tx_bind.value.ul = tx_ring->stat_bind;
+	e1000g_ksp->tx_multi_copy.value.ul = tx_ring->stat_multi_copy;
+	e1000g_ksp->tx_multi_cookie.value.ul = tx_ring->stat_multi_cookie;
+	e1000g_ksp->tx_lack_desc.value.ul = tx_ring->stat_lack_desc;
+#endif
 
 	/*
 	 * Standard Stats
 	 */
-	e1000g_ksp->Mpc.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, MPC);
-
-	e1000g_ksp->Symerrs.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, SYMERRS);
+	e1000g_ksp->Mpc.value.ul += E1000_READ_REG(hw, E1000_MPC);
+	e1000g_ksp->Rlec.value.ul += E1000_READ_REG(hw, E1000_RLEC);
+	e1000g_ksp->Xonrxc.value.ul += E1000_READ_REG(hw, E1000_XONRXC);
+	e1000g_ksp->Xontxc.value.ul += E1000_READ_REG(hw, E1000_XONTXC);
+	e1000g_ksp->Xoffrxc.value.ul += E1000_READ_REG(hw, E1000_XOFFRXC);
+	e1000g_ksp->Xofftxc.value.ul += E1000_READ_REG(hw, E1000_XOFFTXC);
+	e1000g_ksp->Fcruc.value.ul += E1000_READ_REG(hw, E1000_FCRUC);
 
-	e1000g_ksp->Rlec.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, RLEC);
-
-	e1000g_ksp->Xonrxc.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, XONRXC);
+	if ((hw->mac.type != e1000_ich8lan) &&
+	    (hw->mac.type != e1000_ich9lan)) {
+		e1000g_ksp->Symerrs.value.ul +=
+		    E1000_READ_REG(hw, E1000_SYMERRS);
 
-	e1000g_ksp->Xontxc.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, XONTXC);
-
-	e1000g_ksp->Xoffrxc.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, XOFFRXC);
-
-	e1000g_ksp->Xofftxc.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, XOFFTXC);
-
-	e1000g_ksp->Fcruc.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, FCRUC);
+		e1000g_ksp->Prc64.value.ul +=
+		    E1000_READ_REG(hw, E1000_PRC64);
+		e1000g_ksp->Prc127.value.ul +=
+		    E1000_READ_REG(hw, E1000_PRC127);
+		e1000g_ksp->Prc255.value.ul +=
+		    E1000_READ_REG(hw, E1000_PRC255);
+		e1000g_ksp->Prc511.value.ul +=
+		    E1000_READ_REG(hw, E1000_PRC511);
+		e1000g_ksp->Prc1023.value.ul +=
+		    E1000_READ_REG(hw, E1000_PRC1023);
+		e1000g_ksp->Prc1522.value.ul +=
+		    E1000_READ_REG(hw, E1000_PRC1522);
 
-	e1000g_ksp->Prc64.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, PRC64);
-
-	e1000g_ksp->Prc127.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, PRC127);
-
-	e1000g_ksp->Prc255.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, PRC255);
-
-	e1000g_ksp->Prc511.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, PRC511);
+		e1000g_ksp->Ptc64.value.ul +=
+		    E1000_READ_REG(hw, E1000_PTC64);
+		e1000g_ksp->Ptc127.value.ul +=
+		    E1000_READ_REG(hw, E1000_PTC127);
+		e1000g_ksp->Ptc255.value.ul +=
+		    E1000_READ_REG(hw, E1000_PTC255);
+		e1000g_ksp->Ptc511.value.ul +=
+		    E1000_READ_REG(hw, E1000_PTC511);
+		e1000g_ksp->Ptc1023.value.ul +=
+		    E1000_READ_REG(hw, E1000_PTC1023);
+		e1000g_ksp->Ptc1522.value.ul +=
+		    E1000_READ_REG(hw, E1000_PTC1522);
+	}
 
-	e1000g_ksp->Prc1023.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, PRC1023);
-
-	e1000g_ksp->Prc1522.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, PRC1522);
+	e1000g_ksp->Gprc.value.ul += E1000_READ_REG(hw, E1000_GPRC);
+	e1000g_ksp->Gptc.value.ul += E1000_READ_REG(hw, E1000_GPTC);
+	e1000g_ksp->Ruc.value.ul += E1000_READ_REG(hw, E1000_RUC);
+	e1000g_ksp->Rfc.value.ul += E1000_READ_REG(hw, E1000_RFC);
+	e1000g_ksp->Roc.value.ul += E1000_READ_REG(hw, E1000_ROC);
+	e1000g_ksp->Rjc.value.ul += E1000_READ_REG(hw, E1000_RJC);
+	e1000g_ksp->Tpr.value.ul += E1000_READ_REG(hw, E1000_TPR);
+	e1000g_ksp->Tncrs.value.ul += E1000_READ_REG(hw, E1000_TNCRS);
+	e1000g_ksp->Tsctc.value.ul += E1000_READ_REG(hw, E1000_TSCTC);
+	e1000g_ksp->Tsctfc.value.ul += E1000_READ_REG(hw, E1000_TSCTFC);
 
-	e1000g_ksp->Gprc.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, GPRC);
-
-	e1000g_ksp->Gptc.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, GPTC);
+	/*
+	 * Adaptive Calculations
+	 */
+	hw->mac.tx_packet_delta = E1000_READ_REG(hw, E1000_TPT);
+	e1000g_ksp->Tpt.value.ul += hw->mac.tx_packet_delta;
 
 	/*
 	 * The 64-bit register will reset whenever the upper
 	 * 32 bits are read. So we need to read the lower
 	 * 32 bits first, then read the upper 32 bits.
 	 */
-	low_val = E1000_READ_REG(&Adapter->Shared, GORCL);
-	high_val = E1000_READ_REG(&Adapter->Shared, GORCH);
+	low_val = E1000_READ_REG(hw, E1000_GORCL);
+	high_val = E1000_READ_REG(hw, E1000_GORCH);
 	val = (uint64_t)e1000g_ksp->Gorh.value.ul << 32 |
 	    (uint64_t)e1000g_ksp->Gorl.value.ul;
 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
 	e1000g_ksp->Gorl.value.ul = (uint32_t)val;
 	e1000g_ksp->Gorh.value.ul = (uint32_t)(val >> 32);
 
-	low_val = E1000_READ_REG(&Adapter->Shared, GOTCL);
-	high_val = E1000_READ_REG(&Adapter->Shared, GOTCH);
+	low_val = E1000_READ_REG(hw, E1000_GOTCL);
+	high_val = E1000_READ_REG(hw, E1000_GOTCH);
 	val = (uint64_t)e1000g_ksp->Goth.value.ul << 32 |
 	    (uint64_t)e1000g_ksp->Gotl.value.ul;
 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
 	e1000g_ksp->Gotl.value.ul = (uint32_t)val;
 	e1000g_ksp->Goth.value.ul = (uint32_t)(val >> 32);
 
-	e1000g_ksp->Ruc.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, RUC);
-
-	e1000g_ksp->Rfc.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, RFC);
-
-	e1000g_ksp->Roc.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, ROC);
-
-	e1000g_ksp->Rjc.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, RJC);
-
-	low_val = E1000_READ_REG(&Adapter->Shared, TORL);
-	high_val = E1000_READ_REG(&Adapter->Shared, TORH);
+	low_val = E1000_READ_REG(hw, E1000_TORL);
+	high_val = E1000_READ_REG(hw, E1000_TORH);
 	val = (uint64_t)e1000g_ksp->Torh.value.ul << 32 |
 	    (uint64_t)e1000g_ksp->Torl.value.ul;
 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
 	e1000g_ksp->Torl.value.ul = (uint32_t)val;
 	e1000g_ksp->Torh.value.ul = (uint32_t)(val >> 32);
 
-	low_val = E1000_READ_REG(&Adapter->Shared, TOTL);
-	high_val = E1000_READ_REG(&Adapter->Shared, TOTH);
+	low_val = E1000_READ_REG(hw, E1000_TOTL);
+	high_val = E1000_READ_REG(hw, E1000_TOTH);
 	val = (uint64_t)e1000g_ksp->Toth.value.ul << 32 |
 	    (uint64_t)e1000g_ksp->Totl.value.ul;
 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
 	e1000g_ksp->Totl.value.ul = (uint32_t)val;
 	e1000g_ksp->Toth.value.ul = (uint32_t)(val >> 32);
 
-	e1000g_ksp->Tpr.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, TPR);
-
-	/*
-	 * Adaptive Calculations
-	 */
-	Adapter->Shared.tx_packet_delta =
-	    E1000_READ_REG(&Adapter->Shared, TPT);
-	e1000g_ksp->Tpt.value.ul +=
-	    Adapter->Shared.tx_packet_delta;
-
-	e1000g_ksp->Ptc64.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, PTC64);
-
-	e1000g_ksp->Ptc127.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, PTC127);
-
-	e1000g_ksp->Ptc255.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, PTC255);
-
-	e1000g_ksp->Ptc511.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, PTC511);
-
-	e1000g_ksp->Ptc1023.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, PTC1023);
-
-	e1000g_ksp->Ptc1522.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, PTC1522);
-
-	/*
-	 * Livengood Counters
-	 */
-	e1000g_ksp->Tncrs.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, TNCRS);
-
-	e1000g_ksp->Tsctc.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, TSCTC);
-
-	e1000g_ksp->Tsctfc.value.ul +=
-	    E1000_READ_REG(&Adapter->Shared, TSCTFC);
-
-	/*
-	 * Mutex required if in TBI mode
-	 */
-	if (Adapter->Shared.tbi_compatibility_on == 1) {
-		mutex_exit(&Adapter->TbiCntrMutex);
-	}
+	rw_exit(&Adapter->chip_lock);
 
 	return (0);
 }
@@ -401,11 +309,14 @@
 e1000g_m_stat(void *arg, uint_t stat, uint64_t *val)
 {
 	struct e1000g *Adapter = (struct e1000g *)arg;
-	e1000gstat *e1000g_ksp;
+	struct e1000_hw *hw = &Adapter->shared;
+	p_e1000g_stat_t e1000g_ksp;
 	uint32_t low_val, high_val;
 	uint16_t phy_reg, phy_reg_2;
 
-	e1000g_ksp = (e1000gstat *)Adapter->e1000g_ksp->ks_data;
+	e1000g_ksp = (p_e1000g_stat_t)Adapter->e1000g_ksp->ks_data;
+
+	rw_enter(&Adapter->chip_lock, RW_WRITER);
 
 	switch (stat) {
 	case MAC_STAT_IFSPEED:
@@ -414,45 +325,45 @@
 
 	case MAC_STAT_MULTIRCV:
 		e1000g_ksp->Mprc.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, MPRC);
+		    E1000_READ_REG(hw, E1000_MPRC);
 		*val = e1000g_ksp->Mprc.value.ul;
 		break;
 
 	case MAC_STAT_BRDCSTRCV:
 		e1000g_ksp->Bprc.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, BPRC);
+		    E1000_READ_REG(hw, E1000_BPRC);
 		*val = e1000g_ksp->Bprc.value.ul;
 		break;
 
 	case MAC_STAT_MULTIXMT:
 		e1000g_ksp->Mptc.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, MPTC);
+		    E1000_READ_REG(hw, E1000_MPTC);
 		*val = e1000g_ksp->Mptc.value.ul;
 		break;
 
 	case MAC_STAT_BRDCSTXMT:
 		e1000g_ksp->Bptc.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, BPTC);
+		    E1000_READ_REG(hw, E1000_BPTC);
 		*val = e1000g_ksp->Bptc.value.ul;
 		break;
 
 	case MAC_STAT_NORCVBUF:
 		e1000g_ksp->Rnbc.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, RNBC);
+		    E1000_READ_REG(hw, E1000_RNBC);
 		*val = e1000g_ksp->Rnbc.value.ul;
 		break;
 
 	case MAC_STAT_IERRORS:
 		e1000g_ksp->Rxerrc.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, RXERRC);
+		    E1000_READ_REG(hw, E1000_RXERRC);
 		e1000g_ksp->Algnerrc.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, ALGNERRC);
+		    E1000_READ_REG(hw, E1000_ALGNERRC);
 		e1000g_ksp->Rlec.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, RLEC);
+		    E1000_READ_REG(hw, E1000_RLEC);
 		e1000g_ksp->Crcerrs.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, CRCERRS);
+		    E1000_READ_REG(hw, E1000_CRCERRS);
 		e1000g_ksp->Cexterr.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, CEXTERR);
+		    E1000_READ_REG(hw, E1000_CEXTERR);
 		*val = e1000g_ksp->Rxerrc.value.ul +
 		    e1000g_ksp->Algnerrc.value.ul +
 		    e1000g_ksp->Rlec.value.ul +
@@ -461,18 +372,18 @@
 		break;
 
 	case MAC_STAT_NOXMTBUF:
-		*val = Adapter->tx_no_desc;
+		*val = Adapter->tx_ring->stat_no_desc;
 		break;
 
 	case MAC_STAT_OERRORS:
 		e1000g_ksp->Ecol.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, ECOL);
+		    E1000_READ_REG(hw, E1000_ECOL);
 		*val = e1000g_ksp->Ecol.value.ul;
 		break;
 
 	case MAC_STAT_COLLISIONS:
 		e1000g_ksp->Colc.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, COLC);
+		    E1000_READ_REG(hw, E1000_COLC);
 		*val = e1000g_ksp->Colc.value.ul;
 		break;
 
@@ -482,8 +393,8 @@
 		 * 32 bits are read. So we need to read the lower
 		 * 32 bits first, then read the upper 32 bits.
 		 */
-		low_val = E1000_READ_REG(&Adapter->Shared, TORL);
-		high_val = E1000_READ_REG(&Adapter->Shared, TORH);
+		low_val = E1000_READ_REG(hw, E1000_TORL);
+		high_val = E1000_READ_REG(hw, E1000_TORH);
 		*val = (uint64_t)e1000g_ksp->Torh.value.ul << 32 |
 		    (uint64_t)e1000g_ksp->Torl.value.ul;
 		*val += (uint64_t)high_val << 32 | (uint64_t)low_val;
@@ -494,7 +405,7 @@
 
 	case MAC_STAT_IPACKETS:
 		e1000g_ksp->Tpr.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, TPR);
+		    E1000_READ_REG(hw, E1000_TPR);
 		*val = e1000g_ksp->Tpr.value.ul;
 		break;
 
@@ -504,8 +415,8 @@
 		 * 32 bits are read. So we need to read the lower
 		 * 32 bits first, then read the upper 32 bits.
 		 */
-		low_val = E1000_READ_REG(&Adapter->Shared, TOTL);
-		high_val = E1000_READ_REG(&Adapter->Shared, TOTH);
+		low_val = E1000_READ_REG(hw, E1000_TOTL);
+		high_val = E1000_READ_REG(hw, E1000_TOTH);
 		*val = (uint64_t)e1000g_ksp->Toth.value.ul << 32 |
 		    (uint64_t)e1000g_ksp->Totl.value.ul;
 		*val += (uint64_t)high_val << 32 | (uint64_t)low_val;
@@ -516,79 +427,79 @@
 
 	case MAC_STAT_OPACKETS:
 		e1000g_ksp->Tpt.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, TPT);
+		    E1000_READ_REG(hw, E1000_TPT);
 		*val = e1000g_ksp->Tpt.value.ul;
 		break;
 
 	case ETHER_STAT_ALIGN_ERRORS:
 		e1000g_ksp->Algnerrc.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, ALGNERRC);
+		    E1000_READ_REG(hw, E1000_ALGNERRC);
 		*val = e1000g_ksp->Algnerrc.value.ul;
 		break;
 
 	case ETHER_STAT_FCS_ERRORS:
 		e1000g_ksp->Crcerrs.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, CRCERRS);
+		    E1000_READ_REG(hw, E1000_CRCERRS);
 		*val = e1000g_ksp->Crcerrs.value.ul;
 		break;
 
 	case ETHER_STAT_SQE_ERRORS:
 		e1000g_ksp->Sec.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, SEC);
+		    E1000_READ_REG(hw, E1000_SEC);
 		*val = e1000g_ksp->Sec.value.ul;
 		break;
 
 	case ETHER_STAT_CARRIER_ERRORS:
 		e1000g_ksp->Cexterr.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, CEXTERR);
+		    E1000_READ_REG(hw, E1000_CEXTERR);
 		*val = e1000g_ksp->Cexterr.value.ul;
 		break;
 
 	case ETHER_STAT_EX_COLLISIONS:
 		e1000g_ksp->Ecol.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, ECOL);
+		    E1000_READ_REG(hw, E1000_ECOL);
 		*val = e1000g_ksp->Ecol.value.ul;
 		break;
 
 	case ETHER_STAT_TX_LATE_COLLISIONS:
 		e1000g_ksp->Latecol.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, LATECOL);
+		    E1000_READ_REG(hw, E1000_LATECOL);
 		*val = e1000g_ksp->Latecol.value.ul;
 		break;
 
 	case ETHER_STAT_DEFER_XMTS:
 		e1000g_ksp->Dc.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, DC);
+		    E1000_READ_REG(hw, E1000_DC);
 		*val = e1000g_ksp->Dc.value.ul;
 		break;
 
 	case ETHER_STAT_FIRST_COLLISIONS:
 		e1000g_ksp->Scc.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, SCC);
+		    E1000_READ_REG(hw, E1000_SCC);
 		*val = e1000g_ksp->Scc.value.ul;
 		break;
 
 	case ETHER_STAT_MULTI_COLLISIONS:
 		e1000g_ksp->Mcc.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, MCC);
+		    E1000_READ_REG(hw, E1000_MCC);
 		*val = e1000g_ksp->Mcc.value.ul;
 		break;
 
 	case ETHER_STAT_MACRCV_ERRORS:
 		e1000g_ksp->Rxerrc.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, RXERRC);
+		    E1000_READ_REG(hw, E1000_RXERRC);
 		*val = e1000g_ksp->Rxerrc.value.ul;
 		break;
 
 	case ETHER_STAT_MACXMT_ERRORS:
 		e1000g_ksp->Ecol.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, ECOL);
+		    E1000_READ_REG(hw, E1000_ECOL);
 		*val = e1000g_ksp->Ecol.value.ul;
 		break;
 
 	case ETHER_STAT_TOOLONG_ERRORS:
 		e1000g_ksp->Roc.value.ul +=
-		    E1000_READ_REG(&Adapter->Shared, ROC);
+		    E1000_READ_REG(hw, E1000_ROC);
 		*val = e1000g_ksp->Roc.value.ul;
 		break;
 
@@ -598,26 +509,24 @@
 		break;
 
 	case ETHER_STAT_XCVR_ID:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_ID1, &phy_reg);
-		e1000_read_phy_reg(&Adapter->Shared, PHY_ID2, &phy_reg_2);
+		e1000_read_phy_reg(hw, PHY_ID1, &phy_reg);
+		e1000_read_phy_reg(hw, PHY_ID2, &phy_reg_2);
 		*val = (uint32_t)((phy_reg << 16) | phy_reg_2);
 		break;
 
 	case ETHER_STAT_XCVR_INUSE:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_STATUS, &phy_reg);
+		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
 		switch (Adapter->link_speed) {
 		case SPEED_1000:
 			*val =
-			    (Adapter->Shared.media_type ==
-			    e1000_media_type_copper) ? XCVR_1000T :
-			    XCVR_1000X;
+			    (hw->media_type == e1000_media_type_copper) ?
+			    XCVR_1000T : XCVR_1000X;
 			break;
 		case SPEED_100:
 			*val =
-			    (Adapter->Shared.media_type ==
-			    e1000_media_type_copper) ? (phy_reg &
-			    MII_SR_100T4_CAPS) ? XCVR_100T4 : XCVR_100T2 :
-			    XCVR_100X;
+			    (hw->media_type == e1000_media_type_copper) ?
+			    (phy_reg & MII_SR_100T4_CAPS) ?
+			    XCVR_100T4 : XCVR_100T2 : XCVR_100X;
 			break;
 		case SPEED_10:
 			*val = XCVR_10;
@@ -629,178 +538,155 @@
 		break;
 
 	case ETHER_STAT_CAP_1000FDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_EXT_STATUS,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_reg);
 		*val = ((phy_reg & IEEE_ESR_1000T_FD_CAPS) ||
 		    (phy_reg & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_CAP_1000HDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_EXT_STATUS,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_reg);
 		*val = ((phy_reg & IEEE_ESR_1000T_HD_CAPS) ||
 		    (phy_reg & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_CAP_100FDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_STATUS, &phy_reg);
+		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
 		*val = ((phy_reg & MII_SR_100X_FD_CAPS) ||
 		    (phy_reg & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_CAP_100HDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_STATUS, &phy_reg);
+		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
 		*val = ((phy_reg & MII_SR_100X_HD_CAPS) ||
 		    (phy_reg & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_CAP_10FDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_STATUS, &phy_reg);
+		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
 		*val = (phy_reg & MII_SR_10T_FD_CAPS) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_CAP_10HDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_STATUS, &phy_reg);
+		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
 		*val = (phy_reg & MII_SR_10T_HD_CAPS) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_CAP_ASMPAUSE:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		*val = (phy_reg & NWAY_AR_ASM_DIR) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_CAP_PAUSE:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		*val = (phy_reg & NWAY_AR_PAUSE) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_CAP_AUTONEG:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_STATUS, &phy_reg);
+		e1000_read_phy_reg(hw, PHY_STATUS, &phy_reg);
 		*val = (phy_reg & MII_SR_AUTONEG_CAPS) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_ADV_CAP_1000FDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_1000T_CTRL,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_reg);
 		*val = (phy_reg & CR_1000T_FD_CAPS) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_ADV_CAP_1000HDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_1000T_CTRL,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_reg);
 		*val = (phy_reg & CR_1000T_HD_CAPS) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_ADV_CAP_100FDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		*val = (phy_reg & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_ADV_CAP_100HDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		*val = (phy_reg & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_ADV_CAP_10FDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		*val = (phy_reg & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_ADV_CAP_10HDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		*val = (phy_reg & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_ADV_CAP_ASMPAUSE:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		*val = (phy_reg & NWAY_AR_ASM_DIR) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_ADV_CAP_PAUSE:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		*val = (phy_reg & NWAY_AR_PAUSE) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_ADV_CAP_AUTONEG:
-		*val = Adapter->Shared.autoneg;
+		*val = hw->mac.autoneg;
 		break;
 
 	case ETHER_STAT_LP_CAP_1000FDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_1000T_STATUS,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_reg);
 		*val = (phy_reg & SR_1000T_LP_FD_CAPS) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_LP_CAP_1000HDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_1000T_STATUS,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_reg);
 		*val = (phy_reg & SR_1000T_LP_HD_CAPS) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_LP_CAP_100FDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_LP_ABILITY,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
 		*val = (phy_reg & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_LP_CAP_100HDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_LP_ABILITY,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
 		*val = (phy_reg & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_LP_CAP_10FDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_LP_ABILITY,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
 		*val = (phy_reg & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_LP_CAP_10HDX:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_LP_ABILITY,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
 		*val = (phy_reg & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_LP_CAP_ASMPAUSE:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_LP_ABILITY,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
 		*val = (phy_reg & NWAY_LPAR_ASM_DIR) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_LP_CAP_PAUSE:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_LP_ABILITY,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_reg);
 		*val = (phy_reg & NWAY_LPAR_PAUSE) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_LP_CAP_AUTONEG:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_EXP,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_reg);
 		*val = (phy_reg & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_LINK_ASMPAUSE:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		*val = (phy_reg & NWAY_AR_ASM_DIR) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_LINK_PAUSE:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_AUTONEG_ADV,
-		    &phy_reg);
+		e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_reg);
 		*val = (phy_reg & NWAY_AR_PAUSE) ? 1 : 0;
 		break;
 
 	case ETHER_STAT_LINK_AUTONEG:
-		e1000_read_phy_reg(&Adapter->Shared, PHY_CTRL, &phy_reg);
+		e1000_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
 		*val = (phy_reg & MII_CR_AUTO_NEG_EN) ? 1 : 0;
 		break;
 
@@ -810,51 +696,33 @@
 		break;
 
 	default:
+		rw_exit(&Adapter->chip_lock);
 		return (ENOTSUP);
 	}
 
+	rw_exit(&Adapter->chip_lock);
+
 	return (0);
 }
 
 /*
- * **********************************************************************
- * Name:	InitStatsCounters					*
- *									*
- * Description: This routine will create and initialize the kernel	*
- *	       statistics counters.					*
- *									*
- * Author:      Phil Cayton						*
- *									*
- * Born on Date:    7/13/98						*
- *									*
- * Arguments:								*
- *      Adapter - A pointer to our context sensitive "Adapter"		*
- *		structure.						*
- *									*
- * Returns:								*
- *      '0' if unable to create kernel statistics structure.		*
- *      '1' if creation and initialization successful			*
- *									*
- * File: e1000g_stat.c							*
- *									*
- * Modification log:							*
- * Date      Who  Description						*
- * --------  ---  ------------------------------------------------------*
- *									*
- * **********************************************************************
+ * e1000g_init_stats - initialize kstat data structures
+ *
+ * This routine will create and initialize the driver private
+ * statistics counters.
  */
 int
-InitStatsCounters(IN struct e1000g *Adapter)
+e1000g_init_stats(struct e1000g *Adapter)
 {
 	kstat_t *ksp;
-	e1000gstat *e1000g_ksp;
+	p_e1000g_stat_t e1000g_ksp;
 
 	/*
 	 * Create and init kstat
 	 */
 	ksp = kstat_create(WSNAME, ddi_get_instance(Adapter->dip),
 	    "statistics", "net", KSTAT_TYPE_NAMED,
-	    sizeof (e1000gstat) / sizeof (kstat_named_t), 0);
+	    sizeof (e1000g_stat_t) / sizeof (kstat_named_t), 0);
 
 	if (ksp == NULL) {
 		e1000g_log(Adapter, CE_WARN,
@@ -864,246 +732,155 @@
 
 	Adapter->e1000g_ksp = ksp;	/* Fill in the Adapters ksp */
 
-	e1000g_ksp = (e1000gstat *) ksp->ks_data;
+	e1000g_ksp = (p_e1000g_stat_t)ksp->ks_data;
 
 	/*
 	 * Initialize all the statistics
 	 */
 	kstat_named_init(&e1000g_ksp->link_speed, "link_speed",
 	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->rx_none, "Rx No Data",
+	kstat_named_init(&e1000g_ksp->reset_count, "Reset Count",
 	    KSTAT_DATA_ULONG);
 
 	kstat_named_init(&e1000g_ksp->rx_error, "Rx Error",
 	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->rx_no_freepkt, "Rx Freelist Empty",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->rx_avail_freepkt, "Rx Freelist Avail",
-	    KSTAT_DATA_ULONG);
-
 	kstat_named_init(&e1000g_ksp->rx_esballoc_fail, "Rx Desballoc Failure",
 	    KSTAT_DATA_ULONG);
-
 	kstat_named_init(&e1000g_ksp->rx_exceed_pkt, "Rx Exceed Max Pkt Count",
 	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->rx_multi_desc, "Rx Span Multi Desc",
-	    KSTAT_DATA_ULONG);
-
 	kstat_named_init(&e1000g_ksp->rx_allocb_fail, "Rx Allocb Failure",
 	    KSTAT_DATA_ULONG);
 
-	kstat_named_init(&e1000g_ksp->rx_seq_intr, "Rx Seq Err Intr",
-	    KSTAT_DATA_ULONG);
-
 	kstat_named_init(&e1000g_ksp->tx_no_desc, "Tx No Desc",
 	    KSTAT_DATA_ULONG);
-
 	kstat_named_init(&e1000g_ksp->tx_no_swpkt, "Tx No Buffer",
 	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->tx_lack_desc, "Tx Desc Insufficient",
+	kstat_named_init(&e1000g_ksp->tx_send_fail, "Tx Send Failure",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->tx_over_size, "Tx Pkt Over Size",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->tx_reschedule, "Tx Reschedule",
 	    KSTAT_DATA_ULONG);
 
-	kstat_named_init(&e1000g_ksp->tx_send_fail,
-	    "Tx Send Failure", KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Mpc, "Recv_Missed_Packets",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Symerrs, "Recv_Symbol_Errors",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Rlec, "Recv_Length_Errors",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Xonrxc, "XONs_Recvd",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Xontxc, "XONs_Xmitd",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Xoffrxc, "XOFFs_Recvd",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Xofftxc, "XOFFs_Xmitd",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Fcruc, "Recv_Unsupport_FC_Pkts",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Prc64, "Pkts_Recvd_(  64b)",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Prc127, "Pkts_Recvd_(  65- 127b)",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Prc255, "Pkts_Recvd_( 127- 255b)",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Prc511, "Pkts_Recvd_( 256- 511b)",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Prc1023, "Pkts_Recvd_( 511-1023b)",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Prc1522, "Pkts_Recvd_(1024-1522b)",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Gprc, "Good_Pkts_Recvd",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Gptc, "Good_Pkts_Xmitd",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Gorl, "Good_Octets_Recvd_Lo",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Gorh, "Good_Octets_Recvd_Hi",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Gotl, "Good_Octets_Xmitd_Lo",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Goth, "Good_Octets_Xmitd_Hi",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Ruc, "Recv_Undersize",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Rfc, "Recv_Frag",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Roc, "Recv_Oversize",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Rjc, "Recv_Jabber",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Torl, "Total_Octets_Recvd_Lo",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Torh, "Total_Octets_Recvd_Hi",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Totl, "Total_Octets_Xmitd_Lo",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Toth, "Total_Octets_Xmitd_Hi",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Tpr, "Total_Packets_Recvd",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Tpt, "Total_Packets_Xmitd",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Ptc64, "Pkts_Xmitd_(  64b)",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Ptc127, "Pkts_Xmitd_(  65- 127b)",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Ptc255, "Pkts_Xmitd_( 128- 255b)",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Ptc511, "Pkts_Xmitd_( 255- 511b)",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Ptc1023, "Pkts_Xmitd_( 512-1023b)",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Ptc1522, "Pkts_Xmitd_(1024-1522b)",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Tncrs, "Xmit_with_No_CRS",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Tsctc, "Xmit_TCP_Seg_Contexts",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->Tsctfc, "Xmit_TCP_Seg_Contexts_Fail",
+	    KSTAT_DATA_ULONG);
 
-	kstat_named_init(&e1000g_ksp->tx_multi_cookie,
-	    "Tx Bind Multi Cookies", KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->tx_over_size, "Tx Pkt Over Size",
+#ifdef E1000G_DEBUG
+	kstat_named_init(&e1000g_ksp->rx_none, "Rx No Data",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->rx_multi_desc, "Rx Span Multi Desc",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->rx_no_freepkt, "Rx Freelist Empty",
+	    KSTAT_DATA_ULONG);
+	kstat_named_init(&e1000g_ksp->rx_avail_freepkt, "Rx Freelist Avail",
 	    KSTAT_DATA_ULONG);
 
 	kstat_named_init(&e1000g_ksp->tx_under_size, "Tx Pkt Under Size",
 	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->tx_copy, "Tx Send Copy",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->tx_bind, "Tx Send Bind",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->tx_multi_copy, "Tx Copy Multi Frags",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->tx_reschedule, "Tx Reschedule",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->tx_empty_frags, "Tx Empty Frags",
-	    KSTAT_DATA_ULONG);
-
 	kstat_named_init(&e1000g_ksp->tx_exceed_frags, "Tx Exceed Max Frags",
 	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->tx_recycle,
-	    "Tx Desc Recycle", KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->tx_recycle_retry,
-	    "Tx Desc Recycle Retry", KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->tx_recycle_intr,
-	    "Tx Desc Recycle Intr", KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->tx_recycle_none,
-	    "Tx Desc Recycled None", KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->StallWatchdog,
-	    "Tx Stall Watchdog", KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->reset_count,
-	    "Reset Count", KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->intr_type,
-	    "Interrupt Type", KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Mpc, "Recv_Missed_Packets",
+	kstat_named_init(&e1000g_ksp->tx_empty_frags, "Tx Empty Frags",
 	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Symerrs, "Recv_Symbol_Errors",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Rlec, "Recv_Length_Errors",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Xonrxc, "XONs_Recvd",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Xontxc, "XONs_Xmitd",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Xoffrxc, "XOFFs_Recvd",
+	kstat_named_init(&e1000g_ksp->tx_recycle, "Tx Recycle",
 	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Xofftxc, "XOFFs_Xmitd",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Fcruc, "Recv_Unsupport_FC_Pkts",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Prc64, "Pkts_Recvd_(  64b)",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Prc127, "Pkts_Recvd_(  65- 127b)",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Prc255, "Pkts_Recvd_( 127- 255b)",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Prc511, "Pkts_Recvd_( 256- 511b)",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Prc1023, "Pkts_Recvd_( 511-1023b)",
+	kstat_named_init(&e1000g_ksp->tx_recycle_intr, "Tx Recycle Intr",
 	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Prc1522, "Pkts_Recvd_(1024-1522b)",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Gprc, "Good_Pkts_Recvd",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Gptc, "Good_Pkts_Xmitd",
+	kstat_named_init(&e1000g_ksp->tx_recycle_retry, "Tx Recycle Retry",
 	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Gorl, "Good_Octets_Recvd_Lo",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Gorh, "Good_Octets_Recvd_Hi",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Gotl, "Good_Octets_Xmitd_Lo",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Goth, "Good_Octets_Xmitd_Hi",
+	kstat_named_init(&e1000g_ksp->tx_recycle_none, "Tx Recycled None",
 	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Ruc, "Recv_Undersize",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Rfc, "Recv_Frag",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Roc, "Recv_Oversize",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Rjc, "Recv_Jabber",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Torl, "Total_Octets_Recvd_Lo",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Torh, "Total_Octets_Recvd_Hi",
+	kstat_named_init(&e1000g_ksp->tx_copy, "Tx Send Copy",
 	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Totl, "Total_Octets_Xmitd_Lo",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Toth, "Total_Octets_Xmitd_Hi",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Tpr, "Total_Packets_Recvd",
+	kstat_named_init(&e1000g_ksp->tx_bind, "Tx Send Bind",
 	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Tpt, "Total_Packets_Xmitd",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Ptc64, "Pkts_Xmitd_(  64b)",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Ptc127, "Pkts_Xmitd_(  65- 127b)",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Ptc255, "Pkts_Xmitd_( 128- 255b)",
+	kstat_named_init(&e1000g_ksp->tx_multi_copy, "Tx Copy Multi Frags",
 	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Ptc511, "Pkts_Xmitd_( 255- 511b)",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Ptc1023, "Pkts_Xmitd_( 512-1023b)",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Ptc1522, "Pkts_Xmitd_(1024-1522b)",
-	    KSTAT_DATA_ULONG);
-
-	/*
-	 * Livengood Initializations
-	 */
-	kstat_named_init(&e1000g_ksp->Tncrs, "Xmit_with_No_CRS",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Tsctc, "Xmit_TCP_Seg_Contexts",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->Tsctfc, "Xmit_TCP_Seg_Contexts_Fail",
+	kstat_named_init(&e1000g_ksp->tx_multi_cookie, "Tx Bind Multi Cookies",
 	    KSTAT_DATA_ULONG);
-
-	/*
-	 * Jumbo Frame Counters
-	 */
-	kstat_named_init(&e1000g_ksp->JumboTx_4K, "Jumbo Tx Frame  4K",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->JumboRx_4K, "Jumbo Rx Frame  4K",
+	kstat_named_init(&e1000g_ksp->tx_lack_desc, "Tx Desc Insufficient",
 	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->JumboTx_8K, "Jumbo Tx Frame  8K",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->JumboRx_8K, "Jumbo Rx Frame  8K",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->JumboTx_16K, "Jumbo Tx Frame 16K",
-	    KSTAT_DATA_ULONG);
-
-	kstat_named_init(&e1000g_ksp->JumboRx_16K, "Jumbo Rx Frame 16K",
-	    KSTAT_DATA_ULONG);
+#endif
 
 	/*
 	 * Function to provide kernel stat update on demand
 	 */
-	ksp->ks_update = UpdateStatsCounters;
+	ksp->ks_update = e1000g_update_stats;
 
 	/*
 	 * Pointer into provider's raw statistics
--- a/usr/src/uts/common/io/e1000g/e1000g_sw.h	Mon Aug 20 23:01:08 2007 -0700
+++ b/usr/src/uts/common/io/e1000g/e1000g_sw.h	Tue Aug 21 00:30:10 2007 -0700
@@ -41,23 +41,9 @@
  *   This header file contains Software-related data structures		*
  *   definitions.							*
  *									*
- *   This driver runs on the following hardware:			*
- *   - Wisemane based PCI gigabit ethernet adapters			*
- *									*
- * Environment:								*
- *   Kernel Mode -							*
- *									*
  * **********************************************************************
  */
 
-#ifdef DEBUG
-#define	e1000g_DEBUG
-#endif
-
-/*
- *  Solaris Multithreaded GLD wiseman PCI Ethernet Driver
- */
-
 #include <sys/types.h>
 #include <sys/conf.h>
 #include <sys/debug.h>
@@ -85,36 +71,8 @@
 #include <inet/ip.h>
 #include <inet/mi.h>
 #include <inet/nd.h>
-#include "e1000_hw.h"
-
-/*
- * PCI Command Register Bit Definitions
- * Configuration Space Header
- */
-#define	CMD_IO_SPACE			0x0001	/* BIT_0 */
-#define	CMD_MEMORY_SPACE		0x0002	/* BIT_1 */
-#define	CMD_BUS_MASTER			0x0004	/* BIT_2 */
-#define	CMD_SPECIAL_CYCLES		0x0008	/* BIT_3 */
+#include "e1000_api.h"
 
-#define	CMD_VGA_PALLETTE_SNOOP		0x0020	/* BIT_5 */
-#define	CMD_PARITY_RESPONSE		0x0040	/* BIT_6 */
-#define	CMD_WAIT_CYCLE_CONTROL		0x0080	/* BIT_7 */
-#define	CMD_SERR_ENABLE			0x0100	/* BIT_8 */
-#define	CMD_BACK_TO_BACK		0x0200	/* BIT_9 */
-
-#define	WSDRAINTIME		(200)	/* # milliseconds xmit drain */
-
-#ifdef __sparc
-#ifdef _LP64
-#define	DWORD_SWAP(value)	(value)
-#else
-#define	DWORD_SWAP(value)	\
-	(uint64_t)((((uint64_t)value & 0x00000000FFFFFFFF) << 32) | \
-	(((uint64_t)value & 0xFFFFFFFF00000000) >> 32))
-#endif
-#else
-#define	DWORD_SWAP(value)	(value)
-#endif
 
 #define	JUMBO_FRAG_LENGTH		4096
 
@@ -133,55 +91,55 @@
 #define	E1000_FC_LOW_DIFF	0x1640 /* Low: 5696 bytes below Rx FIFO size */
 #define	E1000_FC_PAUSE_TIME	0x0680 /* 858 usec */
 
-#define	MAXNUMTXDESCRIPTOR		4096
-#define	MAXNUMRXDESCRIPTOR		4096
-#define	MAXNUMRXFREELIST		4096
-#define	MAXNUMTXSWPACKET		4096
-#define	MAXNUMRCVPKTONINTR		4096
-#define	MAXTXFRAGSLIMIT			1024
-#define	MAXTXINTERRUPTDELAYVAL		65535
-#define	MAXINTERRUPTTHROTTLINGVAL	65535
-#define	MAXRXBCOPYTHRESHOLD		E1000_RX_BUFFER_SIZE_2K
-#define	MAXTXBCOPYTHRESHOLD		E1000_TX_BUFFER_SIZE_2K
-#define	MAXTXRECYCLELOWWATER		\
-	(DEFAULTNUMTXDESCRIPTOR - MAX_TX_DESC_PER_PACKET)
-#define	MAXTXRECYCLENUM			DEFAULTNUMTXDESCRIPTOR
+#define	MAX_NUM_TX_DESCRIPTOR		4096
+#define	MAX_NUM_RX_DESCRIPTOR		4096
+#define	MAX_NUM_RX_FREELIST		4096
+#define	MAX_NUM_TX_FREELIST		4096
+#define	MAX_RX_LIMIT_ON_INTR		4096
+#define	MAX_RX_INTR_DELAY		65535
+#define	MAX_RX_INTR_ABS_DELAY		65535
+#define	MAX_TX_INTR_DELAY		65535
+#define	MAX_TX_INTR_ABS_DELAY		65535
+#define	MAX_INTR_THROTTLING		65535
+#define	MAX_RX_BCOPY_THRESHOLD		E1000_RX_BUFFER_SIZE_2K
+#define	MAX_TX_BCOPY_THRESHOLD		E1000_TX_BUFFER_SIZE_2K
 
-#define	MINNUMTXDESCRIPTOR		80
-#define	MINNUMRXDESCRIPTOR		80
-#define	MINNUMRXFREELIST		64
-#define	MINNUMTXSWPACKET		80
-#define	MINNUMRCVPKTONINTR		16
-#define	MINTXFRAGSLIMIT			2
-#define	MINTXINTERRUPTDELAYVAL		0
-#define	MININTERRUPTTHROTTLINGVAL	0
-#define	MINRXBCOPYTHRESHOLD		0
-#define	MINTXBCOPYTHRESHOLD		MINIMUM_ETHERNET_PACKET_SIZE
-#define	MINTXRECYCLELOWWATER		MAX_TX_DESC_PER_PACKET
-#define	MINTXRECYCLENUM			MAX_TX_DESC_PER_PACKET
+#define	MIN_NUM_TX_DESCRIPTOR		80
+#define	MIN_NUM_RX_DESCRIPTOR		80
+#define	MIN_NUM_RX_FREELIST		64
+#define	MIN_NUM_TX_FREELIST		80
+#define	MIN_RX_LIMIT_ON_INTR		16
+#define	MIN_RX_INTR_DELAY		0
+#define	MIN_RX_INTR_ABS_DELAY		0
+#define	MIN_TX_INTR_DELAY		0
+#define	MIN_TX_INTR_ABS_DELAY		0
+#define	MIN_INTR_THROTTLING		0
+#define	MIN_RX_BCOPY_THRESHOLD		0
+#define	MIN_TX_BCOPY_THRESHOLD		MINIMUM_ETHERNET_PACKET_SIZE
 
-#define	DEFAULTNUMTXDESCRIPTOR		2048
-#define	DEFAULTNUMRXDESCRIPTOR		2048
-#define	DEFAULTNUMRXFREELIST		4096
-#define	DEFAULTNUMTXSWPACKET		2048
-#define	DEFAULTMAXNUMRCVPKTONINTR	256
-#define	DEFAULTTXFRAGSLIMIT		4
-#define	DEFAULTFLOWCONTROLVAL		3
-#define	DEFAULTTXINTERRUPTDELAYVAL	300
-#define	DEFAULTINTERRUPTTHROTTLINGVAL	0x225
-#define	DEFAULTMWIENABLEVAL		1	/* Only PCI 450NX chipset */
-						/* needs this value to be 0 */
-#define	DEFAULTMASTERLATENCYTIMERVAL	0	/* BIOS should decide */
+#define	DEFAULT_NUM_RX_DESCRIPTOR	2048
+#define	DEFAULT_NUM_TX_DESCRIPTOR	2048
+#define	DEFAULT_NUM_RX_FREELIST		4096
+#define	DEFAULT_NUM_TX_FREELIST		2048
+#define	DEFAULT_RX_LIMIT_ON_INTR	256
+#define	DEFAULT_RX_INTR_DELAY		0
+#define	DEFAULT_RX_INTR_ABS_DELAY	0
+#define	DEFAULT_TX_INTR_DELAY		300
+#define	DEFAULT_TX_INTR_ABS_DELAY	0
+#define	DEFAULT_INTR_THROTTLING		0x225
+#define	DEFAULT_RX_BCOPY_THRESHOLD	0
+#define	DEFAULT_TX_BCOPY_THRESHOLD	512
+
+#define	DEFAULT_TX_RECYCLE_LOW_WATER	64
+#define	DEFAULT_TX_RECYCLE_NUM		128
+#define	DEFAULT_TX_INTR_ENABLE		1
+#define	DEFAULT_FLOW_CONTROL		3
+#define	DEFAULT_MASTER_LATENCY_TIMER	0	/* BIOS should decide */
 						/* which is normally 0x040 */
-#define	DEFAULTRXPCIPRIORITYVAL		1	/* Boolean value */
-#define	DEFAULTPROFILEJUMBOTRAFFIC	1	/* Profile Jumbo Traffic */
-#define	DEFAULTTBICOMPATIBILITYENABLE	1	/* Enable SBP workaround */
-#define	DEFAULTMSIENABLE		1	/* MSI Enable */
+#define	DEFAULT_TBI_COMPAT_ENABLE	1	/* Enable SBP workaround */
+#define	DEFAULT_MSI_ENABLE		1	/* MSI Enable */
 
-#define	DEFAULTRXBCOPYTHRESHOLD		0
-#define	DEFAULTTXBCOPYTHRESHOLD		512
-#define	DEFAULTTXRECYCLELOWWATER	64
-#define	DEFAULTTXRECYCLENUM		128
+#define	TX_DRAIN_TIME		(200)	/* # milliseconds xmit drain */
 
 /*
  * The size of the receive/transmite buffers
@@ -201,14 +159,8 @@
 
 #define	E1000G_RX_SW_FREE		0x0
 #define	E1000G_RX_SW_SENDUP		0x1
-#define	E1000G_RX_SW_DETACHED		0x2
-
-/*
- * By default it will print only to log
- */
-#define	DEFAULTDEBUGLEVEL		0x004
-#define	DEFAULTDISPLAYONLY		0
-#define	DEFAULTPRINTONLY		1
+#define	E1000G_RX_SW_STOP		0x2
+#define	E1000G_RX_SW_DETACH		0x3
 
 /*
  * definitions for smartspeed workaround
@@ -231,24 +183,23 @@
 #define	E1000G_IPALIGNPRESERVEROOM	64
 
 #define	E1000G_IMS_TX_INTR	(E1000_IMS_TXDW | E1000_IMS_TXQE)
-#define	E1000G_IMC_TX_INTR	(E1000_IMC_TXDW | E1000_IMC_TXQE)
 #define	E1000G_ICR_TX_INTR	(E1000_ICR_TXDW | E1000_ICR_TXQE)
 
 /*
  * bit flags for 'attach_progress' which is a member variable in struct e1000g
  */
-#define	ATTACH_PROGRESS_SOFTINTR	0x0001	/* Soft interrupt added */
-#define	ATTACH_PROGRESS_REGSMAPPED	0x0002	/* registers mapped */
-#define	ATTACH_PROGRESS_LOCKS		0x0004	/* locks initialized */
-#define	ATTACH_PROGRESS_PCICONFIG	0x0008	/* PCI config set up */
-#define	ATTACH_PROGRESS_KSTATS		0x0010	/* kstats created */
-#define	ATTACH_PROGRESS_INIT		0x0020	/* reset */
-#define	ATTACH_PROGRESS_INTRADDED	0x0040	/* interrupts added */
-#define	ATTACH_PROGRESS_MACREGISTERED	0x0080	/* MAC registered */
-#define	ATTACH_PROGRESS_PROP		0x0100	/* properties initialized */
+#define	ATTACH_PROGRESS_PCI_CONFIG	0x0001	/* PCI config setup */
+#define	ATTACH_PROGRESS_REGS_MAP	0x0002	/* Registers mapped */
+#define	ATTACH_PROGRESS_SETUP		0x0004	/* Setup driver parameters */
+#define	ATTACH_PROGRESS_ADD_INTR	0x0008	/* Interrupt added */
+#define	ATTACH_PROGRESS_LOCKS		0x0010	/* Locks initialized */
+#define	ATTACH_PROGRESS_SOFT_INTR	0x0020	/* Soft interrupt added */
+#define	ATTACH_PROGRESS_KSTATS		0x0040	/* Kstats created */
+#define	ATTACH_PROGRESS_ALLOC		0x0080	/* DMA resources allocated */
+#define	ATTACH_PROGRESS_INIT		0x0100	/* Driver initialization */
 #define	ATTACH_PROGRESS_NDD		0x0200	/* NDD initialized */
-#define	ATTACH_PROGRESS_INTRENABLED	0x0400	/* DDI interrupts enabled */
-#define	ATTACH_PROGRESS_ALLOC		0x0800	/* DMA resources allocated */
+#define	ATTACH_PROGRESS_MAC		0x0400	/* MAC registered */
+#define	ATTACH_PROGRESS_ENABLE_INTR	0x0800	/* DDI interrupts enabled */
 
 /*
  * Speed and Duplex Settings
@@ -259,7 +210,6 @@
 #define	GDIAG_100_FULL		4
 #define	GDIAG_1000_FULL		6
 #define	GDIAG_ANY		7
-#define	MAX_DEVICES		256
 
 /*
  * Coexist Workaround RP: 07/04/03
@@ -276,12 +226,17 @@
 #define	FRAME_SIZE_UPTO_4K	4096
 #define	FRAME_SIZE_UPTO_8K	8192
 #define	FRAME_SIZE_UPTO_16K	16384
-#define	FRAME_SIZE_UPTO_10K	10500
+#define	FRAME_SIZE_UPTO_9K	9234
 
-/*
- * Max microsecond for ITR (Interrupt Throttling Register)
- */
-#define	E1000_ITR_MAX_MICROSECOND	0x3fff
+/* The sizes (in bytes) of a ethernet packet */
+#define	MAXIMUM_ETHERNET_FRAME_SIZE	1518 /* With FCS */
+#define	MINIMUM_ETHERNET_FRAME_SIZE	64   /* With FCS */
+#define	ETHERNET_FCS_SIZE		4
+#define	MAXIMUM_ETHERNET_PACKET_SIZE	\
+	(MAXIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
+#define	MINIMUM_ETHERNET_PACKET_SIZE	\
+	(MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
+#define	CRC_LENGTH			ETHERNET_FCS_SIZE
 
 /* Defines for Tx stall check */
 #define	E1000G_STALL_WATCHDOG_COUNT	8
@@ -303,10 +258,6 @@
 #define	E1000G_LB_INTERNAL_PHY		4
 
 
-#define	GET_ETHER_TYPE(ptr)	(\
-	(((uint8_t *)&((struct ether_header *)ptr)->ether_type)[0] << 8) | \
-	(((uint8_t *)&((struct ether_header *)ptr)->ether_type)[1]))
-
 /*
  * QUEUE_INIT_LIST -- Macro which will init ialize a queue to NULL.
  */
@@ -430,14 +381,9 @@
 #define	param_adv_100hdx	nd_params[PARAM_ADV_100HDX_CAP].ndp_val
 #define	param_adv_10fdx		nd_params[PARAM_ADV_10FDX_CAP].ndp_val
 #define	param_adv_10hdx		nd_params[PARAM_ADV_10HDX_CAP].ndp_val
-
 #define	param_force_speed_duplex nd_params[PARAM_FORCE_SPEED_DUPLEX].ndp_val
 
-#define	param_link_up		nd_params[PARAM_LINK_STATUS].ndp_val
-#define	param_link_speed	nd_params[PARAM_LINK_SPEED].ndp_val
-#define	param_link_duplex	nd_params[PARAM_LINK_DUPLEX].ndp_val
-#define	param_link_autoneg	nd_params[PARAM_LINK_AUTONEG].ndp_val
-
+#ifdef E1000G_DEBUG
 /*
  * E1000G-specific ioctls ...
  */
@@ -461,6 +407,7 @@
 	uint64_t pp_acc_data;	/* output for peek	*/
 				/* input for poke	*/
 } e1000g_peekpoke_t;
+#endif	/* E1000G_DEBUG */
 
 /*
  * (Internal) return values from ioctl subroutines
@@ -541,11 +488,9 @@
 	PARAM_INTR_TYPE,
 
 	PARAM_TX_BCOPY_THRESHOLD,
-	PARAM_TX_FRAGS_LIMIT,
-	PARAM_TX_RECYCLE_LOW_WATER,
-	PARAM_TX_RECYCLE_NUM,
 	PARAM_TX_INTR_ENABLE,
-	PARAM_TX_INTR_DELAY,
+	PARAM_TX_TIDV,
+	PARAM_TX_TADV,
 	PARAM_RX_BCOPY_THRESHOLD,
 	PARAM_RX_PKT_ON_INTR,
 	PARAM_RX_RDTR,
@@ -554,36 +499,6 @@
 	PARAM_COUNT
 };
 
-static struct ether_addr etherbroadcastaddr = {
-	0xff, 0xff, 0xff, 0xff, 0xff, 0xff
-};
-
-/*
- * DMA access attributes <Little Endian Card>
- */
-static ddi_device_acc_attr_t accattr = {
-	DDI_DEVICE_ATTR_V0,
-	DDI_STRUCTURE_LE_ACC,
-	DDI_STRICTORDER_ACC,
-};
-
-/*
- * DMA access attributes for receive buffer <Big Endian> for Sparc
- */
-#ifdef __sparc
-static ddi_device_acc_attr_t accattr2 = {
-	DDI_DEVICE_ATTR_V0,
-	DDI_STRUCTURE_BE_ACC,
-	DDI_STRICTORDER_ACC,
-};
-#else
-static ddi_device_acc_attr_t accattr2 = {
-	DDI_DEVICE_ATTR_V0,
-	DDI_STRUCTURE_LE_ACC,
-	DDI_STRICTORDER_ACC,
-};
-#endif
-
 typedef struct _private_devi_list {
 	dev_info_t *dip;
 	dev_info_t *priv_dip;
@@ -608,15 +523,15 @@
 /*
  * Address-Length pair structure that stores descriptor info
  */
-typedef struct _ADDRESS_LENGTH_PAIR {
-	uint64_t Address;
-	uint32_t Length;
-} ADDRESS_LENGTH_PAIR, *PADDRESS_LENGTH_PAIR;
+typedef struct _sw_desc {
+	uint64_t address;
+	uint32_t length;
+} sw_desc_t, *p_sw_desc_t;
 
-typedef struct _DESCRIPTOR_PAIR {
-	ADDRESS_LENGTH_PAIR Descriptor[4];
-	uint32_t Elements;
-} DESC_ARRAY, *PDESC_ARRAY;
+typedef struct _desc_array {
+	sw_desc_t descriptor[4];
+	uint32_t elements;
+} desc_array_t, *p_desc_array_t;
 
 typedef enum {
 	USE_NONE,
@@ -632,7 +547,7 @@
 	ddi_dma_handle_t dma_handle;
 	size_t size;
 	size_t len;
-} dma_buffer_t, *pdma_buffer_t;
+} dma_buffer_t, *p_dma_buffer_t;
 
 /*
  * Transmit Control Block (TCB), Ndis equiv of SWPacket This
@@ -641,43 +556,42 @@
  * message block pointer and the TBD addresses associated with
  * the m_blk and also the link to the next tcb in the chain
  */
-typedef struct _TX_SW_PACKET_ {
-	/* Link to the next TX_SW_PACKET in the list */
+typedef struct _tx_sw_packet {
+	/* Link to the next tx_sw_packet in the list */
 	SINGLE_LIST_LINK Link;
 	mblk_t *mp;
-	UINT num_desc;
-	UINT num_mblk_frag;
+	uint32_t num_desc;
+	uint32_t num_mblk_frag;
 	dma_type_t dma_type;
 	dma_type_t data_transfer_type;
 	ddi_dma_handle_t tx_dma_handle;
 	dma_buffer_t tx_buf[1];
-	ADDRESS_LENGTH_PAIR desc[MAX_TX_DESC_PER_PACKET + 1];
-} TX_SW_PACKET, *PTX_SW_PACKET;
+	sw_desc_t desc[MAX_TX_DESC_PER_PACKET];
+} tx_sw_packet_t, *p_tx_sw_packet_t;
 
 /*
- * This structure is similar to the RX_SW_PACKET structure used
+ * This structure is similar to the rx_sw_packet structure used
  * for Ndis. This structure stores information about the 2k
  * aligned receive buffer into which the FX1000 DMA's frames.
  * This structure is maintained as a linked list of many
  * receiver buffer pointers.
  */
-typedef struct _RX_SW_PACKET {
-	/* Link to the next RX_SW_PACKET in the list */
+typedef struct _rx_sw_apcket {
+	/* Link to the next rx_sw_packet_t in the list */
 	SINGLE_LIST_LINK Link;
-	struct _RX_SW_PACKET *next;
+	struct _rx_sw_apcket *next;
 	uint16_t flag;
 	mblk_t *mp;
 	caddr_t rx_ring;
 	dma_type_t dma_type;
 	frtn_t free_rtn;
 	dma_buffer_t rx_buf[1];
-} RX_SW_PACKET, *PRX_SW_PACKET;
+} rx_sw_packet_t, *p_rx_sw_packet_t;
 
-typedef struct _e1000g_msg_chain {
+typedef struct _mblk_list {
 	mblk_t *head;
 	mblk_t *tail;
-	kmutex_t lock;
-} e1000g_msg_chain_t;
+} mblk_list_t, *p_mblk_list_t;
 
 typedef struct _cksum_data {
 	uint32_t ether_header_size;
@@ -686,17 +600,6 @@
 	uint32_t cksum_stuff;
 } cksum_data_t;
 
-/*
- * MultiCast Command Block (MULTICAST_CB) The multicast
- * structure contains an array of multicast addresses and
- * also a count of the total number of addresses.
- */
-typedef struct _multicast_cb_t {
-	ushort_t mc_count;	/* Number of multicast addresses */
-	uchar_t MulticastBuffer[(ETH_LENGTH_OF_ADDRESS *
-		MAX_NUM_MULTICAST_ADDRESSES)];
-} mltcst_cb_t, *pmltcst_cb_t;
-
 typedef union _e1000g_ether_addr {
 	struct {
 		uint32_t high;
@@ -705,42 +608,46 @@
 	struct {
 		uint8_t set;
 		uint8_t redundant;
-		uint8_t addr[NODE_ADDRESS_SIZE];
+		uint8_t addr[ETHERADDRL];
 	} mac;
 } e1000g_ether_addr_t;
 
-typedef struct _e1000gstat {
+typedef struct _e1000g_stat {
 
 	kstat_named_t link_speed;	/* Link Speed */
-	kstat_named_t rx_none;		/* Rx No Incoming Data */
+	kstat_named_t reset_count;	/* Reset Count */
+
 	kstat_named_t rx_error;		/* Rx Error in Packet */
 	kstat_named_t rx_exceed_pkt;	/* Rx Exceed Max Pkt Count */
+	kstat_named_t rx_esballoc_fail;	/* Rx Desballoc Failure */
+	kstat_named_t rx_allocb_fail;	/* Rx Allocb Failure */
+
+	kstat_named_t tx_no_desc;	/* Tx No Desc */
+	kstat_named_t tx_no_swpkt;	/* Tx No Pkt Buffer */
+	kstat_named_t tx_send_fail;	/* Tx SendPkt Failure */
+	kstat_named_t tx_over_size;	/* Tx Pkt Too Long */
+	kstat_named_t tx_reschedule;	/* Tx Reschedule */
+
+#ifdef E1000G_DEBUG
+	kstat_named_t rx_none;		/* Rx No Incoming Data */
 	kstat_named_t rx_multi_desc;	/* Rx Multi Spanned Pkt */
 	kstat_named_t rx_no_freepkt;	/* Rx No Free Pkt */
 	kstat_named_t rx_avail_freepkt;	/* Rx Freelist Avail Buffers */
-	kstat_named_t rx_esballoc_fail;	/* Rx Desballoc Failure */
-	kstat_named_t rx_allocb_fail;	/* Rx Allocb Failure */
-	kstat_named_t rx_seq_intr;	/* Rx Sequencing Errors Intr */
-	kstat_named_t tx_lack_desc;	/* Tx Lack of Desc */
-	kstat_named_t tx_no_desc;	/* Tx No Desc */
-	kstat_named_t tx_no_swpkt;	/* Tx No Pkt Buffer */
-	kstat_named_t tx_send_fail;	/* Tx SendPkt Failure */
-	kstat_named_t tx_multi_cookie;	/* Tx Pkt Span Multi Cookies */
-	kstat_named_t tx_over_size;	/* Tx Pkt Too Long */
-	kstat_named_t tx_under_size;	/* Tx Allocb Failure */
-	kstat_named_t tx_reschedule;	/* Tx Reschedule */
+
+	kstat_named_t tx_under_size;	/* Tx Packet Under Size */
 	kstat_named_t tx_empty_frags;	/* Tx Empty Frags */
 	kstat_named_t tx_exceed_frags;	/* Tx Exceed Max Frags */
 	kstat_named_t tx_recycle;	/* Tx Recycle */
+	kstat_named_t tx_recycle_intr;	/* Tx Recycle in Intr */
 	kstat_named_t tx_recycle_retry;	/* Tx Recycle Retry */
-	kstat_named_t tx_recycle_intr;	/* Tx Recycle in Intr */
 	kstat_named_t tx_recycle_none;	/* Tx No Desc Recycled */
 	kstat_named_t tx_copy;		/* Tx Send Copy */
 	kstat_named_t tx_bind;		/* Tx Send Bind */
 	kstat_named_t tx_multi_copy;	/* Tx Copy Multi Fragments */
-	kstat_named_t StallWatchdog;	/* Tx Stall Watchdog */
-	kstat_named_t reset_count;	/* Reset Count */
-	kstat_named_t intr_type;	/* Interrupt Type */
+	kstat_named_t tx_multi_cookie;	/* Tx Pkt Span Multi Cookies */
+	kstat_named_t tx_lack_desc;	/* Tx Lack of Desc */
+#endif
+
 	kstat_named_t Crcerrs;	/* CRC Error Count */
 	kstat_named_t Symerrs;	/* Symbol Error Count */
 	kstat_named_t Mpc;	/* Missed Packet Count */
@@ -790,9 +697,6 @@
 	kstat_named_t Ptc1522;	/* Packets Xmitted (1024-1522b */
 	kstat_named_t Mptc;	/* Multicast Packets Xmited Count */
 	kstat_named_t Bptc;	/* Broadcast Packets Xmited Count */
-	/*
-	 * New Livengood Stat Counters
-	 */
 	kstat_named_t Algnerrc;	/* Alignment Error count */
 	kstat_named_t Tuc;	/* Transmit Underrun count */
 	kstat_named_t Rxerrc;	/* Rx Error Count */
@@ -801,22 +705,13 @@
 	kstat_named_t Rutec;	/* Receive DMA too Early count */
 	kstat_named_t Tsctc;	/* TCP seg contexts xmit count */
 	kstat_named_t Tsctfc;	/* TCP seg contexts xmit fail count */
-	/*
-	 * Jumbo Frame Counters
-	 */
-	kstat_named_t JumboTx_4K;	/* 4k Jumbo Frames Transmitted */
-	kstat_named_t JumboRx_4K;	/* 4k Jumbo Frames Received */
-	kstat_named_t JumboTx_8K;	/* 8k Jumbo Frames Transmitted */
-	kstat_named_t JumboRx_8K;	/* 8k Jumbo Frames Received */
-	kstat_named_t JumboTx_16K;	/* 16k Jumbo Frames Transmitted */
-	kstat_named_t JumboRx_16K;	/* 16k Jumbo Frames Received */
-
-} e1000gstat, *e1000gstatp;
+} e1000g_stat_t, *p_e1000g_stat_t;
 
 typedef struct _e1000g_tx_ring {
 	kmutex_t tx_lock;
 	kmutex_t freelist_lock;
 	kmutex_t usedlist_lock;
+	kmutex_t mblks_lock;
 	/*
 	 * Descriptor queue definitions
 	 */
@@ -828,10 +723,11 @@
 	struct e1000_tx_desc *tbd_last;
 	struct e1000_tx_desc *tbd_oldest;
 	struct e1000_tx_desc *tbd_next;
+	uint32_t tbd_avail;
 	/*
 	 * Software packet structures definitions
 	 */
-	PTX_SW_PACKET packet_area;
+	p_tx_sw_packet_t packet_area;
 	LIST_DESCRIBER used_list;
 	LIST_DESCRIBER free_list;
 	/*
@@ -844,6 +740,38 @@
 	timeout_id_t timer_id_82547;
 	boolean_t timer_enable_82547;
 	/*
+	 * reschedule when tx resource is available
+	 */
+	boolean_t resched_needed;
+	uint32_t recycle_low_water;
+	uint32_t recycle_num;
+	uint32_t frags_limit;
+	uint32_t stall_watchdog;
+	uint32_t recycle_fail;
+	mblk_list_t mblks;
+	/*
+	 * Statistics
+	 */
+	uint32_t stat_no_swpkt;
+	uint32_t stat_no_desc;
+	uint32_t stat_send_fail;
+	uint32_t stat_reschedule;
+	uint32_t stat_over_size;
+#ifdef E1000G_DEBUG
+	uint32_t stat_under_size;
+	uint32_t stat_exceed_frags;
+	uint32_t stat_empty_frags;
+	uint32_t stat_recycle;
+	uint32_t stat_recycle_intr;
+	uint32_t stat_recycle_retry;
+	uint32_t stat_recycle_none;
+	uint32_t stat_copy;
+	uint32_t stat_bind;
+	uint32_t stat_multi_copy;
+	uint32_t stat_multi_cookie;
+	uint32_t stat_lack_desc;
+#endif
+	/*
 	 * Pointer to the adapter
 	 */
 	struct e1000g *adapter;
@@ -865,9 +793,28 @@
 	/*
 	 * Software packet structures definitions
 	 */
-	PRX_SW_PACKET packet_area;
+	p_rx_sw_packet_t packet_area;
 	LIST_DESCRIBER recv_list;
 	LIST_DESCRIBER free_list;
+
+	p_rx_sw_packet_t pending_list;
+	uint32_t pending_count;
+	uint32_t avail_freepkt;
+	uint32_t rx_mblk_len;
+	mblk_t *rx_mblk;
+	mblk_t *rx_mblk_tail;
+	/*
+	 * Statistics
+	 */
+	uint32_t stat_error;
+	uint32_t stat_esballoc_fail;
+	uint32_t stat_allocb_fail;
+	uint32_t stat_exceed_pkt;
+#ifdef E1000G_DEBUG
+	uint32_t stat_none;
+	uint32_t stat_multi_desc;
+	uint32_t stat_no_freepkt;
+#endif
 	/*
 	 * Pointer to the adapter
 	 */
@@ -875,56 +822,72 @@
 } e1000g_rx_ring_t, *pe1000g_rx_ring_t;
 
 typedef struct e1000g {
-	mac_handle_t mh;
+	int instance;
 	dev_info_t *dip;
 	dev_info_t *priv_dip;
-	ddi_acc_handle_t handle;
-	ddi_acc_handle_t E1000_handle;		/* Ws-PCI handle to regs */
-	int AdapterInstance;
-	struct e1000_hw Shared;
+	mac_handle_t mh;
+	mac_resource_handle_t mrh;
+	struct e1000_hw shared;
 	struct e1000g_osdep osdep;
 
+	boolean_t started;
+	boolean_t e1000g_promisc;
+	boolean_t strip_crc;
+	boolean_t rx_buffer_setup;
 	link_state_t link_state;
-	UINT link_speed;
-	UINT link_duplex;
-	UINT NumRxDescriptors;
-	UINT NumRxFreeList;
-	UINT NumTxDescriptors;
-	UINT NumTxSwPacket;
-	UINT MaxNumReceivePackets;
-	UINT bar64;
-	USHORT TxInterruptDelay;
-	USHORT MWIEnable;
-	UINT MasterLatencyTimer;
-#ifdef e1000g_DEBUG
-	UINT DebugLevel;
-	UINT DisplayOnly;
-	UINT PrintOnly;
+	uint32_t link_speed;
+	uint32_t link_duplex;
+	uint32_t master_latency_timer;
+	uint32_t smartspeed;	/* smartspeed w/a counter */
+	uint32_t init_count;
+	uint32_t reset_count;
+	uint32_t attach_progress;	/* attach tracking */
+	uint32_t loopback_mode;
+
+	uint32_t tx_desc_num;
+	uint32_t tx_freelist_num;
+	uint32_t rx_desc_num;
+	uint32_t rx_freelist_num;
+	uint32_t tx_buffer_size;
+	uint32_t rx_buffer_size;
+
+	uint32_t tx_link_down_timeout;
+	uint32_t tx_bcopy_thresh;
+	uint32_t rx_limit_onintr;
+	uint32_t rx_bcopy_thresh;
+#ifndef NO_82542_SUPPORT
+	uint32_t rx_buf_align;
 #endif
-	UINT smartspeed;	/* smartspeed w/a counter */
-	uint32_t init_count;
-	size_t TxBufferSize;
-	size_t RxBufferSize;
+
 	boolean_t intr_adaptive;
+	boolean_t tx_intr_enable;
+	uint32_t tx_intr_delay;
+	uint32_t tx_intr_abs_delay;
+	uint32_t rx_intr_delay;
+	uint32_t rx_intr_abs_delay;
 	uint32_t intr_throttling_rate;
-	timeout_id_t WatchDogTimer_id;
+
+	boolean_t watchdog_timer_enabled;
+	boolean_t watchdog_timer_started;
+	timeout_id_t watchdog_tid;
+	boolean_t link_complete;
 	timeout_id_t link_tid;
-	boolean_t link_complete;
-	boolean_t strip_crc;
+
+	e1000g_rx_ring_t rx_ring[1];
+	e1000g_tx_ring_t tx_ring[1];
 
 	/*
-	 * The e1000g_timeout_lock must be held when updateing the
+	 * The watchdog_lock must be held when updateing the
 	 * timeout fields in struct e1000g, that is,
-	 * WatchDogTimer_id, timeout_enabled, timeout_started.
+	 * watchdog_tid, watchdog_timer_started.
 	 */
-	kmutex_t e1000g_timeout_lock;
+	kmutex_t watchdog_lock;
 	/*
-	 * The e1000g_linklock protects the link fields in struct e1000g,
+	 * The link_lock protects the link fields in struct e1000g,
 	 * such as link_state, link_speed, link_duplex, link_complete, and
 	 * link_tid.
 	 */
-	kmutex_t e1000g_linklock;
-	kmutex_t TbiCntrMutex;
+	kmutex_t link_lock;
 	/*
 	 * The chip_lock assures that the Rx/Tx process must be
 	 * stopped while other functions change the hardware
@@ -933,68 +896,6 @@
 	 */
 	krwlock_t chip_lock;
 
-	e1000g_rx_ring_t rx_ring[1];
-	e1000g_tx_ring_t tx_ring[1];
-
-	uint32_t rx_bcopy_thresh;
-	uint32_t tx_bcopy_thresh;
-	uint32_t tx_recycle_low_water;
-	uint32_t tx_recycle_num;
-	uint32_t tx_frags_limit;
-	uint32_t tx_link_down_timeout;
-
-	boolean_t tx_intr_enable;
-	ddi_softint_handle_t tx_softint_handle;
-	int tx_softint_pri;
-	/*
-	 * Message chain that needs to be freed
-	 */
-	e1000g_msg_chain_t tx_msg_chain[1];
-
-	mblk_t *rx_mblk;
-	mblk_t *rx_mblk_tail;
-	USHORT rx_packet_len;
-
-	kstat_t *e1000g_ksp;
-
-	uint32_t rx_none;
-	uint32_t rx_error;
-	uint32_t rx_exceed_pkt;
-	uint32_t rx_multi_desc;
-	uint32_t rx_no_freepkt;
-	uint32_t rx_esballoc_fail;
-	uint32_t rx_avail_freepkt;
-	uint32_t rx_allocb_fail;
-	uint32_t rx_seq_intr;
-	uint32_t tx_lack_desc;
-	uint32_t tx_no_desc;
-	uint32_t tx_no_swpkt;
-	uint32_t tx_send_fail;
-	uint32_t tx_multi_cookie;
-	uint32_t tx_over_size;
-	uint32_t tx_under_size;
-	uint32_t tx_reschedule;
-	uint32_t tx_empty_frags;
-	uint32_t tx_exceed_frags;
-	uint32_t tx_recycle;
-	uint32_t tx_recycle_retry;
-	uint32_t tx_recycle_intr;
-	uint32_t tx_recycle_none;
-	uint32_t tx_copy;
-	uint32_t tx_bind;
-	uint32_t tx_multi_copy;
-
-	uint32_t JumboTx_4K;
-	uint32_t JumboRx_4K;
-	uint32_t JumboTx_8K;
-	uint32_t JumboRx_8K;
-	uint32_t JumboTx_16K;
-	uint32_t JumboRx_16K;
-
-	uint32_t StallWatchdog;
-	uint32_t tx_recycle_fail;
-	uint32_t reset_count;
-
 	uint32_t unicst_avail;
 	uint32_t unicst_total;
 	e1000g_ether_addr_t unicst_addr[MAX_NUM_UNICAST_ADDRESSES];
@@ -1002,24 +903,6 @@
 	uint32_t mcast_count;
 	struct ether_addr mcast_table[MAX_NUM_MULTICAST_ADDRESSES];
 
-	uint32_t loopback_mode;
-
-	UINT ProfileJumboTraffic;
-	UINT RcvBufferAlignment;
-
-	boolean_t timeout_enabled;
-	boolean_t timeout_started;
-
-	boolean_t e1000g_promisc;
-	boolean_t started;
-	mac_resource_handle_t mrh;
-
-	uint32_t attach_progress;	/* attach tracking */
-	/*
-	 * reschedule when tx resource is available
-	 */
-	boolean_t resched_needed;
-
 #ifdef __sparc
 	ulong_t sys_page_sz;
 	uint_t dvma_page_num;
@@ -1033,95 +916,58 @@
 	uint_t intr_pri;
 	ddi_intr_handle_t *htable;
 
+	int tx_softint_pri;
+	ddi_softint_handle_t tx_softint_handle;
+
+	kstat_t *e1000g_ksp;
+
 	/*
 	 * NDD parameters
 	 */
 	caddr_t nd_data;
 	nd_param_t nd_params[PARAM_COUNT];
 
-} e1000g, *Pe1000g, ADAPTER_STRUCT, *PADAPTER_STRUCT;
-
-
-static ddi_dma_attr_t tx_dma_attr = {
-	DMA_ATTR_V0,		/* version of this structure */
-	0,			/* lowest usable address */
-	0xffffffffffffffffULL,	/* highest usable address */
-	0x7fffffff,		/* maximum DMAable byte count */
-	1,			/* alignment in bytes */
-	0x7ff,			/* burst sizes (any?) */
-	1,			/* minimum transfer */
-	0xffffffffU,		/* maximum transfer */
-	0xffffffffffffffffULL,	/* maximum segment length */
-	16,			/* maximum number of segments */
-	1,			/* granularity */
-	0,			/* flags (reserved) */
-};
+} e1000g_t;
 
-static ddi_dma_attr_t buf_dma_attr = {
-	DMA_ATTR_V0,		/* version of this structure */
-	0,			/* lowest usable address */
-	0xffffffffffffffffULL,	/* highest usable address */
-	0x7fffffff,		/* maximum DMAable byte count */
-	1,			/* alignment in bytes */
-	0x7ff,			/* burst sizes (any?) */
-	1,			/* minimum transfer */
-	0xffffffffU,		/* maximum transfer */
-	0xffffffffffffffffULL,	/* maximum segment length */
-	1,			/* maximum number of segments */
-	1,			/* granularity */
-	0,			/* flags (reserved) */
-};
-
-static ddi_dma_attr_t tbd_dma_attr = {
-	DMA_ATTR_V0,		/* version of this structure */
-	0,			/* lowest usable address */
-	0xffffffffffffffffULL,	/* highest usable address */
-	0x7fffffff,		/* maximum DMAable byte count */
-	E1000_MDALIGN,		/* alignment in bytes 4K! */
-	0x7ff,			/* burst sizes (any?) */
-	1,			/* minimum transfer */
-	0xffffffffU,		/* maximum transfer */
-	0xffffffffffffffffULL,	/* maximum segment length */
-	1,			/* maximum number of segments */
-	1,			/* granularity */
-	0,			/* flags (reserved) */
-};
 
 /*
  * Function prototypes
  */
 int e1000g_alloc_dma_resources(struct e1000g *Adapter);
 void e1000g_release_dma_resources(struct e1000g *Adapter);
-void e1000g_free_rx_sw_packet(PRX_SW_PACKET packet);
-void SetupTransmitStructures(struct e1000g *Adapter);
-void SetupReceiveStructures(struct e1000g *Adapter);
-void SetupMulticastTable(struct e1000g *Adapter);
+void e1000g_free_rx_sw_packet(p_rx_sw_packet_t packet);
+void e1000g_tx_setup(struct e1000g *Adapter);
+void e1000g_rx_setup(struct e1000g *Adapter);
+void e1000g_setup_multicast(struct e1000g *Adapter);
 boolean_t e1000g_reset(struct e1000g *Adapter);
 
 int e1000g_recycle(e1000g_tx_ring_t *tx_ring);
-void FreeTxSwPacket(PTX_SW_PACKET packet);
-uint_t e1000g_tx_freemsg(caddr_t arg1, caddr_t arg2);
+void e1000g_free_tx_swpkt(p_tx_sw_packet_t packet);
+void e1000g_tx_freemsg(e1000g_tx_ring_t *tx_ring);
+uint_t e1000g_tx_softint_worker(caddr_t arg1, caddr_t arg2);
 mblk_t *e1000g_m_tx(void *arg, mblk_t *mp);
 mblk_t *e1000g_receive(struct e1000g *Adapter);
-void e1000g_rxfree_func(PRX_SW_PACKET packet);
+void e1000g_rxfree_func(p_rx_sw_packet_t packet);
 
 int e1000g_m_stat(void *arg, uint_t stat, uint64_t *val);
-int InitStatsCounters(struct e1000g *Adapter);
-void AdjustTbiAcceptedStats(struct e1000g *Adapter, UINT32 FrameLength,
-    PUCHAR MacAddress);
+int e1000g_init_stats(struct e1000g *Adapter);
+void e1000_tbi_adjust_stats(struct e1000g *Adapter,
+    uint32_t frame_len, uint8_t *mac_addr);
 enum ioc_reply e1000g_nd_ioctl(struct e1000g *Adapter,
     queue_t *wq, mblk_t *mp, struct iocblk *iocp);
 void e1000g_nd_cleanup(struct e1000g *Adapter);
 int e1000g_nd_init(struct e1000g *Adapter);
 
-void e1000g_DisableInterrupt(struct e1000g *Adapter);
-void e1000g_EnableInterrupt(struct e1000g *Adapter);
-void e1000g_DisableAllInterrupts(struct e1000g *Adapter);
-void e1000g_DisableTxInterrupt(struct e1000g *Adapter);
-void e1000g_EnableTxInterrupt(struct e1000g *Adapter);
+void e1000g_clear_interrupt(struct e1000g *Adapter);
+void e1000g_mask_interrupt(struct e1000g *Adapter);
+void e1000g_clear_all_interrupts(struct e1000g *Adapter);
+void e1000g_clear_tx_interrupt(struct e1000g *Adapter);
+void e1000g_mask_tx_interrupt(struct e1000g *Adapter);
 void phy_spd_state(struct e1000_hw *hw, boolean_t enable);
 void e1000_enable_pciex_master(struct e1000_hw *hw);
 
+#pragma inline(e1000_rar_set)
+
 /*
  * Global variables
  */
--- a/usr/src/uts/common/io/e1000g/e1000g_tx.c	Mon Aug 20 23:01:08 2007 -0700
+++ b/usr/src/uts/common/io/e1000g/e1000g_tx.c	Tue Aug 21 00:30:10 2007 -0700
@@ -32,22 +32,9 @@
  *   e1000g_tx.c							*
  *									*
  * Abstract:								*
- *   This file contains some routines that takes care of Transmit	*
- *   interrupt and also makes the hardware to send the data pointed	*
- *   by the packet out on   to the physical medium.			*
- *									*
- *									*
- * Environment:								*
- *   Kernel Mode -							*
- *									*
- * Source History:							*
- *   The code in this file is based somewhat on the "send" code		*
- *   developed for the Intel Pro/100 family(Speedo1 and Speedo3) by	*
- *   Steve Lindsay, and partly on some sample DDK code			*
- *   of solaris.							*
- *									*
- *   March 12, 1997 Steve Lindsay					*
- *   1st created - Ported from E100B send.c file			*
+ *   This file contains some routines that take care of Transmit,	*
+ *   make the hardware to send the data pointed by the packet out	*
+ *   on to the physical medium.						*
  *									*
  * **********************************************************************
  */
@@ -56,27 +43,26 @@
 #include "e1000g_debug.h"
 
 static boolean_t e1000g_send(struct e1000g *, mblk_t *);
-static int e1000g_tx_copy(struct e1000g *, PTX_SW_PACKET, mblk_t *, uint32_t);
-static int e1000g_tx_bind(struct e1000g *, PTX_SW_PACKET, mblk_t *);
+static int e1000g_tx_copy(e1000g_tx_ring_t *,
+    p_tx_sw_packet_t, mblk_t *, uint32_t);
+static int e1000g_tx_bind(e1000g_tx_ring_t *,
+    p_tx_sw_packet_t, mblk_t *);
 static boolean_t check_cksum_context(e1000g_tx_ring_t *, cksum_data_t *);
 static int e1000g_fill_tx_ring(e1000g_tx_ring_t *, LIST_DESCRIBER *,
     cksum_data_t *);
 static void e1000g_fill_context_descriptor(cksum_data_t *,
     struct e1000_context_desc *);
-static int e1000g_fill_tx_desc(struct e1000g *,
-    PTX_SW_PACKET, uint64_t, size_t);
+static int e1000g_fill_tx_desc(e1000g_tx_ring_t *,
+    p_tx_sw_packet_t, uint64_t, size_t);
 static uint32_t e1000g_fill_82544_desc(uint64_t Address, size_t Length,
-    PDESC_ARRAY desc_array);
-static int e1000g_tx_workaround_PCIX_82544(struct e1000g *,
-    PTX_SW_PACKET, uint64_t, size_t);
-static int e1000g_tx_workaround_jumbo_82544(struct e1000g *,
-    PTX_SW_PACKET, uint64_t, size_t);
-static uint32_t e1000g_tx_free_desc_num(e1000g_tx_ring_t *);
+    p_desc_array_t desc_array);
+static int e1000g_tx_workaround_PCIX_82544(p_tx_sw_packet_t, uint64_t, size_t);
+static int e1000g_tx_workaround_jumbo_82544(p_tx_sw_packet_t, uint64_t, size_t);
 static void e1000g_82547_timeout(void *);
 static void e1000g_82547_tx_move_tail(e1000g_tx_ring_t *);
 static void e1000g_82547_tx_move_tail_work(e1000g_tx_ring_t *);
 
-#ifndef e1000g_DEBUG
+#ifndef E1000G_DEBUG
 #pragma inline(e1000g_tx_copy)
 #pragma inline(e1000g_tx_bind)
 #pragma inline(check_cksum_context)
@@ -86,28 +72,17 @@
 #pragma inline(e1000g_fill_82544_desc)
 #pragma inline(e1000g_tx_workaround_PCIX_82544)
 #pragma inline(e1000g_tx_workaround_jumbo_82544)
-#pragma inline(FreeTxSwPacket)
-#pragma inline(e1000g_tx_free_desc_num)
+#pragma inline(e1000g_free_tx_swpkt)
 #endif
 
 /*
- * **********************************************************************
- * Name:      FreeTxSwPacket						*
- *									*
- * Description:								*
- *	       Frees up the previusly allocated Dma handle for given	*
- *	       transmit sw packet.					*
- *									*
- * Parameter Passed:							*
- *									*
- * Return Value:							*
- *									*
- * Functions called:							*
- *									*
- * **********************************************************************
+ * e1000g_free_tx_swpkt	- free up the tx sw packet
+ *
+ * Unbind the previously bound DMA handle for a given
+ * transmit sw packet. And reset the sw packet data.
  */
 void
-FreeTxSwPacket(register PTX_SW_PACKET packet)
+e1000g_free_tx_swpkt(register p_tx_sw_packet_t packet)
 {
 	switch (packet->data_transfer_type) {
 	case USE_BCOPY:
@@ -136,46 +111,43 @@
 	packet->num_desc = 0;
 }
 
+#pragma inline(e1000g_tx_freemsg)
+
+void
+e1000g_tx_freemsg(e1000g_tx_ring_t *tx_ring)
+{
+	mblk_t *mp;
+
+	if (mutex_tryenter(&tx_ring->mblks_lock) == 0)
+		return;
+
+	mp = tx_ring->mblks.head;
+
+	tx_ring->mblks.head = NULL;
+	tx_ring->mblks.tail = NULL;
+
+	mutex_exit(&tx_ring->mblks_lock);
+
+	if (mp != NULL)
+		freemsgchain(mp);
+}
+
 uint_t
-e1000g_tx_freemsg(caddr_t arg1, caddr_t arg2)
+e1000g_tx_softint_worker(caddr_t arg1, caddr_t arg2)
 {
 	struct e1000g *Adapter;
 	mblk_t *mp;
 
 	Adapter = (struct e1000g *)arg1;
 
-	if ((Adapter == NULL) || (arg2 != NULL))
+	if (Adapter == NULL)
 		return (DDI_INTR_UNCLAIMED);
 
-	if (!mutex_tryenter(&Adapter->tx_msg_chain->lock))
-		return (DDI_INTR_CLAIMED);
-
-	mp = Adapter->tx_msg_chain->head;
-	Adapter->tx_msg_chain->head = NULL;
-	Adapter->tx_msg_chain->tail = NULL;
-
-	mutex_exit(&Adapter->tx_msg_chain->lock);
-
-	freemsgchain(mp);
+	e1000g_tx_freemsg(Adapter->tx_ring);
 
 	return (DDI_INTR_CLAIMED);
 }
 
-static uint32_t
-e1000g_tx_free_desc_num(e1000g_tx_ring_t *tx_ring)
-{
-	struct e1000g *Adapter;
-	int num;
-
-	Adapter = tx_ring->adapter;
-
-	num = tx_ring->tbd_oldest - tx_ring->tbd_next;
-	if (num <= 0)
-		num += Adapter->NumTxDescriptors;
-
-	return (num);
-}
-
 mblk_t *
 e1000g_m_tx(void *arg, mblk_t *mp)
 {
@@ -206,30 +178,18 @@
 }
 
 /*
- * **********************************************************************
- * Name:	e1000g_send						*
- *									*
- * Description:								*
- *	Called from e1000g_m_tx with an mp ready to send. this		*
- *	routine sets up the transmit descriptors and sends to		*
- *	the wire. It also pushes the just transmitted packet to		*
- *	the used tx sw packet list					*
- *									*
- * Arguments:								*
- *	Pointer to the mblk to be sent, pointer to this adapter		*
- *									*
- * Returns:								*
- *	B_TRUE, B_FALSE							*
- *									*
- * Modification log:							*
- * Date      Who  Description						*
- * --------  ---  -----------------------------------------------------	*
- * **********************************************************************
+ * e1000g_send -  send packets onto the wire
+ *
+ * Called from e1000g_m_tx with an mblk ready to send. this
+ * routine sets up the transmit descriptors and sends data to
+ * the wire. It also pushes the just transmitted packet to
+ * the used tx sw packet list.
  */
 static boolean_t
 e1000g_send(struct e1000g *Adapter, mblk_t *mp)
 {
-	PTX_SW_PACKET packet;
+	struct e1000_hw *hw;
+	p_tx_sw_packet_t packet;
 	LIST_DESCRIBER pending_list;
 	size_t len;
 	size_t msg_size;
@@ -242,6 +202,9 @@
 	e1000g_tx_ring_t *tx_ring;
 	cksum_data_t cksum;
 
+	hw = &Adapter->shared;
+	tx_ring = Adapter->tx_ring;
+
 	/* Get the total size and frags number of the message */
 	force_bcopy = 0;
 	frag_count = 0;
@@ -258,20 +221,18 @@
 	}
 
 	/* Make sure packet is less than the max frame size */
-	if (msg_size > Adapter->Shared.max_frame_size + VLAN_TAGSZ) {
+	if (msg_size > hw->mac.max_frame_size + VLAN_TAGSZ) {
 		/*
 		 * For the over size packet, we'll just drop it.
 		 * So we return B_TRUE here.
 		 */
-		e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
+		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
 		    "Tx packet out of bound. length = %d \n", msg_size);
+		E1000G_STAT(tx_ring->stat_over_size);
 		freemsg(mp);
-		Adapter->tx_over_size++;
 		return (B_TRUE);
 	}
 
-	tx_ring = Adapter->tx_ring;
-
 	/*
 	 * Check and reclaim tx descriptors.
 	 * This low water mark check should be done all the time as
@@ -280,19 +241,14 @@
 	 * Descriptors... As you may run short of them before getting any
 	 * transmit interrupt...
 	 */
-	if ((Adapter->NumTxDescriptors - e1000g_tx_free_desc_num(tx_ring)) >
-	    Adapter->tx_recycle_low_water) {
-		if (Adapter->Shared.mac_type == e1000_82547) {
-			mutex_enter(&tx_ring->tx_lock);
-			e1000g_82547_tx_move_tail(tx_ring);
-			mutex_exit(&tx_ring->tx_lock);
-		}
-		Adapter->tx_recycle++;
+	if ((Adapter->tx_desc_num - tx_ring->tbd_avail) >
+	    tx_ring->recycle_low_water) {
+		E1000G_DEBUG_STAT(tx_ring->stat_recycle);
 		(void) e1000g_recycle(tx_ring);
 	}
 
-	if (e1000g_tx_free_desc_num(tx_ring) < MAX_TX_DESC_PER_PACKET) {
-		Adapter->tx_lack_desc++;
+	if (tx_ring->tbd_avail < MAX_TX_DESC_PER_PACKET) {
+		E1000G_DEBUG_STAT(tx_ring->stat_lack_desc);
 		goto tx_no_resource;
 	}
 
@@ -300,9 +256,9 @@
 	 * If there are many frags of the message, then bcopy them
 	 * into one tx descriptor buffer will get better performance.
 	 */
-	if ((frag_count >= Adapter->tx_frags_limit) &&
-	    (msg_size <= Adapter->TxBufferSize)) {
-		Adapter->tx_exceed_frags++;
+	if ((frag_count >= tx_ring->frags_limit) &&
+	    (msg_size <= Adapter->tx_buffer_size)) {
+		E1000G_DEBUG_STAT(tx_ring->stat_exceed_frags);
 		force_bcopy |= FORCE_BCOPY_EXCEED_FRAGS;
 	}
 
@@ -311,7 +267,7 @@
 	 * we'll use bcopy to send it, and padd it to 60 bytes later.
 	 */
 	if (msg_size < MINIMUM_ETHERNET_PACKET_SIZE) {
-		Adapter->tx_under_size++;
+		E1000G_DEBUG_STAT(tx_ring->stat_under_size);
 		force_bcopy |= FORCE_BCOPY_UNDER_SIZE;
 	}
 
@@ -339,7 +295,7 @@
 		len = MBLKL(nmp);
 		/* Check zero length mblks */
 		if (len == 0) {
-			Adapter->tx_empty_frags++;
+			E1000G_DEBUG_STAT(tx_ring->stat_empty_frags);
 			/*
 			 * If there're no packet buffers have been used,
 			 * or we just completed processing a buffer, then
@@ -359,14 +315,14 @@
 		if (desc_count > 0) {
 
 			mutex_enter(&tx_ring->freelist_lock);
-			packet = (PTX_SW_PACKET)
+			packet = (p_tx_sw_packet_t)
 			    QUEUE_POP_HEAD(&tx_ring->free_list);
 			mutex_exit(&tx_ring->freelist_lock);
 
 			if (packet == NULL) {
-				e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
+				E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
 				    "No Tx SwPacket available\n");
-				Adapter->tx_no_swpkt++;
+				E1000G_STAT(tx_ring->stat_no_swpkt);
 				goto tx_send_failed;
 			}
 			QUEUE_PUSH_TAIL(&pending_list, &packet->Link);
@@ -379,19 +335,18 @@
 		 */
 		if ((len <= Adapter->tx_bcopy_thresh) || force_bcopy) {
 			desc_count =
-			    e1000g_tx_copy(Adapter, packet, nmp, force_bcopy);
-			Adapter->tx_copy++;
+			    e1000g_tx_copy(tx_ring, packet, nmp, force_bcopy);
+			E1000G_DEBUG_STAT(tx_ring->stat_copy);
 		} else {
 			desc_count =
-			    e1000g_tx_bind(Adapter, packet, nmp);
-			Adapter->tx_bind++;
+			    e1000g_tx_bind(tx_ring, packet, nmp);
+			E1000G_DEBUG_STAT(tx_ring->stat_bind);
 		}
 
-		if (desc_count < 0)
-			goto tx_send_failed;
-
 		if (desc_count > 0)
 			desc_total += desc_count;
+		else if (desc_count < 0)
+			goto tx_send_failed;
 
 		nmp = tmp;
 	}
@@ -402,8 +357,8 @@
 	packet->mp = mp;
 
 	/* Try to recycle the tx descriptors again */
-	if (e1000g_tx_free_desc_num(tx_ring) < MAX_TX_DESC_PER_PACKET) {
-		Adapter->tx_recycle_retry++;
+	if (tx_ring->tbd_avail < (desc_total + 2)) {
+		E1000G_DEBUG_STAT(tx_ring->stat_recycle_retry);
 		(void) e1000g_recycle(tx_ring);
 	}
 
@@ -414,10 +369,10 @@
 	 * (one redundant descriptor and one hw checksum context descriptor are
 	 * included), then return failure.
 	 */
-	if (e1000g_tx_free_desc_num(tx_ring) < (desc_total + 2)) {
-		e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
+	if (tx_ring->tbd_avail < (desc_total + 2)) {
+		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
 		    "No Enough Tx descriptors\n");
-		Adapter->tx_no_desc++;
+		E1000G_STAT(tx_ring->stat_no_desc);
 		mutex_exit(&tx_ring->tx_lock);
 		goto tx_send_failed;
 	}
@@ -428,31 +383,16 @@
 
 	ASSERT(desc_count > 0);
 
-	/* Update statistic counters */
-	if (Adapter->ProfileJumboTraffic) {
-		if ((msg_size > ETHERMAX) &&
-		    (msg_size <= FRAME_SIZE_UPTO_4K))
-			Adapter->JumboTx_4K++;
-
-		if ((msg_size > FRAME_SIZE_UPTO_4K) &&
-		    (msg_size <= FRAME_SIZE_UPTO_8K))
-			Adapter->JumboTx_8K++;
-
-		if ((msg_size > FRAME_SIZE_UPTO_8K) &&
-		    (msg_size <= FRAME_SIZE_UPTO_16K))
-			Adapter->JumboTx_16K++;
-	}
-
 	/* Send successful */
 	return (B_TRUE);
 
 tx_send_failed:
 	/* Free pending TxSwPackets */
-	packet = (PTX_SW_PACKET) QUEUE_GET_HEAD(&pending_list);
+	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&pending_list);
 	while (packet) {
 		packet->mp = NULL;
-		FreeTxSwPacket(packet);
-		packet = (PTX_SW_PACKET)
+		e1000g_free_tx_swpkt(packet);
+		packet = (p_tx_sw_packet_t)
 		    QUEUE_GET_NEXT(&pending_list, &packet->Link);
 	}
 
@@ -461,7 +401,7 @@
 	QUEUE_APPEND(&tx_ring->free_list, &pending_list);
 	mutex_exit(&tx_ring->freelist_lock);
 
-	Adapter->tx_send_fail++;
+	E1000G_STAT(tx_ring->stat_send_fail);
 
 	freemsg(mp);
 
@@ -473,9 +413,9 @@
 	 * Enable Transmit interrupts, so that the interrupt routine can
 	 * call mac_tx_update() when transmit descriptors become available.
 	 */
-	Adapter->resched_needed = B_TRUE;
+	tx_ring->resched_needed = B_TRUE;
 	if (!Adapter->tx_intr_enable)
-		e1000g_EnableTxInterrupt(Adapter);
+		e1000g_mask_tx_interrupt(Adapter);
 
 	/* Message will be scheduled for re-transmit */
 	return (B_FALSE);
@@ -508,18 +448,18 @@
     cksum_data_t *cksum)
 {
 	struct e1000g *Adapter;
-	PTX_SW_PACKET first_packet;
-	PTX_SW_PACKET packet;
+	struct e1000_hw *hw;
+	p_tx_sw_packet_t first_packet;
+	p_tx_sw_packet_t packet;
 	boolean_t cksum_load;
 	struct e1000_tx_desc *first_data_desc;
 	struct e1000_tx_desc *next_desc;
 	struct e1000_tx_desc *descriptor;
-	uint32_t sync_offset;
-	int sync_len;
 	int desc_count;
 	int i;
 
 	Adapter = tx_ring->adapter;
+	hw = &Adapter->shared;
 
 	desc_count = 0;
 	first_packet = NULL;
@@ -532,7 +472,7 @@
 	cksum_load = check_cksum_context(tx_ring, cksum);
 
 	if (cksum_load) {
-		first_packet = (PTX_SW_PACKET) QUEUE_GET_HEAD(pending_list);
+		first_packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(pending_list);
 
 		descriptor = next_desc;
 
@@ -550,23 +490,18 @@
 
 	first_data_desc = next_desc;
 
-	packet = (PTX_SW_PACKET) QUEUE_GET_HEAD(pending_list);
+	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(pending_list);
 	while (packet) {
 		ASSERT(packet->num_desc);
 
 		for (i = 0; i < packet->num_desc; i++) {
-			ASSERT(e1000g_tx_free_desc_num(tx_ring) > 0);
+			ASSERT(tx_ring->tbd_avail > 0);
 
 			descriptor = next_desc;
-#ifdef __sparc
 			descriptor->buffer_addr =
-			    DWORD_SWAP(packet->desc[i].Address);
-#else
-			descriptor->buffer_addr =
-			    packet->desc[i].Address;
-#endif
+			    packet->desc[i].address;
 			descriptor->lower.data =
-			    packet->desc[i].Length;
+			    packet->desc[i].length;
 
 			/* Zero out status */
 			descriptor->upper.data = 0;
@@ -595,7 +530,7 @@
 			first_packet = NULL;
 		}
 
-		packet = (PTX_SW_PACKET)
+		packet = (p_tx_sw_packet_t)
 		    QUEUE_GET_NEXT(pending_list, &packet->Link);
 	}
 
@@ -614,7 +549,7 @@
 	 * Last Descriptor of Packet needs End Of Packet (EOP), Report
 	 * Status (RS) and append Ethernet CRC (IFCS) bits set.
 	 */
-	if (Adapter->TxInterruptDelay) {
+	if (Adapter->tx_intr_delay) {
 		descriptor->lower.data |= E1000_TXD_CMD_IDE |
 		    E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
 	} else {
@@ -625,25 +560,8 @@
 	/*
 	 * Sync the Tx descriptors DMA buffer
 	 */
-	sync_offset = tx_ring->tbd_next - tx_ring->tbd_first;
-	sync_len = descriptor - tx_ring->tbd_next + 1;
-	/* Check the wrap-around case */
-	if (sync_len > 0) {
-		(void) ddi_dma_sync(tx_ring->tbd_dma_handle,
-		    sync_offset * sizeof (struct e1000_tx_desc),
-		    sync_len * sizeof (struct e1000_tx_desc),
-		    DDI_DMA_SYNC_FORDEV);
-	} else {
-		(void) ddi_dma_sync(tx_ring->tbd_dma_handle,
-		    sync_offset * sizeof (struct e1000_tx_desc),
-		    0,
-		    DDI_DMA_SYNC_FORDEV);
-		sync_len = descriptor - tx_ring->tbd_first + 1;
-		(void) ddi_dma_sync(tx_ring->tbd_dma_handle,
-		    0,
-		    sync_len * sizeof (struct e1000_tx_desc),
-		    DDI_DMA_SYNC_FORDEV);
-	}
+	(void) ddi_dma_sync(tx_ring->tbd_dma_handle,
+	    0, 0, DDI_DMA_SYNC_FORDEV);
 
 	tx_ring->tbd_next = next_desc;
 
@@ -651,15 +569,16 @@
 	 * Advance the Transmit Descriptor Tail (Tdt), this tells the
 	 * FX1000 that this frame is available to transmit.
 	 */
-	if (Adapter->Shared.mac_type == e1000_82547)
+	if (hw->mac.type == e1000_82547)
 		e1000g_82547_tx_move_tail(tx_ring);
 	else
-		E1000_WRITE_REG(&Adapter->Shared, TDT,
+		E1000_WRITE_REG(hw, E1000_TDT,
 		    (uint32_t)(next_desc - tx_ring->tbd_first));
 
 	/* Put the pending SwPackets to the "Used" list */
 	mutex_enter(&tx_ring->usedlist_lock);
 	QUEUE_APPEND(&tx_ring->used_list, pending_list);
+	tx_ring->tbd_avail -= desc_count;
 	mutex_exit(&tx_ring->usedlist_lock);
 
 	/* Store the cksum data */
@@ -671,39 +590,17 @@
 
 
 /*
- * **********************************************************************
- * Name:	SetupTransmitStructures					*
- *									*
- * Description: This routine initializes all of the transmit related	*
- *	structures.  This includes the Transmit descriptors, the	*
- *	coalesce buffers, and the TX_SW_PACKETs structures.		*
- *									*
- *	NOTE -- The device must have been reset before this		*
- *		routine is called.					*
- *									*
- * Author:	Hari Seshadri						*
- * Functions Called : get_32bit_value					*
- *									*
- *									*
- *									*
- * Arguments:								*
- *	Adapter - A pointer to our context sensitive "Adapter"		*
- *	structure.							*
- *									*
- * Returns:								*
- *      (none)								*
- *									*
- * Modification log:							*
- * Date      Who  Description						*
- * --------  ---  -----------------------------------------------------	*
- *									*
- * **********************************************************************
+ * e1000g_tx_setup - setup tx data structures
+ *
+ * This routine initializes all of the transmit related
+ * structures. This includes the Transmit descriptors,
+ * and the tx_sw_packet structures.
  */
 void
-SetupTransmitStructures(struct e1000g *Adapter)
+e1000g_tx_setup(struct e1000g *Adapter)
 {
 	struct e1000_hw *hw;
-	PTX_SW_PACKET packet;
+	p_tx_sw_packet_t packet;
 	UINT i;
 	uint32_t buf_high;
 	uint32_t buf_low;
@@ -714,13 +611,13 @@
 	int size;
 	e1000g_tx_ring_t *tx_ring;
 
-	hw = &Adapter->Shared;
+	hw = &Adapter->shared;
 	tx_ring = Adapter->tx_ring;
 
 	/* init the lists */
 	/*
 	 * Here we don't need to protect the lists using the
-	 * tx_usedlist_lock and tx_freelist_lock, for they have
+	 * usedlist_lock and freelist_lock, for they have
 	 * been protected by the chip_lock.
 	 */
 	QUEUE_INIT_LIST(&tx_ring->used_list);
@@ -728,10 +625,10 @@
 
 	/* Go through and set up each SW_Packet */
 	packet = tx_ring->packet_area;
-	for (i = 0; i < Adapter->NumTxSwPacket; i++, packet++) {
-		/* Initialize this TX_SW_PACKET area */
-		FreeTxSwPacket(packet);
-		/* Add this TX_SW_PACKET to the free list */
+	for (i = 0; i < Adapter->tx_freelist_num; i++, packet++) {
+		/* Initialize this tx_sw_apcket area */
+		e1000g_free_tx_swpkt(packet);
+		/* Add this tx_sw_packet to the free list */
 		QUEUE_PUSH_TAIL(&tx_ring->free_list,
 		    &packet->Link);
 	}
@@ -746,69 +643,69 @@
 	/* Setup the Transmit Control Register (TCTL). */
 	reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT) |
-	    (E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
+	    (E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT) |
+	    E1000_TCTL_RTLC;
 
 	/* Enable the MULR bit */
-	if (hw->bus_type == e1000_bus_type_pci_express)
+	if (hw->bus.type == e1000_bus_type_pci_express)
 		reg_tctl |= E1000_TCTL_MULR;
 
-	E1000_WRITE_REG(hw, TCTL, reg_tctl);
+	E1000_WRITE_REG(hw, E1000_TCTL, reg_tctl);
 
-	if ((hw->mac_type == e1000_82571) || (hw->mac_type == e1000_82572)) {
+	if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
 		e1000_get_speed_and_duplex(hw, &speed, &duplex);
 
-		reg_tarc = E1000_READ_REG(hw, TARC0);
+		reg_tarc = E1000_READ_REG(hw, E1000_TARC0);
 		reg_tarc |= (1 << 25);
 		if (speed == SPEED_1000)
 			reg_tarc |= (1 << 21);
-		E1000_WRITE_REG(hw, TARC0, reg_tarc);
+		E1000_WRITE_REG(hw, E1000_TARC0, reg_tarc);
 
-		reg_tarc = E1000_READ_REG(hw, TARC1);
+		reg_tarc = E1000_READ_REG(hw, E1000_TARC1);
 		reg_tarc |= (1 << 25);
 		if (reg_tctl & E1000_TCTL_MULR)
 			reg_tarc &= ~(1 << 28);
 		else
 			reg_tarc |= (1 << 28);
-		E1000_WRITE_REG(hw, TARC1, reg_tarc);
+		E1000_WRITE_REG(hw, E1000_TARC1, reg_tarc);
 
-	} else if (hw->mac_type == e1000_80003es2lan) {
-		reg_tarc = E1000_READ_REG(hw, TARC0);
+	} else if (hw->mac.type == e1000_80003es2lan) {
+		reg_tarc = E1000_READ_REG(hw, E1000_TARC0);
 		reg_tarc |= 1;
 		if (hw->media_type == e1000_media_type_internal_serdes)
 			reg_tarc |= (1 << 20);
-		E1000_WRITE_REG(hw, TARC0, reg_tarc);
+		E1000_WRITE_REG(hw, E1000_TARC0, reg_tarc);
 
-		reg_tarc = E1000_READ_REG(hw, TARC1);
+		reg_tarc = E1000_READ_REG(hw, E1000_TARC1);
 		reg_tarc |= 1;
-		E1000_WRITE_REG(hw, TARC1, reg_tarc);
+		E1000_WRITE_REG(hw, E1000_TARC1, reg_tarc);
 	}
 
 	/* Setup HW Base and Length of Tx descriptor area */
-	size = (Adapter->NumTxDescriptors * sizeof (struct e1000_tx_desc));
-	E1000_WRITE_REG(hw, TDLEN, size);
-	size = E1000_READ_REG(hw, TDLEN);
+	size = (Adapter->tx_desc_num * sizeof (struct e1000_tx_desc));
+	E1000_WRITE_REG(hw, E1000_TDLEN, size);
+	size = E1000_READ_REG(hw, E1000_TDLEN);
 
 	buf_low = (uint32_t)tx_ring->tbd_dma_addr;
 	buf_high = (uint32_t)(tx_ring->tbd_dma_addr >> 32);
 
-	E1000_WRITE_REG(hw, TDBAL, buf_low);
-	E1000_WRITE_REG(hw, TDBAH, buf_high);
+	E1000_WRITE_REG(hw, E1000_TDBAL, buf_low);
+	E1000_WRITE_REG(hw, E1000_TDBAH, buf_high);
 
 	/* Setup our HW Tx Head & Tail descriptor pointers */
-	E1000_WRITE_REG(hw, TDH, 0);
-	E1000_WRITE_REG(hw, TDT, 0);
+	E1000_WRITE_REG(hw, E1000_TDH, 0);
+	E1000_WRITE_REG(hw, E1000_TDT, 0);
 
 	/* Set the default values for the Tx Inter Packet Gap timer */
-	switch (hw->mac_type) {
-	case e1000_82542_rev2_0:
-	case e1000_82542_rev2_1:
+	if ((hw->mac.type == e1000_82542) &&
+	    ((hw->revision_id == E1000_REVISION_2) ||
+	    (hw->revision_id == E1000_REVISION_3))) {
 		reg_tipg = DEFAULT_82542_TIPG_IPGT;
 		reg_tipg |=
 		    DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
 		reg_tipg |=
 		    DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
-		break;
-	default:
+	} else {
 		if (hw->media_type == e1000_media_type_fiber)
 			reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
 		else
@@ -817,62 +714,32 @@
 		    DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
 		reg_tipg |=
 		    DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
-		break;
 	}
-	E1000_WRITE_REG(hw, TIPG, reg_tipg);
+	E1000_WRITE_REG(hw, E1000_TIPG, reg_tipg);
 
 	/* Setup Transmit Interrupt Delay Value */
-	if (Adapter->TxInterruptDelay) {
-		E1000_WRITE_REG(hw, TIDV, Adapter->TxInterruptDelay);
+	if (Adapter->tx_intr_delay) {
+		E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
 	}
 
+	tx_ring->tbd_avail = Adapter->tx_desc_num;
+
 	/* For TCP/UDP checksum offload */
 	tx_ring->cksum_data.cksum_stuff = 0;
 	tx_ring->cksum_data.cksum_start = 0;
 	tx_ring->cksum_data.cksum_flags = 0;
 	tx_ring->cksum_data.ether_header_size = 0;
-
-	/* Initialize tx parameters */
-	Adapter->tx_bcopy_thresh = DEFAULTTXBCOPYTHRESHOLD;
-	Adapter->tx_recycle_low_water = DEFAULTTXRECYCLELOWWATER;
-	Adapter->tx_recycle_num = DEFAULTTXRECYCLENUM;
-	Adapter->tx_intr_enable = B_TRUE;
-	Adapter->tx_frags_limit =
-	    (Adapter->Shared.max_frame_size / Adapter->tx_bcopy_thresh) + 2;
-	if (Adapter->tx_frags_limit > (MAX_TX_DESC_PER_PACKET >> 1))
-		Adapter->tx_frags_limit = (MAX_TX_DESC_PER_PACKET >> 1);
 }
 
 /*
- * **********************************************************************
- * Name:	e1000g_recycle						*
- *									*
- * Description: This routine cleans transmit packets.			*
- *									*
- *									*
- *									*
- * Arguments:								*
- *      Adapter - A pointer to our context sensitive "Adapter"		*
- *      structure.							*
- *									*
- * Returns:								*
- *      (none)								*
- * Functions Called:							*
- *	  None								*
- *									*
- * Modification log:							*
- * Date      Who  Description						*
- * --------  ---  -----------------------------------------------------	*
- *									*
- * **********************************************************************
+ * e1000g_recycle - recycle the tx descriptors and tx sw packets
  */
 int
 e1000g_recycle(e1000g_tx_ring_t *tx_ring)
 {
 	struct e1000g *Adapter;
 	LIST_DESCRIBER pending_list;
-	PTX_SW_PACKET packet;
-	e1000g_msg_chain_t *msg_chain;
+	p_tx_sw_packet_t packet;
 	mblk_t *mp;
 	mblk_t *nmp;
 	struct e1000_tx_desc *descriptor;
@@ -891,42 +758,38 @@
 
 	mutex_enter(&tx_ring->usedlist_lock);
 
-	packet = (PTX_SW_PACKET) QUEUE_GET_HEAD(&tx_ring->used_list);
+	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
 	if (packet == NULL) {
 		mutex_exit(&tx_ring->usedlist_lock);
-		Adapter->tx_recycle_fail = 0;
-		Adapter->StallWatchdog = 0;
+		tx_ring->recycle_fail = 0;
+		tx_ring->stall_watchdog = 0;
 		return (0);
 	}
 
+	/* Sync the Tx descriptor DMA buffer */
+	(void) ddi_dma_sync(tx_ring->tbd_dma_handle,
+	    0, 0, DDI_DMA_SYNC_FORKERNEL);
+
 	/*
 	 * While there are still TxSwPackets in the used queue check them
 	 */
 	while (packet =
-	    (PTX_SW_PACKET) QUEUE_GET_HEAD(&tx_ring->used_list)) {
+	    (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list)) {
 
 		/*
 		 * Get hold of the next descriptor that the e1000g will
 		 * report status back to (this will be the last descriptor
-		 * of a given TxSwPacket). We only want to free the
-		 * TxSwPacket (and it resources) if the e1000g is done
+		 * of a given sw packet). We only want to free the
+		 * sw packet (and it resources) if the e1000g is done
 		 * with ALL of the descriptors.  If the e1000g is done
 		 * with the last one then it is done with all of them.
 		 */
 		ASSERT(packet->num_desc);
-		descriptor = tx_ring->tbd_oldest +
-		    (packet->num_desc - 1);
+		descriptor = tx_ring->tbd_oldest + (packet->num_desc - 1);
 
 		/* Check for wrap case */
 		if (descriptor > tx_ring->tbd_last)
-			descriptor -= Adapter->NumTxDescriptors;
-
-		/* Sync the Tx descriptor DMA buffer */
-		(void) ddi_dma_sync(tx_ring->tbd_dma_handle,
-		    (descriptor - tx_ring->tbd_first) *
-		    sizeof (struct e1000_tx_desc),
-		    sizeof (struct e1000_tx_desc),
-		    DDI_DMA_SYNC_FORCPU);
+			descriptor -= Adapter->tx_desc_num;
 
 		/*
 		 * If the descriptor done bit is set free TxSwPacket and
@@ -945,11 +808,11 @@
 
 			desc_count += packet->num_desc;
 
-			if (desc_count >= Adapter->tx_recycle_num)
+			if (desc_count >= tx_ring->recycle_num)
 				break;
 		} else {
 			/*
-			 * Found a TxSwPacket that the e1000g is not done
+			 * Found a sw packet that the e1000g is not done
 			 * with then there is no reason to check the rest
 			 * of the queue.
 			 */
@@ -957,20 +820,22 @@
 		}
 	}
 
+	tx_ring->tbd_avail += desc_count;
+
 	mutex_exit(&tx_ring->usedlist_lock);
 
 	if (desc_count == 0) {
-		Adapter->tx_recycle_fail++;
-		Adapter->tx_recycle_none++;
+		tx_ring->recycle_fail++;
+		E1000G_DEBUG_STAT(tx_ring->stat_recycle_none);
 		return (0);
 	}
 
-	Adapter->tx_recycle_fail = 0;
-	Adapter->StallWatchdog = 0;
+	tx_ring->recycle_fail = 0;
+	tx_ring->stall_watchdog = 0;
 
 	mp = NULL;
 	nmp = NULL;
-	packet = (PTX_SW_PACKET) QUEUE_GET_HEAD(&pending_list);
+	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&pending_list);
 	ASSERT(packet != NULL);
 	while (packet != NULL) {
 		if (packet->mp != NULL) {
@@ -988,24 +853,23 @@
 		}
 
 		/* Free the TxSwPackets */
-		FreeTxSwPacket(packet);
+		e1000g_free_tx_swpkt(packet);
 
-		packet = (PTX_SW_PACKET)
+		packet = (p_tx_sw_packet_t)
 		    QUEUE_GET_NEXT(&pending_list, &packet->Link);
 	}
 
 	/* Save the message chain */
 	if (mp != NULL) {
-		msg_chain = Adapter->tx_msg_chain;
-		mutex_enter(&msg_chain->lock);
-		if (msg_chain->head == NULL) {
-			msg_chain->head = mp;
-			msg_chain->tail = nmp;
+		mutex_enter(&tx_ring->mblks_lock);
+		if (tx_ring->mblks.head == NULL) {
+			tx_ring->mblks.head = mp;
+			tx_ring->mblks.tail = nmp;
 		} else {
-			msg_chain->tail->b_next = mp;
-			msg_chain->tail = nmp;
+			tx_ring->mblks.tail->b_next = mp;
+			tx_ring->mblks.tail = nmp;
 		}
-		mutex_exit(&msg_chain->lock);
+		mutex_exit(&tx_ring->mblks_lock);
 
 		/*
 		 * If the tx interrupt is enabled, the messages will be freed
@@ -1078,8 +942,8 @@
  *	Make sure we do not have ending address as 1,2,3,4(Hang) or 9,a,b,c(DAC)
  */
 static uint32_t
-e1000g_fill_82544_desc(uint64_t Address,
-    size_t Length, PDESC_ARRAY desc_array)
+e1000g_fill_82544_desc(uint64_t address,
+    size_t length, p_desc_array_t desc_array)
 {
 	/*
 	 * Since issue is sensitive to length and address.
@@ -1087,39 +951,38 @@
 	 */
 	uint32_t safe_terminator;
 
-	if (Length <= 4) {
-		desc_array->Descriptor[0].Address = Address;
-		desc_array->Descriptor[0].Length = Length;
-		desc_array->Elements = 1;
-		return (desc_array->Elements);
+	if (length <= 4) {
+		desc_array->descriptor[0].address = address;
+		desc_array->descriptor[0].length = length;
+		desc_array->elements = 1;
+		return (desc_array->elements);
 	}
 	safe_terminator =
-	    (uint32_t)((((uint32_t)Address & 0x7) +
-	    (Length & 0xF)) & 0xF);
+	    (uint32_t)((((uint32_t)address & 0x7) +
+	    (length & 0xF)) & 0xF);
 	/*
 	 * if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then
 	 * return
 	 */
 	if (safe_terminator == 0 ||
-	    (safe_terminator > 4 &&
-	    safe_terminator < 9) ||
+	    (safe_terminator > 4 && safe_terminator < 9) ||
 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
-		desc_array->Descriptor[0].Address = Address;
-		desc_array->Descriptor[0].Length = Length;
-		desc_array->Elements = 1;
-		return (desc_array->Elements);
+		desc_array->descriptor[0].address = address;
+		desc_array->descriptor[0].length = length;
+		desc_array->elements = 1;
+		return (desc_array->elements);
 	}
 
-	desc_array->Descriptor[0].Address = Address;
-	desc_array->Descriptor[0].Length = Length - 4;
-	desc_array->Descriptor[1].Address = Address + (Length - 4);
-	desc_array->Descriptor[1].Length = 4;
-	desc_array->Elements = 2;
-	return (desc_array->Elements);
+	desc_array->descriptor[0].address = address;
+	desc_array->descriptor[0].length = length - 4;
+	desc_array->descriptor[1].address = address + (length - 4);
+	desc_array->descriptor[1].length = 4;
+	desc_array->elements = 2;
+	return (desc_array->elements);
 }
 
 static int
-e1000g_tx_copy(struct e1000g *Adapter, PTX_SW_PACKET packet,
+e1000g_tx_copy(e1000g_tx_ring_t *tx_ring, p_tx_sw_packet_t packet,
     mblk_t *mp, uint32_t force_bcopy)
 {
 	size_t len;
@@ -1153,15 +1016,15 @@
 			finished = B_TRUE;
 		else if (force_bcopy)
 			finished = B_FALSE;
-		else if (len1 > Adapter->tx_bcopy_thresh)
+		else if (len1 > tx_ring->adapter->tx_bcopy_thresh)
 			finished = B_TRUE;
 		else
 			finished = B_FALSE;
 	}
 
 	if (finished) {
-		if (tx_buf->len > len)
-			Adapter->tx_multi_copy++;
+		E1000G_DEBUG_STAT_COND(tx_ring->stat_multi_copy,
+		    (tx_buf->len > len));
 
 		/*
 		 * If the packet is smaller than 64 bytes, which is the
@@ -1177,24 +1040,20 @@
 			tx_buf->len = MINIMUM_ETHERNET_PACKET_SIZE;
 		}
 
-		switch (packet->dma_type) {
 #ifdef __sparc
-		case USE_DVMA:
+		if (packet->dma_type == USE_DVMA)
 			dvma_sync(tx_buf->dma_handle, 0, DDI_DMA_SYNC_FORDEV);
-			break;
-#endif
-		case USE_DMA:
+		else
 			(void) ddi_dma_sync(tx_buf->dma_handle, 0,
 			    tx_buf->len, DDI_DMA_SYNC_FORDEV);
-			break;
-		default:
-			ASSERT(B_FALSE);
-			break;
-		}
+#else
+		(void) ddi_dma_sync(tx_buf->dma_handle, 0,
+		    tx_buf->len, DDI_DMA_SYNC_FORDEV);
+#endif
 
 		packet->data_transfer_type = USE_BCOPY;
 
-		desc_count = e1000g_fill_tx_desc(Adapter,
+		desc_count = e1000g_fill_tx_desc(tx_ring,
 		    packet,
 		    tx_buf->dma_address,
 		    tx_buf->len);
@@ -1207,7 +1066,7 @@
 }
 
 static int
-e1000g_tx_bind(struct e1000g *Adapter, PTX_SW_PACKET packet, mblk_t *mp)
+e1000g_tx_bind(e1000g_tx_ring_t *tx_ring, p_tx_sw_packet_t packet, mblk_t *mp)
 {
 	int j;
 	int mystat;
@@ -1255,7 +1114,7 @@
 		    DDI_DMA_DONTWAIT, 0, &dma_cookie,
 		    &ncookies)) != DDI_DMA_MAPPED) {
 
-			e1000g_log(Adapter, CE_WARN,
+			e1000g_log(tx_ring->adapter, CE_WARN,
 			    "Couldn't bind mblk buffer to Tx DMA handle: "
 			    "return: %X, Pkt: %X\n",
 			    mystat, packet);
@@ -1269,12 +1128,12 @@
 		 * here any more.
 		 */
 		ASSERT(ncookies);
-		if (ncookies > 1)
-			Adapter->tx_multi_cookie++;
+		E1000G_DEBUG_STAT_COND(tx_ring->stat_multi_cookie,
+		    (ncookies > 1));
 
 		/*
 		 * The data_transfer_type value must be set after the handle
-		 * has been bound, for it will be used in FreeTxSwPacket()
+		 * has been bound, for it will be used in e1000g_free_tx_swpkt()
 		 * to decide whether we need to unbind the handle.
 		 */
 		packet->data_transfer_type = USE_DMA;
@@ -1292,7 +1151,7 @@
 	 */
 	for (j = ncookies; j != 0; j--) {
 
-		desc_count = e1000g_fill_tx_desc(Adapter,
+		desc_count = e1000g_fill_tx_desc(tx_ring,
 		    packet,
 		    dma_cookie.dmac_laddress,
 		    dma_cookie.dmac_size);
@@ -1372,52 +1231,44 @@
 }
 
 static int
-e1000g_fill_tx_desc(struct e1000g *Adapter,
-    PTX_SW_PACKET packet, uint64_t address, size_t size)
+e1000g_fill_tx_desc(e1000g_tx_ring_t *tx_ring,
+    p_tx_sw_packet_t packet, uint64_t address, size_t size)
 {
-	PADDRESS_LENGTH_PAIR desc;
-	int desc_count;
-
-	desc_count = 0;
-
-	if ((Adapter->Shared.bus_type == e1000_bus_type_pcix) &&
-	    (Adapter->Shared.mac_type == e1000_82544)) {
-
-		desc_count = e1000g_tx_workaround_PCIX_82544(Adapter,
-		    packet, address, size);
+	struct e1000_hw *hw = &tx_ring->adapter->shared;
+	p_sw_desc_t desc;
 
-	} else if ((Adapter->Shared.mac_type == e1000_82544) &&
-	    (size > JUMBO_FRAG_LENGTH)) {
-
-		desc_count = e1000g_tx_workaround_jumbo_82544(Adapter,
-		    packet, address, size);
+	if (hw->mac.type == e1000_82544) {
+		if (hw->bus.type == e1000_bus_type_pcix)
+			return (e1000g_tx_workaround_PCIX_82544(packet,
+			    address, size));
 
-	} else {
-		ASSERT(packet->num_desc < MAX_TX_DESC_PER_PACKET);
-
-		desc = &packet->desc[packet->num_desc];
-
-		desc->Address = address;
-		desc->Length = size;
-
-		packet->num_desc++;
-		desc_count++;
+		if (size > JUMBO_FRAG_LENGTH)
+			return (e1000g_tx_workaround_jumbo_82544(packet,
+			    address, size));
 	}
 
-	return (desc_count);
+	ASSERT(packet->num_desc < MAX_TX_DESC_PER_PACKET);
+
+	desc = &packet->desc[packet->num_desc];
+	desc->address = address;
+	desc->length = size;
+
+	packet->num_desc++;
+
+	return (1);
 }
 
 static int
-e1000g_tx_workaround_PCIX_82544(struct e1000g *Adapter,
-    PTX_SW_PACKET packet, uint64_t address, size_t size)
+e1000g_tx_workaround_PCIX_82544(p_tx_sw_packet_t packet,
+    uint64_t address, size_t size)
 {
-	PADDRESS_LENGTH_PAIR desc;
+	p_sw_desc_t desc;
 	int desc_count;
 	long size_left;
 	size_t len;
 	uint32_t counter;
 	uint32_t array_elements;
-	DESC_ARRAY desc_array;
+	desc_array_t desc_array;
 
 	/*
 	 * Coexist Workaround for cordova: RP: 07/04/03
@@ -1441,20 +1292,15 @@
 
 		for (counter = 0; counter < array_elements; counter++) {
 			ASSERT(packet->num_desc < MAX_TX_DESC_PER_PACKET);
-			if (packet->num_desc >= MAX_TX_DESC_PER_PACKET) {
-				e1000g_log(Adapter, CE_WARN,
-				    "No enough preparing tx descriptors");
-				return (-1);
-			}
 			/*
 			 * Put in the buffer address
 			 */
 			desc = &packet->desc[packet->num_desc];
 
-			desc->Address =
-			    desc_array.Descriptor[counter].Address;
-			desc->Length =
-			    desc_array.Descriptor[counter].Length;
+			desc->address =
+			    desc_array.descriptor[counter].address;
+			desc->length =
+			    desc_array.descriptor[counter].length;
 
 			packet->num_desc++;
 			desc_count++;
@@ -1471,10 +1317,10 @@
 }
 
 static int
-e1000g_tx_workaround_jumbo_82544(struct e1000g *Adapter,
-    PTX_SW_PACKET packet, uint64_t address, size_t size)
+e1000g_tx_workaround_jumbo_82544(p_tx_sw_packet_t packet,
+    uint64_t address, size_t size)
 {
-	PADDRESS_LENGTH_PAIR desc;
+	p_sw_desc_t desc;
 	int desc_count;
 	long size_left;
 	uint32_t offset;
@@ -1488,34 +1334,32 @@
 	offset = 0;
 	while (size_left > 0) {
 		ASSERT(packet->num_desc < MAX_TX_DESC_PER_PACKET);
-		if (packet->num_desc >= MAX_TX_DESC_PER_PACKET) {
-			e1000g_log(Adapter, CE_WARN,
-			    "No enough preparing tx descriptors");
-			return (-1);
-		}
 
 		desc = &packet->desc[packet->num_desc];
 
-		desc->Address = address + offset;
+		desc->address = address + offset;
 
 		if (size_left > JUMBO_FRAG_LENGTH)
-			desc->Length = JUMBO_FRAG_LENGTH;
+			desc->length = JUMBO_FRAG_LENGTH;
 		else
-			desc->Length = size_left;
+			desc->length = size_left;
 
 		packet->num_desc++;
 		desc_count++;
 
-		offset += desc->Length;
+		offset += desc->length;
 		size_left -= JUMBO_FRAG_LENGTH;
 	}
 
 	return (desc_count);
 }
 
+#pragma inline(e1000g_82547_tx_move_tail_work)
+
 static void
 e1000g_82547_tx_move_tail_work(e1000g_tx_ring_t *tx_ring)
 {
+	struct e1000_hw *hw;
 	uint16_t hw_tdt;
 	uint16_t sw_tdt;
 	struct e1000_tx_desc *tx_desc;
@@ -1524,21 +1368,22 @@
 	struct e1000g *Adapter;
 
 	Adapter = tx_ring->adapter;
+	hw = &Adapter->shared;
 
-	hw_tdt = E1000_READ_REG(&Adapter->Shared, TDT);
+	hw_tdt = E1000_READ_REG(hw, E1000_TDT);
 	sw_tdt = tx_ring->tbd_next - tx_ring->tbd_first;
 
 	while (hw_tdt != sw_tdt) {
 		tx_desc = &(tx_ring->tbd_first[hw_tdt]);
 		length += tx_desc->lower.flags.length;
 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
-		if (++hw_tdt == Adapter->NumTxDescriptors)
+		if (++hw_tdt == Adapter->tx_desc_num)
 			hw_tdt = 0;
 
 		if (eop) {
 			if ((Adapter->link_duplex == HALF_DUPLEX) &&
-			    e1000_82547_fifo_workaround(&Adapter->Shared,
-			    length) != E1000_SUCCESS) {
+			    (e1000_fifo_workaround_82547(hw, length)
+			    != E1000_SUCCESS)) {
 				if (tx_ring->timer_enable_82547) {
 					ASSERT(tx_ring->timer_id_82547 == 0);
 					tx_ring->timer_id_82547 =
@@ -1549,10 +1394,8 @@
 				return;
 
 			} else {
-				E1000_WRITE_REG(&Adapter->Shared, TDT,
-				    hw_tdt);
-				e1000_update_tx_fifo_head(&Adapter->Shared,
-				    length);
+				E1000_WRITE_REG(hw, E1000_TDT, hw_tdt);
+				e1000_update_tx_fifo_head_82547(hw, length);
 				length = 0;
 			}
 		}